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Abstract: Wildfires significantly threaten ecosystems and human lives, necessitating effective predic-
tion models for the management of this destructive phenomenon. This study integrates Convolutional
Neural Network (CNN) and Bidirectional Long Short-Term Memory (BiLSTM) modules to develop
a novel deep learning model called CNN-BiLSTM for near-real-time wildfire spread prediction to
capture spatial and temporal patterns. This study uses the Visible Infrared Imaging Radiometer
Suite (VIIRS) active fire product and a wide range of environmental variables, including topography,
land cover, temperature, NDVI, wind informaiton, precipitation, soil moisture, and runoff to train
the CNN-BiLSTM model. A comprehensive exploration of parameter configurations and settings
was conducted to optimize the model’s performance. The evaluation results and their comparison
with benchmark models, such as a Long Short-Term Memory (LSTM) and CNN-LSTM models,
demonstrate the effectiveness of the CNN-BiLSTM model with IoU of F1 Score of 0.58 and 0.73 for
validation and training sets, respectively. This innovative approach offers a promising avenue for
enhancing wildfire management efforts through its capacity for near-real-time prediction, marking a
significant step forward in mitigating the impact of wildfires.

Keywords: wildfire spread; convolutional neural network (CNN); long short-term memory (LSTM);
CNN-BiLSTM; deep learning; VIIRS

1. Introduction

Over the past two decades, the environment has suffered extensive damages amount-
ing to billions of dollars due to devastating wildfires. This destructive phenomenon stands
out as among the most severe disasters, inflicting ecological harm and causing casualties
among both forests and people [1]. For instance, the 1983 wildfires in Victoria, Australia, re-
sulted in the burning of 392,000 hectares of land and claimed the lives of 75 people [2]. India
experienced wildfires affecting 5.7 million hectares of land from 1985 to 1990, with 17,852 re-
ported incidents [3]. In Portugal in 2003, 20 people lost their lives, and 420,000 hectares
were destroyed due to wildfires [4]. Spain, in 2006, witnessed the devastation of nearly
150,000 hectares by wildfires [5]. Canada faces an average of 8000 wildfires annually, con-
suming an average of 2.5 million hectares of land each year [6]. A wildfire in the southeast
of Australia in September 2019 burned 11.2 million hectares of forests, leading to the tragic
deaths of numerous animals [7]. As the frequency, duration, and intensity of wildfires in-
crease with the impact of climate change, their destructive potential is expected to increase.
To mitigate the impacts posed by wildfires on human lives and property, it is imperative to
implement management strategies that mitigate these destructive impacts [8].

Early detection and prediction of wildfires can significantly reduce the destructive
impact of wildfires [9]. It is essential to acknowledge, however, that complete prevention of
wildfires in vegetated areas is not possible. Therefore, a crucial tool for accurately predicting
the spread of wildfires across diverse geographies, climates, and fuel types is needed.
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Researchers worldwide have actively engaged in wildfire research, recognizing the
global significance of the issue. Modeling dynamic processes on the Earth’s surface entails
a high degree of uncertainty, as the information is either initially known with some error or
undergoes changes over time [10].

Previous studies categorized wildfire spread models into three main types: stochastic,
phenomenological, and physical [11]. In a physical model, equations governing combustion,
fluid dynamics, and heat transfer are solved to determine the spatio-temporal distribution
of wildfires [12–14]. Examples of physics-based models, such as Forbes [15] and Wildland–
Urban Interface Fire Dynamics Simulator (WFDS) [16], incorporate fuel fundamentals,
combustion, and energy transfer. Stochastic wildfire spread models utilize statistics from
historical wildfires and prescribed burns. These models summarize wind speed, fuel type,
and soil moisture using respective functional forms [17]. Phenomenological wildfire spread
models rely on experimental measurements rather than models based on first principles
to develop functional forms [18]. One of the widely used models for phenomenological
time scales is Rothermel’s model [19]. The abovementioned approaches demand extensive
computations at various ignition locations, making it a time-consuming process. For
instance, the computational time for a single fire spread simulation could reach 872,000 min
(approximately 600 days) on a single processor [20]. Therefore, new approaches are needed
to decrease these computational costs.

