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Abstract: This study addresses a crucial gap in understanding the impact of urban morphologies
on the canopy urban heat islands (CUHI) effect. The selection of reference stations lacks a unified
standard, and their surface air temperature (SAT) sequences are also inevitably influenced by ur-
banization. However, synchronous observational data from relocated meteorological stations could
provide high-quality sample data for studying CUHI. Utilizing remote sensing techniques, the find-
ings of this paper revealed that the observation environment of stations after relocation exhibited
remarkable representativeness, with their observation sequences accurately reflecting the local cli-
matic background. The differences in synchronized observation sequences could characterize the
CUHI intensity (CUHII). Among the various factors, land use parameters and landscape parameters
played particularly significant roles. Furthermore, the fitting performance of the random forest (RF)
model for both training and testing data was significantly superior to that of the linear model and
support vector regression (SVR) model. Additionally, the influence of local circulation on CUHI could
not be overlooked. The mechanisms by which urban morphologies affect CUHII under different
circulation backgrounds deserve further investigation.

Keywords: urban morphologies; relocated station; surface air temperature; canopy urban heat
islands; random forest

1. Introduction

Over the past century, the remarkable expansion of urban areas and unprecedented
population growth have resulted in annual increments of anthropogenic heat emissions,
giving rise to pronounced urban heat islands (UHI) effects [1,2]. The UHI phenomenon
occurs when urban temperatures surpass those in surrounding suburban and rural areas,
primarily due to altered urban underlying surface characteristics and anthropogenic heat
emissions [3–5]. The canopy urban heat islands (CUHI) specifically refers to the temperature
difference between urban and rural air, extending from the ground level to the rooftops of
urban buildings [6]. This phenomenon has significant implications for human welfare, as
it directly or indirectly impacts human comfort and health, energy consumption, urban
flooding and waterlogging, wildlife activities, air quality, urban infrastructure, and financial
losses, among others [7–9]. Given its far-reaching consequences, the study of CUHI and its
influencing factors is crucial for effective urban planning and climate adaptation strategies.

Weather stations around the globe measure air temperature for the station-point lo-
cations that were used for generating these gridded datasets [10]. Limited by the number
of sites [11], the generation of these datasets is based on the unweighted averaging of the
station/location-specific temperature changes [12]. However, compared to land surface
temperature, air temperature has a more direct impact on human health and socio-economic
activities. The CUHII is commonly defined as the difference in near-surface temperature
between urban and rural stations or regions. The classification of meteorological stations is
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typically based on various criteria, population [13–15], land cover/land use (LCLU) [16–18],
and spatial location [19]. Using population as an example, Liu et al. [15] classified meteo-
rological stations with a population of fewer than 40,000 as reference stations. However,
Rogers et al. [13] defined reference stations as those located more than 2 km away from
urban areas with a population of less than 10,000. In terms of land use criteria, Ren et al. [16]
considered a station as a reference station if the area within a 2 km radius centered on the
station had less than 33% artificial construction. Sun et al. [17] identified a rural site as one
where the percentage of built-up land areas within 1–5 km and 7–78 km buffer zones was
less than 3% and 15%, respectively.

Overall, there is currently no uniform standard for determining the reasonable thresh-
old between urban stations and reference stations. Furthermore, due to the inevitable
impact of urbanization on reference stations, it is challenging to find a purely rural refer-
ence station near an urban station. Therefore, the surface air temperature (SAT) sequence
differences obtained in existing studies are minimal estimates [20,21]. Relocated stations are
typically surrounded by vegetated areas such as open cropland, providing a representative
meteorological observation environment. Their meteorological observation sequences can
accurately reflect the local climate background [3,22], making them suitable as relatively
pure rural comparison stations. Additionally, the “Specifications for Surface Meteorological
Observations” mandates at least one year of synchronous observations between the new
stations and old stations when relocating a national-level surface meteorological observa-
tion station. Therefore, the synchronous observations from relocated stations could provide
high-quality sample data for studying CUHI.