Recently, the prediction of wildfire spread has witnessed significant improvements
through the utilization of machine learning algorithms [21–24]. These algorithms use
observed knowledge of previous wildfire patterns to predict future wildfire fronts [11].
Illustratively, [25] conducted a study to evaluate the efficacy of Random Forest (RF), Logis-
tic Regression (LR), and convolutional autoencoder models in predicting wildfire spread.
They used diverse environmental variables acquired through remote sensing technology
in their analysis. The outcomes of their research indicated that the Convolutional Neu-
ral Network (CNN) model surpasses the others in terms of performance, showcasing a
structural superiority that aligns well with the characteristics of the provided data. In
a similar work, Marjani and Mesgari (2023) [26] introduced a multi-kernel CNN model
that integrated diverse data types such as topographical, meteorological, anthropological,
fuel, and hydrological data to predict wildfire spread in the United States. Despite its
comprehensive approach, the model faced performance challenges when dealing with large
pixel-size data (1 km) in real-world scenarios. Furthermore, both studies did not consider
the temporal aspect of wildfires. To cover these gaps, [27] introduced a Convolutional Long
Short-Term Memory (ConvLSTM) network to mitigate computational costs associated with
predictions. However, their approach involved using simulated data rather than real burn
maps as training data. Subsequently, the FirePred [28] model was proposed using actual
wildfire datasets, incorporating both spatial and temporal considerations using various
temporal blocks in its architecture. Despite these improvements, a notable challenge arose
in real-world scenarios where FirePred struggled to predict future burned maps due to its
reliance on initial burn maps—a requirement that is not available during the early stages of
a wildfire. The studies mentioned share a common limitation as they rely on an initial burn
map from the previous time step to predict wildfire spread in the next steps. In real-world
scenarios, the absence of this initial map poses a significant challenge. Therefore, there is a
pressing need for additional research to explore innovative approaches that can effectively
address this critical gap in existing methodologies.

To cover the mentioned limitations, this study introduces a novel approach by propos-
ing a hybrid model, CNN and Bidirectional Long Short-Term Memory (BiLSTM) com-
ponents, referred to as the CNN-BiLSTM model. This model addresses the challenges
associated with spatial and temporal patterns in wildfire spread prediction, using Visible
Infrared Imaging Radiometer Suite (VIIRS) active fire data as a near-real-time source for
generating initial burn maps. The primary contributions of this study include (1) the devel-
opment of the CNN-BiLSTM model designed for near-real-time wildfire spread prediction,
(2) the integration of both spatial and temporal considerations into the wildfire spread
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prediction task through the fusion of CNN and BiLSTM modules, and (3) analysis of the
influences of environmental parameters on the model predictions.

2. Materials and Methods
2.1. Study Area

The research is conducted in Laura, Queensland, Australia, a region known for its
substantial rainforest expanses and diverse biological landscapes, featuring 226 national
parks. The climate in this area is characterized by hot and humid summers, along with
warm and dry winters. The region encounters recurring threats of droughts and bushfires.
According to data from the Global Fire Emissions Database (GFED), this particular area
experienced the second-longest recorded fire in history until 2016 [29,30]. The wildfire
persisted for an extensive period, raging from 13 September 2015 to 12 December 2015,
spanning a total of 91 days. Figure 1 shows the extent of the study area.
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Figure 1. The geographical location of the study area, highlighting the distribution of active fires
obtained from the VIIRS dataset. The daily temperature information was extracted from ERA-5, and
precipitation data was sourced from the Australian Landscape Water Balance.

2.2. Dataset

In this study, we employed the VIIRS dataset [31] for the specified date. This dataset
includes point shapefiles representing active fires on given dates, which are available for
daily access. Meteorological data used in this study include precipitation, soil moisture,
and runoff. These daily data were collected from the Australian Landscape Water Balance
(ALWB) (https://awo.bom.gov.au/products/ (accessed on 22 September 2021)) between
13 September 2015 and 12 December 2015. Moreover, the daily aggregated temperature
was collected from the European Centre for Medium-Range Weather Forecasts (ECMWF)
Reanalysis v5 (ERA-5) (https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-
era5-land?tab=overview (accessed on 12 February 2024)) with the spatial resolution of 0.1

◦

using the Google Earth Engine (GEE) platform. It is recognized that the intensity and spread
of a wildfire can be mitigated by increased values of each of these variables. Additionally,
the wind speed and direction data obtained from the nearest weather station to Laura were

https://awo.bom.gov.au/products/
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=overview
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incorporated into the dataset (https://mesonet.agron.iastate.edu/request/daily.phtml#
(accessed on 22 September 2021)).

Land cover and vegetation characteristics are important elements in determining
wildfire spread dynamics. Certain plant species are highly sensitive to wildfire, and areas
devoid of vegetation are less prone to wildfire spread. To consider this information, we
utilized the Normalized Difference Vegetation Index (NDVI) and land cover data. The 2015
land cover data, created by the European Space Agency (ESA) for long-term and consistent
climate modeling, categorizes the study area into six classes: (1) tree cover—broadleaved,
evergreen, closed to open (>15%); (2) tree cover—broadleaved, deciduous, closed to open
(>15%); (3) tree cover—broadleaved, deciduous, open (15–40%); (4) mosaic tree and shrub
(>50%) and herbaceous cover (<50%); (5) shrubland; and (6) deciduous shrubland.

NDVI data were obtained using the Terra Moderate Resolution Imaging Spectrora-
diometer (MODIS) sensor called MOD13Q1. These data are generated every 16 days as
Level 3 products with a spatial resolution of 250 m (m). Furthermore, we considered earth
surface characteristics that influence wildfire spread, including elevation, slope, and aspect.
Elevation data were collected from the Shuttle Radar Topography Mission (SRTM) with
a 30 m resolution. Slope and aspect data were derived from the elevation data using the
Quantum Geographic Information System (QGIS) software (version 3.32.3) by calculating
the angle of inclination to the horizontal. Table 1 indicates an overview of datasets used in
this study for wildfire spread prediction.

Table 1. An overview of datasets. All datasets except the active fire data were utilized as predictor
features, while the active fire data served as both predictor and target features.

Datasets Spatial Resolution Temporal
Resolution Source Unit

Active fire 375 m Daily VIIRIS --

Precipitation 0.05◦ Daily ALWB mm

Soil moisture 0.05◦ Daily ALWB %

Runoff 0.05◦ Daily ALWB mm

Temperature 0.1◦ Daily ERA-5 k

Wind speed -- Daily Weather station m/s

Wind direction -- Daily Weather station degree

NDVI 250 m 16 days MODIS --

Land cover 300 m Annually ESA --

DEM 30 m Constant SRTM m

Slope 30 m Constant SRTM degree

Aspect 30 m Constant SRTM degree

2.2.1. Data Preparation

The daily wildfire data, acquired from the sensor at a specific time, exhibits movement
throughout the day rather than remaining static. As the sensor revisits the area the next
day, any new fires are detected. Given the current limitations of sensor technology, which
cannot provide temporal resolution finer than a day, a method is required to estimate the
burned in a day. This challenge is addressed by employing a fixed radius and the density
of points per day. The Global Fire Emissions Database (GFED) provides the average rate
per day of fire spread in the area. Equation (1) calculates the constant value of the radius by
considering time, which is 24 h.

Radius = R × T (1)

In Equation (1), R represents the average rate of wildfire spread, and T is time. The
radius obtained from Equation (1) is then utilized to calculate the density of points. Finally,

https://mesonet.agron.iastate.edu/request/daily.phtml#
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we used a constant 95th percentile threshold value to extract the estimated burned area for
each day from the density analysis output.

Land cover data are typically classified as categorical data, where each class is assigned
a unique number. To eliminate the hierarchical nature of these numbers, one-hot encoding
is applied. Given the six classes of land cover in the study area, a binary map is generated
for each class, assigning a value of one where the desired class exists and zero otherwise.

Considering the limited temporal resolution of available data sources, NDVI is not
available for all 91 days of the wildfire. To address this, interpolation is performed for
days without NDVI. A procedure is applied where NDVI data over a 16-day time step are
combined to calculate NDVI for the second day, using the previous day’s NDVI data (when
available) except for pixels burned on that day. For these burned pixels, NDVI is obtained
from the next available data. This process is repeated for days without NDVI data.

To collect wind direction and speed data, the two nearest weather stations to the study
area are utilized. These stations report daily wind directions and speeds. The weighted
average of the values reported by these stations is used to determine wind direction and
speed for each pixel. The distance of each pixel from the weather stations is calculated, and
the inverse distance is employed to weigh the speed and direction values of the stations.
Equation (2) illustrates the wind speed calculation for each pixel, with a similar approach
for wind direction.