There is now a widespread consensus that the spatial heterogeneity of urban areas
and their infrastructure directly leads to the spatially inhomogeneous distribution of
near-surface air temperature [23,24]. Compared to rural regions, urban surfaces exhibit
lower albedo, which amplifies the CUHI effect by absorbing more solar radiation [25,26].
Furthermore, urban buildings increase surface roughness and decrease wind speed, making
it difficult for urban heat to dissipate [27,28]. The type of urban surface, its spatial structure,
and distribution pattern are crucial factors determining the thermal environment [29].

Scholars have begun to utilize remote sensing technology to conduct an investigation
of the relationship between urban morphologies and CUHI. Shi et al. [30] evaluated the
impact of urban morphologies around meteorological stations on SAT sequences by analyz-
ing land use types within buffers surrounding these stations. Li et al. [31] quantitatively
studied the relationship between different LCLU and the SAT sequences within station
buffers using remote sensing data. However, most of these studies relied on indicators
such as land surface temperature, land use and land cover, and normalized difference vege-
tation index, without fully considering the impact of spatial patterns and configurations
of different LCLU on the CUHI. Additionally, Wang et al. [32] conducted a correlation
analysis between obstacle information around stations and SAT sequences, revealing the
influence of the urban morphologies on temperature SAT sequences, which is not a simple
linear relationship. This suggests that linear statistical methods might not be sufficient to
precisely quantify the relationship between urban morphologies and CUHI. In conclusion,
there is a need to further explore the driving mechanisms of urban morphologies on CUHI.

Anhui Province is in the western part of the Yangtze River Delta region (YRD). The
impact of urbanization has led to the frequent relocation of numerous stations in Anhui
Province in recent years [33,34]. This provides an excellent opportunity to study the
influence of urban morphologies on CUHI. This research focused on Anhui Province
and selected meteorological stations with relocation histories. This paper focused on
meteorological stations with relocation histories, employing remote sensing techniques
and machine learning methods to explore the response characteristics of CUHII to urban
morphological parameters. This work will enhance the understanding of the relationship
between human activities and regional climate change.
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2. Data and Methodology
2.1. Data
2.1.1. SAT Data

In Anhui Province, national-level meteorological observation stations have been es-
tablished, including three national basic climate stations, national basic meteorological
stations, and national general meteorological stations. The daily averaged SAT can be
obtained by calculating the arithmetic mean of the multiple observed SAT values within a
given day, which serves as a crucial metric for climate research.

2.1.2. Land Cover Data

Land cover plays a pivotal role in regulating the intricate processes of energy exchange,
water cycling, and carbon sequestration across diverse regions of the Earth [35]. Over the
past few decades, China has undergone significant changes in its land cover patterns,
primarily driven by rapid economic development. To capture these changes and facilitate
climate research, Wuhan University has released the annual China Land Cover Dataset
(CLCD). This dataset, developed by Yang and Huang [36], represents a comprehensive
compilation of land use information with a spatial resolution of 30 m. The CLCD is based on
a vast collection of 335,709 Landsat images sourced from Google Earth Engine, ensuring a
high degree of accuracy and reliability. The latest iteration of this dataset encompasses land
cover information for China, spanning from 1985 to 2021. Moreover, the overall accuracy
of land classification in the CLCD is reported to be 80%, indicating its high reliability and
usefulness for climate research and related fields.

2.2. Methodology
2.2.1. Selection of Relocated Station Samples

The selection of research samples from relocated stations was based on historical
records of relocations, investigations and assessment reports on the detection environment
of meteorological stations, and high-resolution terrestrial satellite remote sensing imagery.
The selection criteria adhered to the following principles:

(1) Stations were relocated primarily due to significant deterioration of the detection
environment, such as increased urbanization and industrial pollution. This relocation
aimed to preserve the integrity and reliability of the meteorological data;

(2) To minimize potential variations in climate conditions, the altitude differences be-
tween the original and new locations were strictly controlled to be less than 50 m.
Additionally, the horizontal straight-line distance between the two locations did not
exceed 20 km;

(3) Terrain and landforms were carefully considered to ensure minimal significant differ-
ences between the original and new stations. Both locations were situated in similar
geographical regions to maintain consistency in climatic characteristics;

(4) To ensure comparability and continuity of the meteorological data, there were no
changes in the type of observational instruments used at the new location.

Based on these criteria, this paper screened 42 relocated station samples (as illustrated
in Figure 1), which were equally distributed across northern Anhui, Jianghuai, along the
river, and southern Anhui. Previous studies have suggested that under conditions of
advection and turbulent transport, the maximum influence range of observations made
from a shielded box at a height of 1.5 m within the observation field typically does not
exceed 5 km [37,38]. Therefore, this study implemented a buffer zone centered on each
station, with a radius extending 5 km outward.
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Figure 1. Spatial pattern of stations before relocation in Anhui Province.

2.2.2. Establishment of Urban Morphology Parameter Datasets

In this study, four land use types—built-up, water bodies, cropland, and vegetation—were
selected from the CLCD dataset to characterize the land use around meteorological sta-
tions. Land use parameters included the ratio of built-up area (ARbt), ratio of water body
area (ARw), ratio of cropland area (ARc), and ratio of vegetation area (ARv). Landscape
parameters primarily encompassed the largest patch index (LPI) and the average fractal
dimension (FRA) for each land use [39,40]. LPI indicates the prevailing land use within
the research area; a higher value suggests a more prominent role of that type in the overall
landscape [41]. FRA is an index that characterizes the shape of patches; a higher fractal
dimension indicates a more complex shape and a more discrete distribution of patches [41].
Landscape parameters were calculated using Fragstats 4.2 software. Location parameters
encompassed the distances (DIS) between the stations and the centroids of different land
uses, as well as the distances between the stations and the urban centers [42]. In ArcGIS
10.0, the various land uses within the station buffers were extracted, and the centroids of
these land uses were obtained using Calculate Geometry. Furthermore, this study also
collected social indicators, such as population (POP) and gross domestic product (GDP)
of the cities where the stations were located. These social indicators serve as proxies for
understanding the socio-economic characteristics of the regions in question, which might
potentially influence the thermal environment of the stations [21,40].

2.2.3. Fitting of the CUHII

This study investigated the physical mechanisms underlying the formation of the
CUHI and utilized diverse statistical models to analyze the responsive relationship between
CUHII and urban morphological parameters.

Multiple linear regression assumes a linear correlation between the dependent variable
and independent variables, utilizing two or more influencing factors as predictors to explain
the variation in the dependent variable [43]. Despite its simplicity and ease of interpretation,
the traditional linear regression model often falls short when handling complex nonlinear
relationships.

Support vector regression (SVR) is widely used as an effective supervised learning
method. By introducing the concept of support vectors, SVR improves the fitting ability of
data while maintaining the complexity of the model [44].

The random forest (RF) model, a popular and highly flexible machine learning ap-
proach derived from decision trees [45], exhibits remarkable capabilities. Unlike the tra-
ditional linear regression model, the random forest is a non-parametric method that can
effectively simulate the intricate nonlinear relationships between predicted values and
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various predictor variables [46]. Furthermore, it allows for the identification of variable
importance [47], providing valuable insights into the contributions of different factors. This
study employed the 10-fold cross-validation (CV) approach to train and test the RF model.
The predictive performance of the 10-fold CV was evaluated using the coefficient of deter-
mination (R2). Furthermore, it was necessary to identify the two most critical parameters
of the model: the number of trees grown, and the number of randomly sampled candidate
variables considered for each split. The significance of each variable was determined by the
mean decrease in accuracy and mean decrease in impurity, where higher values of these
metrics indicate greater contributions of the input variables.

Employing CHUII as the dependent variable, this paper incorporated various influ-
encing factors into two distinct models: a linear model and an RF model. These models
encompassed a range of independent variables, including land use parameters, landscape
metrics, geometric characteristics, and social factors. Subsequently, this paper evaluated the
influence of urban spatial morphologies on urbanization bias by analyzing the importance
scores and significance levels of the input parameters within each model. This approach al-
lowed the researchers to gain a comprehensive understanding of the factors that contribute
to CHUII and their relative importance.