Vij =
dij,s1 × Vs1 + dij,s2 × Vs2

dij,s1 + dij,s2
(2)

In Equation (2), Vi,j represents the wind speed in the i,j pixel, di,j,S1 is the inverse
distance between the i,j pixel and the first station, VS1 is the wind speed reported by the
first station, di,j,S2 is the inverse distance between the i,j pixel and the second station, and
VS2 is the wind speed reported by the second station.

2.2.2. Data Resampling and Normalization

In this phase, two preprocessing steps are uniformly applied to all the data, given
their diverse sources. Since the spatial resolution of the data varies due to its derivation
from different sources, each of the predictor variables on each day was resampled to the
spatial resolution of 150 m with the nearest neighbor technique [32] to create a consistent
daily 150 m resolution dataset. In terms of temporal resolution, GEE and ALWB provide
aggregated daily products that are aligned with the requirements of this study.

Considering the extensive range of values in the dataset, potential computational
complexity, and challenges in prediction [1], normalization is essential to ensure that
all variables carry equal weight. Min–max scaling [33] is employed for this purpose,
transforming the original variable ranges through a linear transformation. The min–max
formula, depicted in Equation (3), quantifies this scaling process:

Z =
xi − min(xi)

max(xi)− min(xi)
(3)

where Z represents the output variable, xi denotes the variables, and min and max stand
for the minimum and maximum values, respectively. This normalization ensures that each
variable contributes equally to the analysis.

2.2.3. Patch Extraction

The burned area maps and environmental variables for the study area were collected
with a daily temporal resolution. For each day, a data cube was created with dimensions
of 250 × 400 × 17, where 250 and 400 represent the width and height, respectively, and
17 denotes the number of channels. Due to the substantial size of these data cubes, pro-
cessing them in their entirety proved to be time-intensive. Consequently, each cube was
subdivided into multiple patches along both the x and y dimensions, resulting in a new
shape of 50 × 50 × 17. To maintain interaction between patches, a 50% overlap was applied
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in both the x and y directions during patch extraction (see Figure 2C). Subsequently, to
preserve the chronological order of the patches, the data were transformed into a tensor
with a shape of 4 × 50 × 50 × 17. In this context, the time step represents the number of
occurrences in each sample, with 4 designated as the time step value. Therefore, given a
series of five tensors, the model will predict the next occurrence (fifth). Figure 2 visually
illustrates the process of patch extraction and the resulting data structure in this study.
In total, 1650 patches were extracted using this approach for all 92 days. To prevent an
imbalance in the dataset, only the patches containing at least one active fire pixel (within
label data) were chosen. Subsequently, this set was partitioned into two new sets, with a
validation set accounting for 20% of the samples and a training set including the remaining
80% of samples.
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Figure 2. Patch extraction process and data structure preparation: section (A) shows initial data
structure before patch extraction with daily temporal resolution; section (B) provides information
about the data shapes; section (C) indicates the 50% overlap for two consecutive patches (N and N + 1)
in x direction.

2.3. Time Distributed CNN (TD-CNN)

Recurrent Neural Networks (RNNs) are well-suited for solving time series tasks, while
CNNs are effective for extracting features from complex datasets [34]. The main focus of
CNNs is to identify spatial features in a single input image. However, certain tasks, such as
predicting video processing, involve multiple images presented chronologically to identify
movements and directions. To address this, the TD-CNN approach was employed.

The input for TD-CNN is a 5D tensor consisting of samples, time steps, width, height,
and channels. The fundamental concept behind TD-CNNs is to apply a standard CNN
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architecture independently to each time step of the input sequence. This means that the
same set of convolutional filters and pooling operations are applied to each time step,
enabling the network to capture both spatial and temporal patterns. Figure 3 illustrates the
process of the TD-CNN approach.
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2.4. Dilated CNN (DCNN)

The wildfire spread prediction is similar to the image segmentation task. The concept
of an image pyramid was introduced to enhance segmentation precision [35]. In this
pyramid-based approach, features are extracted from various scales, and subsequently,
they are interpolated and merged. However, extracting features separately for each scale
can increase the network’s size and potentially lead to overfitting [36]. To overcome these
limitations, the DCNNs were introduced. This approach inserts holes between pixels with
a rate called the dilation rate (DR). By adjusting the DR of an atrous convolutional kernel,
varying receptive fields can be achieved. This mechanism can address the diverse shapes
and sizes of wildfires, especially those of different sizes.

2.5. Bidirectional LSTM (BiLSTM)

LSTM, known for its efficacy in capturing long-term temporal dependencies [37],
comprises two fundamental components: a memory cell capable of preserving its state
over time and gating units that regulate the flow of information. The LSTM architecture
includes three gates within its elemental cell structure: input, output, and forget. For
a given time series (x1, x2, ...xt) where xt ∈ Rm, the LSTM unit updates according to the
following formal expressions:

ft = σ(Wf[ht−1; xt] + bf) (4)

it = σ(Wi[ht−1; xt] + bi) (5)

Ot = σ(WO[ht−1; xt] + bO) (6)
∼
Ct = (WC[ht−1; xt] + bC) (7)

Ct = Ct−1 × ft +
∼
Ct × it (8)

ht = tanh(Ct)× Ot (9)
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Here, it, Ot, and ft denote the input gate, output gate, and forget gate, respectively. ht
represents the hidden state at time t with size q over the entire hidden state. The weight
matrices Wf, Wi, WO, WC ∈ Rm+q, and biases bf, bi, bO, bC ∈ Rq are integral components.
The sigmoid function, denoted by σ, and × representing the element-wise multiplication
operator, contribute to the formal expressions.

BiLSTM is an extension of the traditional LSTM architecture that enhances the model’s
ability to capture temporal dependencies by processing input sequences in both forward
and backward directions [38]. In a standard LSTM, information flows only in one direction,
from past to future. However, BiLSTM introduces a bidirectional approach, allowing the
model to consider past and future contexts simultaneously.

In a BiLSTM, the network is split into two components: one processes the input
sequence in the forward direction, while the other processes it in the backward direction.
Each component has its own set of memory cells and gates. The forward and backward
hidden states at each time step are then concatenated or combined to provide a more
comprehensive understanding of the input sequence.

2.6. CNN-BiLSTM Architecture

The proposed CNN-BiLSTM model, illustrated in Figure 4, processes a tensor input
with dimensions 50 × 50 × 17 for each time step. The model uses two convolution layers
with filter sizes of 64 and 128, followed by a DCNN module with DRs of 1, 3, 6, 12, and 18,
all using a consistent filter size of 64. Extracted features are concatenated along the channel
axis, followed by a pair of CNN and max-pooling operations with filter sizes of 16 and 32
and kernel sizes of 1 and 3, respectively. Next, the batch normalization layer normalizes the
extracted features, which are then flattened in preparation for three BiLSTM layers with 16,
32, and 64 neurons. The output from the last BiLSTM layer is processed through a dense
layer with 32 neurons, followed by a final dense layer with 2500 neurons and a sigmoid
activation function, determining the burn probability for each pixel in the next time step. A
reshape layer transforms the output vector into a 2D map with the shape of 50 × 50 × 1.
The rectified linear unit (ReLU) activation function is used in the CNN and dense layers,
except for the last dense layer, which employs a sigmoid activation function. In this study,
an experimental threshold value was employed for post-processing to convert probability
values to a binary value.
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2.7. Validation Metrics

Evaluation of a wildfire spread model involves the application of various statistical
metrics. Precision, recall, F1-score, and Intersection over Union (IoU) were employed in this
study for validation analysis and comprehensive model evaluation (Equations (10)–(13)).
Figure 5 provides a visual representation of True Positive (TP), False Negative (FN), False
Positive (FP), and True Negative (TN). Beyond the mathematical formulation of these
evaluation metrics, Figure 6 offers a visual depiction of the fundamental definitions of
precision and recall. In this study, the Binary Cross-Entropy (BCE) was employed as the
loss function, chosen for its superior performance compared to other loss functions in
previous studies [28].

Precision =

(
TP

TP + FP

)
(10)

Recall =
(

TP
TP + FN

)
(11)

F1 =

(
2 × Precision × Recall

Precision + Recall

)
(12)

IoU =
TP

TP + FP + FN
(13)
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3. Results
3.1. Experimental Settings

The CNN-BiLSTM model was implemented using TensorFlow and the Anaconda
platform. The training and validation processes were executed on an Intel i7-10750H
2.6 GHz processor with 16 GB of RAM, supplemented by an NVIDIA GTX 1650 Ti graphics
card. Through trial and error in the training phase, a batch size of 2 was determined, and a
learning rate of 0.00005 was set for the CNN-BiLSTM model. To prevent overfitting, the
early stopping technique was employed. During each epoch, the model’s performance was
evaluated on the validation dataset. If the model’s loss during validation was lower than
any previously recorded minimum loss, the model’s weights were adjusted accordingly.
Ultimately, upon completion of the training process, the most optimal model was preserved.