3. Results
3.1. Comparison of Typical Station before and after Relocation

As evident from Figure 2, with the continuous acceleration of urbanization, the Hefei
station was surrounded by urban construction in 2018. The Hefei station, prior to its reloca-
tion, had a score of 63.2 in the observation environment report. Following its relocation,
the station was situated 30.2 km northwest of its old position. This relocation resulted in a
notable enhancement of the station’s observation environment, evident in the significant
increase of its score to 99.3.
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As illustrated in Figure 3, in terms of land use parameters, following the relocation,
the ARbt decreased significantly from 42.17% to 4.23%, indicating a substantial reduction
in the area occupied by buildings around the station. Conversely, the ARc increased from
56.04% to 91.09%, reflecting a notable growth in the farmland area surrounding the station.
Additionally, the ARw increased from 1.01% to 3.11%, while the ARv exhibited a slight
decrease. Regarding landscape parameters, the LPIbt decreased from 24.73 to 5.97 after the
relocation, showing a marked decline in the dominance of the built-up area. Conversely, the
LPIc increased from 38.88 to 60.18, signifying that farmland emerged as the most important
land use type. FRA exhibited minor changes. In terms of location parameters, the DISbt
increased from 0.53 km to 3.13 km following the relocation, while the DISc decreased
significantly from 0.97 km to 0.07 km. Furthermore, various parameters related to water
bodies and vegetation demonstrated improvements to varying degrees. Synchronous
comparison observations revealed that the annual mean temperature at the old station
before relocation was 17.05 ◦C, whereas the annual mean temperature at the new station
after relocation was 16.03 ◦C. Additionally, the CUHII of Hefei in 2018 was measured
to be 1.02 ◦C. Evidently, the observation environment at the relocated Hefei station is
representative, and its observation sequence effectively reflects the climatic background of
the region. The differences in the synchronous observations could be utilized to represent
the CUHII.
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Figure 3. Comparison of parameters around Hefei station prior to and following its relocation. The
land parameters (a), the landscape parameters (b), and the location parameters (c). For ease of
readability, parameters with relatively small numerical values have been plotted on the secondary
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3.2. Characteristics of CUHI and Urban Morphologies in Relocation Station Samples

As mentioned above, the SAT sequences recorded at the new station after relocation
were significantly lower than those recorded at the old station before relocation. The differ-
ences between the synchronous observations of the two stations could be used to represent
the CUHII of the target city. This section has compiled statistics on the characteristics of the
SAT differences for all relocated stations, as illustrated in Figure 4.
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Figure 4 illustrates that the CUHII in Anhui Province ranged from 0.06 to 1.12 ◦C
overall. Utilizing the natural breaks classification method [48], the relocated stations could
be categorized into seven groups. The group with the highest CUHII, ranging from 0.97
to 1.12 ◦C, comprises five stations. The maximum value was observed at Mengcheng
Station in northern Anhui, where the area of buildings surrounding the station before
relocation had already reached 61.08%. In Anhui, the CUHII at Huainan station in the
north, the CUHII at Hefei station in the center, and the CUHII at Dongzhi station in the
south all exceeded 1 ◦C. Notably, the ratio of the built-up area surrounding these stations
before relocation was all greater than 40%. Contrastingly, the group with the lowest CUHII,
ranging from 0.06 to 0.21 ◦C, includes four stations. The minimum value was recorded
at Fengtai station in northern Anhui, where the ratio of built-up area around the station
before relocation was only 15.2%. The ratio of the built-up area around the other three
stations before relocation was also below 20%.

Figure 5 exhibits the probability density distribution of urban morphological parame-
ters surrounding the stations prior to relocation. Taking the built-up area as an example, the
mean ARbt of the relocated stations was 31.08%, with a maximum of 68.8% and a minimum
of 9.3%. As the ratio of the built-up area increased, the corresponding probability density
gradually increased and then gradually decreased, exhibiting overall characteristics of a
normal distribution. Notably, the probability density reached its highest value when the
ratio of the built-up area concentrated between 25% and 30%, and the probability density
curve exhibited a left-skewed shape. The mean LPIbt of the relocated stations was 24.37,
with a maximum of 66.96 and a minimum of 2.49. The probability density peaked between
20 and 25. Additionally, the mean FRAbt of the relocated stations was 1.09, ranging from
a maximum of 1.13 to a minimum of 1.02, with the highest probability density occurring
between 1.08 and 1.1. The mean DISbt of the relocated stations was 0.76 km, with a max-
imum of 1.75 km and a minimum of 0.22 km. The probability density reached its peak
between 0.71 km and 0.82 km. These results suggested that the observation environment of
the stations prior to relocation had already been compromised by urbanization, and their
SAT sequences contained the warming effect of urbanization.
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stations before relocation.

3.3. The Impact of Urban Morphologies on the CUHI

This section analyzed the correlation between the CUHII and urban morphological
parameters within the buffer zone using relocated station samples. In Figure 6, the red
value indicates a negative correlation coefficient, while the blue value represents a positive



Remote Sens. 2024, 16, 1500 9 of 17

correlation coefficient. The shading intensity gradually increased from light to dark, show-
ing a strengthening correlation from weak to strong. The asterisks denote the significance
level of the correlation.
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As depicted in Figure 6, LPIbt exhibited the most robust correlation with CUHII among
all influencing factors, attaining a correlation coefficient of 0.68 and a significance level of
0.001. Conversely, the ARc exhibited the strongest negative correlation with the CUHII,
with a correlation coefficient of −0.59 and a significance level of 0.001. These results
suggested that as the urban development area increased and the cropland area decreased,
the CUHII rose most significantly. The continuous increase in urban buildings leads to a
decrease in the thermal capacity of the underlying surface and an increase in anthropogenic
heat, which in turn results in the deterioration of the local thermal environment. On the
other hand, the vegetation in farmland has a larger thermal capacity, which can mitigate
daytime temperature increases at the stations [49]. Reduced evaporation in urban areas
further exacerbates this effect [50]. Researchers have discovered a negative correlation
between the SAT series observed and their distance from the urban core [51].
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However, this study did not obtain similar results. The correlation coefficient between
DISu and CUHIII is 0.09, which did not pass the significance test. This might be related to
the sample size, and the research scope will be further expanded to the Yangtze River Delta
region in the future. Furthermore, the correlation coefficients between ARbt, LPIc, POP, and
the intensity of the CUHII were all greater than 0.4, with significance levels exceeding 0.01.

The linear model has demonstrated a certain degree of predictive power for CHUII,
achieving a R2 of 0.65 and a root-mean-square error (RMSE) of 0.08 ◦C within the training
data (Figure 7a). Subsequently, this study utilized this trained linear model to simulate
CHUII in the test data and compared the resulting predicted value with the observed value.
Notably, the predicted CHUII was underestimated for seven stations and overestimated for
two stations. The SVR model has demonstrated a certain degree of predictive power for
CHUII, achieving a R2 of 0.65 and a RMSE of 0.08 ◦C within the training data (Figure 7a).
Furthermore, the predicted errors exceeded 30% for five stations, and the linear model
exhibited an R2 of 0.34 and an RMSE of 0.22 ◦C. Figure 7b illustrates that the SVR model
demonstrated superior performance compared to the linear model in predicting the ampli-
fied CHUII, achieving an R2 value of 0.91 and an RSME value of 0.05 ◦C within the training
data. Similarly, in the test data, the SVR model also demonstrated superior performance
compared to the linear model, achieving an R2 value of 0.67 and an RSME value of 0.09 ◦C.
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Additionally, this section employed the RF model to assess the CHUII prediction.
Based on the performance metrics presented in Figure 7b, it was evident that the RF model
yielded a superior R2 value of 0.95 and a lower RMSE of 0.04 ◦C. Analogously, the trained
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RF model was used to predict CHUII in the test data. In this case, the predicted CUHII was
underestimated for five stations and overestimated for four stations. Notably, only two
stations exhibited predicted errors exceeding 30%. The RF model achieved an R2 of 0.76 and
an RMSE of 0.08 ◦C when evaluated on the test data. Overall, the RF model demonstrated
a significantly better fitting performance for both training and testing datasets compared to
the linear model and SVR model. Therefore, the RF model can be considered a reliable tool
for capturing the intricate relationship between CHUII and urban morphologies.