3.2. Metric Scores of CNN-BiLSTM Model

The evaluation of the CNN-BiLSTM model involved both the training and validation
sets, utilizing precision, recall, F1, and IoU metrics, as previously mentioned. Figure 7
provides histograms illustrating the distribution of recall, precision, F1, and IoU scores
for the CNN-BiLSTM model across both sets. The graphical representation in Figure 7
visually indicates the metric variations observed in both training and validation sets. The
CNN-BiLSTM model exhibited an average IoU of 0.44 and 0.61 for the validation and
training sets, respectively. In terms of precision, recall, and F1 metrics, the proposed model
demonstrated average values of 0.62, 0.66, and 0.58 for the validation set, compared to
0.72, 0.82, and 0.73 for the training set. Beyond quantitative results, Figure 8 presents 20
qualitative results across validation samples. These results were classified into two classes:
good results and poor results based on visual inspection. While there are instances of
accurate predictions, the model faced challenges in some scenarios, failing to accurately
forecast wildfire spread in the next time step.
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3.3. Model Comparison

In this study, the performance of the CNN-BiLSTM model is compared with other
state-of-the-art architectures, including LSTM and CNN-LSTM, in the task of predicting
wildfire spread based on the validation data. The evaluation metrics, including precision,
recall, F1, and IoU, provide knowledge about the model’s effectiveness (see Table 2). For
LSTM, the results show a precision of 0.57, recall of 0.61, F1 of 0.59, and IoU of 0.41. The
CNN-LSTM model achieved slightly lower metrics with a precision of 0.53, recall of 0.56,
F1 of 0.55, and IoU of 0.36. In comparison, the CNN-BiLSTM model outperformed both,
exhibiting a precision of 0.62, a recall of 0.66, an F1 of 0.64, and an IoU of 0.53. These
results highlight the superior predictive capabilities of the CNN-BiLSTM model in wildfire
spread prediction.

Table 2. The results of LSTM, CNN-LSTM, and CNN-BiLSTM models for wildfire spread prediction
task based on the validation data.

Model
Metric

Precision Recall F1 IoU

LSTM 0.57 0.61 0.59 0.41
CNN-LSTM 0.53 0.56 0.55 0.36

CNN-BiLSTM 0.62 0.66 0.64 0.53

4. Discussion
4.1. CNN-BiLSTM Configuration Effects

The output layer of the CNN-BiLSTM model is designed with a sigmoid function,
producing a probability mask for wildfire spread, similar to models such as FirePred [28]
and Deep Convolutional Inverse Graphics Network (DCIGN) [8M]. To obtain a binary
mask indicating burned areas, a post-processing step involves applying a threshold to the
probabilistic predictions. The choice of the threshold directly influences the results. In this
study, the IoU metric was employed to determine the optimal threshold value. Figure 9
indicates the change of IoU for different threshold values. Evaluation of validation samples
across a range of thresholds (0 to 1) revealed the highest IoU value at 0.42. In contrast to [28]
and in alignment with [11], the CNN-BiLSTM model with a threshold of 0.42 exhibited
improved prediction maps, showcasing its effectiveness in wildfire spread forecasting.

The choice of time step is the next key component that impacts the performance of the
CNN-BiLSTM model. To explore its effects, seven different time steps (1 to 7) were assessed,
and the trained model was validated with each time step on the validation set. Figure 10
illustrates the IoU histogram for different time steps. Given that the CNN-BiLSTM model
considers both spatial and temporal aspects of wildfire, smaller time steps yielded poorer
performance. For instance, time steps 1 and 2 resulted in mean IoU values of 0.45 and
0.52, respectively, suggesting the model’s challenge in understanding the spatial–temporal
dynamics with shorter time steps. In contrast, larger time steps, like 4 and 5, exhibited a
notable increase in performance with mean IoU values of 0.6 and 0.53, respectively. These
findings affirm that a larger temporal window enhances the model’s accuracy in predicting
wildfire spread. However, an excessive increase in time steps may introduce complexity
and compromise results. Therefore, this study opted for a time step of 4 as the optimal
time step.
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4.2. Environmental Variables and Wildfire Spread