Subsequently, this paper proceeded to evaluate the relative importance of various
influencing factors in predicting CHUII by the RF model. Among the land use parameters
(depicted by the red bar), the results revealed that ARbt emerged as the most influential
factor governing CHUII. ARbt ranked second in terms of its significance in modulating
CUHII, with an importance value reaching 0.18. This finding aligned with previous studies,
which suggested that the contrast in artificial construction between urban and rural areas
alters surface net radiation and its partitioning into latent and sensible heat fluxes [52].
The subsequent parameters, in descending order of importance, were ARc, ARw, and
ARv. Turning to the landscape parameters (illustrated by the purple bar), LPIbt stood
out as another dominant variable and the most significant parameter across all variables,
with an importance value of 0.25. A higher LPIbt value indicated a lower degree of
spatial heterogeneity, which may hinder material and energy circulation with neighboring
patches [53]. The impact of LPIc on CUHII was also noteworthy, with an importance value
of 0.17. The observed decrease in CUHII with increasing urban vegetation coverage could
be attributed to the evapotranspiration [54] and shading effects [55] provided by urban
vegetation. Additionally, the importance of DISbt and POP exceeded 0.08, indicating their
substantial contribution to the model. Overall, the influence of land use and landscape
parameters on CHUII was significantly greater than that of location and social parameters
on CHUII. Among these, the most pivotal parameters included LPIbt, LPIc, ARbt, and ARc.

These findings provide valuable insights into the complex relationships between ur-
ban morphologies and CHUII. It is worth noting that the present study has not taken
into account the impact of vertical parameters of urban land cover on CUHII. Research
has demonstrated that the three-dimensional morphological characteristics of urban un-
derlying surfaces play a significant role in the local thermal environment [56,57]. For
instance, urban trees mitigate urban heat by providing shade to their surrounding envi-
ronment [58]. In future studies, the researchers will further explore the driving effect of
three-dimensional morphological characteristics of urban underlying surfaces on CUHII
using remote sensing techniques.

4. Discussion

In this section, synchronized daily and hourly data were utilized to further analyze
the characteristics of CUHII. The daily mean CUHII was obtained by subtracting the daily
mean SAT sequence of the old station before relocation from that of the new station after
relocation. As can be seen from Figure 8, the daily mean CUHII closely approximated a
normal distribution. With a sample size of 15,347, the CUHII varied between −2.3 ◦C and
4.4 ◦C, with an arithmetic mean of 0.5717 ◦C and a standard deviation of 0.5683 ◦C. The
analysis revealed that despite the notable variations in CUHII, the bulk of the data clustered
around the mean, effectively reducing the overall fluctuations in the sample. Furthermore,
the kurtosis value of the sample stood at 2.06, and the number of days with a CUHII of
0.4 ◦C was the highest, reaching 1515 days.
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the CHUII.

It is noteworthy that Figure 9 reveals the existence of 828 negative samples in the
daily average CUHII, comprising approximately 5.39% of the entire dataset. This indicates
instances where the observed SAT at the old site was lower than that at the new site,
which were considered non-CUHI days. Apart from the selected parametric indicators
mentioned above, local circulations arising from different geographical environments also
have a significant impact on the spatial and temporal distribution of urban extreme high
temperatures [8,59].
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In this section, Hefei was chosen as the study area to explore the influence of local
circulations on CUHII. As depicted in Figure 10a, prior to relocation, the Hefei station (S1)
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was situated on the northwest side of Chaohu Lake, with a mere 10 km of straight-line
distance from the lake’s surface. Following the relocation, the Hefei station (S2) moved
away from the proximity of Chaohu Lake. Chaohu Lake, with a total area of 760 square
kilometers, is the fifth-largest freshwater lake in China. The land-based stations in the
Chaohu Lake basin are affected by the lake–land breeze to varying degrees, with the
influence being more significant as the distance to the lake decreases [60]. Lake–land breeze,
a mesoscale local circulation phenomenon, results from the pressure difference caused by
thermal differences between the lake and the land surface [61].
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Synchronous daily observations showed that the non-CUHI days at the Hefei station
totaled 104 days. Among these days, this paper selected a non-CUHI day, 28 July 2018, to
analyze the intricate relationship between wind fields and the CUHII. Prior to relocation,
from 00:00 to 18:00, S1 was primarily influenced by southwesterly winds, known as the
lake breeze. Notably, between 13:00 and 17:00, due to the differences in thermal properties
between land and the lake surface under the influence of solar radiation, the southerly wind
strengthened significantly. After 18:00, as the land cooled faster, forming a high-pressure
zone, while the lake cooled slower, creating a low-pressure zone, the wind direction shifted
to northerly, marking the transition to the land breeze.

Following the relocation, two significant changes were observed at S2. Firstly, the
overall wind strength decreased significantly. Secondly, there was no significant reverse in
wind direction during the night, indicating a weak influence from the lake–land breeze.
Turning to the diurnal variation of CUHII, it was primarily positive from 00:00 to 12:00
the next day due to urban warming. During the period from 13:00 to 17:00, S1 reached
a peak value of 2.68 m/s, while S2 only reached 1.41 m/s. The lake breeze disrupts the
CUHI circulation structure, alters the distribution of near-surface heat and water vapor,
suppresses the vertical development of the CUHI, and affects the entire urban area [62].
Consequently, the CUHII rapidly decreased to −1.1 to −2.2 ◦C, reaching its lowest point
at 16:00. After 18:00, with the transition to the land breeze and the higher temperature
of the lake body compared to the land at night, the land breeze warmed the surrounding
areas [62], leading to a gradual increase in the CUHII. It is evident that, in addition to urban
morphologies, local circulation also plays a significant role in influencing the CUHI. In
the future, studies will further analyze the driving mechanisms of urban morphologies
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on the CUHI under different local circulation backgrounds using statistical and numerical
modeling techniques.

5. Conclusions

This study identified meteorological stations with histories of relocation and estab-
lished spatial datasets of urban morphologies around these stations through remote sensing
techniques. By combining various statistical methods, the response characteristics of the
CUHI to urban morphological parameters were elucidated.

Statistical analysis revealed that the mean ARbt around the relocated stations was
31.08%, with a maximum of 68.8% and a minimum of 9.3%. As the built-up area increased,
the corresponding probability density initially rose gradually, peaking between 25% and
30% of the building area ratio. Prior to relocation, the detection environment of the stations
had already been compromised by urbanization, with their SAT sequences reflecting the
warming effects of this process. Furthermore, the LPIbt exhibited the strongest correlation
with CUHII, with a correlation coefficient of 0.68 and a significance level of 0.001. The
correlation coefficients between ARbt, LPIc, POP, and CUHII also exceeded 0.4. The results
of relative importance corroborated those of the correlation analysis. Notably, the R2 and
RMSE of the RF model in both the training and test datasets outperformed those of the
linear model and SVR model, indicating that the RF model was a reliable tool for fitting
the relationship between CUHII and urban morphologies. Lastly, a non-CUHI day was
selected in Hefei for further analysis. Due to the influence of the lake–land breeze, wind
speeds at the old station were significantly higher than those at the new station, particularly
during the afternoon hours from 13:00 to 17:00, when the wind speed difference peaked at
1.27 m/s. Consequently, CUHII decreased to −2.2 ◦C at 16:00, highlighting the significant
role of local circulations in influencing CUHII.

Looking ahead, the researchers plan to conduct more comprehensive studies on the
response of CUHII to urban morphological characteristics under various local circulation
backgrounds, utilizing a combination of statistical analysis and numerical simulations. The
objective of the study was to gradually reveal the mechanisms underlying the impact of
urban morphologies on the CUHII, thereby providing more scientific and effective decision
support for urban planning, climate adaptation, and environmental protection.
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Abbreviations
List of abbreviations used in this paper:

Abbreviations Full Names
UHI Urban heat islands
CUHI Canopy urban heat islands
CUHI Canopy urban heat islands intensity
LCLU Land cover/land use
SAT Surface air temperature
YRD Yangtze River Delta region
CLCD China Land Cover Dataset
SVR Support Vector Regression
RF Random Forest
CV Cross-validation
R2 coefficient of determination
RMSE root-mean-square error
ARbt Ratio of built-up area
ARw Ratio of water body area
ARc Ratio of cropland area
ARv Ratio of vegetation area
LPIbt Largest patch index of built-up area
LPIw Largest patch index of water body area
LPIc Largest patch index of cropland area
LPIv Largest patch index of vegetation area
DISbt Distances between the stations and the built-up area
DISw Distances between the stations and the water body area
DISc Distances between the stations and the cropland area
DISv Distances between the stations and the vegetation area
DISu Distances between the stations and the urban center
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