The impact of environmental variables on wildfires, including temperature, runoff,
wind vectors, topography, and fuel availability, was investigated through correlation
analysis with the CNN-BiLSTM model predictions for each day of the wildfire dataset, as
illustrated in Figure 11. Notably, soil moisture exhibited the highest positive correlation
between days 21 and 23, ranging from 0.2 to 0.5. Conversely, the lowest negative correlation
occurred on the 35th day, specifically for the runoff and NDVI variables. While a positive
correlation was expected for NDVI, a few days showed a negative correlation with the CNN-
BiLSTM model, potentially attributed to false-positive (FP) predictions. The consistent
burnability capability across land cover classes during the study period may contribute
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to this observation. Moreover, the negative correlation between NDVI and the model
predictions was observed on most days. NDVI, as a measure of vegetation greenness and
density, is often used as a proxy for fuel availability and flammability in wildfire spread
prediction. However, during wildfire events, factors such as smoke, ash, and charred
vegetation can obscure satellite observations, leading to inaccuracies in NDVI readings.
Additionally, the relationship between NDVI and wildfire behavior is influenced by various
factors, including fuel moisture content, vegetation type, and fire severity.
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4.3. Limitations and Advantages

The promising outcomes achieved by deep learning algorithms [26–28] in wildfire
spread prediction tasks have achieved considerable attention for their applicability in real-
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world scenarios, utilizing environmental variables and remote sensing datasets. Unlike
physical models, these deep learning-based models excel in capturing the dynamics of
actively burning regions, particularly along fire frontlines [11].

Various recently developed deep learning models for wildfire spread prediction had
different advantages and limitations. For instance, the FirePred [28] model demonstrated
remarkable accuracy in predicting wildfire spread in Canada between 2002 and 2018.
However, it relies on initial burn maps, which may not be available during the early stages
of a wildfire. In contrast, the CNN-BiLSTM model employs near-real-time VIIRS active
fire data to predict wildfire spread in the next time step. Furthermore, unlike studies
such as those conducted by [26] or [25], which only used CNNs, the CNN-BiLSTM model
integrates both spatial and temporal considerations through the incorporation of CNN
and BiLSTM modules. Using four-time steps in the CNN-BiLSTM architecture enabled the
model to capture the wildfire spread within a 4-day window, contributing to improved
prediction outcomes.

While the CNN-BiLSTM model offers notable advantages for near-real-time wildfire
spread prediction, it is essential to acknowledge a key limitation associated with the
density-based algorithm used to generate initial burn maps from VIIRS data and the rate of
spread. In practical scenarios, having accurate knowledge of this spread rate is necessary
for generating the initial burn maps. If such information is unavailable, estimating this
parameter from historical wildfires in the same region becomes necessary.

Moreover, the results of this model can be enhanced in future studies through the
incorporation of new deep-learning techniques or alternative data preparation approaches.
For instance, the patch-based approach employed in this study resulted in FN or FP pixels,
particularly when a wildfire front extended to one of its neighboring areas. Addressing
these FP or FN pixels could be a focus in future studies to improve the model’s predic-
tive accuracy.

5. Conclusions

This study introduces the CNN-BiLSTM model as a novel approach for near-real-
time daily wildfire spread prediction, addressing the increasing threat of wildfires and
the limitations of existing models. The CNN-BiLSTM model was trained using different
environmental variables, including topography, land cover, temperature, NDVI, wind data,
precipitation, soil moisture, and runoff. These variables and VIIRIS active fire data were
prepared for the wildfire spread prediction. Then, the proposed CNN-BiLSTM model was
trained using different configurations and settings.

Through extensive experimentation and comparison with other state-of-the-art archi-
tectures, the CNN-BiLSTM model demonstrates superior predictive capabilities, showcas-
ing its potential as an effective approach in the field of wildfire spread prediction. The
results highlighted the importance of model configuration, such as the impact of threshold
values and time steps on the model performance. Optimal configurations, determined
through evaluation and experimentation, contribute significantly to the model’s accuracy
in predicting wildfire spread. Furthermore, the study investigated the correlation analysis
between the CNN-BiLSTM model predictions and environmental variables, with notable
findings regarding the positive correlation of soil moisture with wildfire spread. The next
step of this study involves the implementation of advanced deep-learning methodologies,
including the incorporation of attention mechanisms. Additionally, to enhance the model’s
ability to adapt to diverse scenarios, an augmentation of historical wildfire data will be
conducted to train the deep learning model.
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