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Abstract: Faced with the problem of incompatibility between traditional information acquisition mode
and spaceborne earth observation tasks, starting from the general mathematical model of compressed
sensing, a theoretical model of block compressed sensing was established, and a full-process adaptive
coding and decoding compressed sensing framework for remote sensing images was proposed, which
includes five parts: mode selection, feature factor extraction, adaptive shape segmentation, adaptive
sampling rate allocation and image reconstruction. Unlike previous semi-adaptive or local adaptive
methods, the advantages of the adaptive encoding and decoding method proposed in this paper are
mainly reflected in four aspects: (1) Ability to select encoding modes based on image content, and
maximizing the use of the richness of the image to select appropriate sampling methods; (2) Capable
of utilizing image texture details for adaptive segmentation, effectively separating complex and
smooth regions; (3) Being able to detect the sparsity of encoding blocks and adaptively allocate
sampling rates to fully explore the compressibility of images; (4) The reconstruction matrix can be
adaptively selected based on the size of the encoding block to alleviate block artifacts caused by
non-stationary characteristics of the image. Experimental results show that the method proposed in
this article has good stability for remote sensing images with complex edge textures, with the peak
signal-to-noise ratio and structural similarity remaining above 35 dB and 0.8. Moreover, especially for
ocean images with relatively simple image content, when the sampling rate is 0.26, the peak signal-to-
noise ratio reaches 50.8 dB, and the structural similarity is 0.99. In addition, the recovered images
have the smallest BRISQUE value, with better clarity and less distortion. In the subjective aspect, the
reconstructed image has clear edge details and good reconstruction effect, while the block effect is
effectively suppressed. The framework designed in this paper is superior to similar algorithms in
both subjective visual and objective evaluation indexes, which is of great significance for alleviating
the incompatibility between traditional information acquisition methods and satellite-borne earth
observation missions.

Keywords: maximum between-class variance; feature factor; adaptive blocking; adaptive encoding
and decoding; sparsity

1. Introduction

Optical remote sensing imaging technology is an important branch of remote sensing
technology, serving as the “eyes” for human exploration of the universe and the unknown
world. Satellite remote sensing image data with “four highs” characteristics of high space,
high time, high spectrum and high radiation resolution provides important information and
services for human monitoring and research on the earth’s environment and resources [1–5].
The traditional remote sensing satellite image signal acquisition process uses an optical

Remote Sens. 2024, 16, 1529. https://doi.org/10.3390/rs16091529 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs16091529
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-7868-1705
https://doi.org/10.3390/rs16091529
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs16091529?type=check_update&version=1


Remote Sens. 2024, 16, 1529 2 of 20

remote sensing camera to perform Nyquist full sampling imaging on the target, then
converts the collected analog signal to digital, and finally compresses and encodes the
image information through digital processing [6,7]. This method of obtaining image
information is similar to the traditional ground camera mode, but contrast to ground
working cameras, satellite resources are often tight, while ground receiving end resources
are relatively sufficient. Therefore, the working mode with simple encoding and complex
decoding is more suitable for spaceborne earth observation missions. The emergence of
compressive sensing (CS) theory provides a good solution for this pattern, which directly
collects compressed data and senses compressed information, avoiding the redundancy
of compressing the data after collecting it, and compression is easier to process than
decompression [8–11].

Traditional compressive sensing observes and reconstructs remote sensing images as
a whole, which requires a large amount of space to store the measurement matrices and
also increases the difficulty of reconstruction. The hybrid coding framework of block com-
pressed sensing (BCS) divides images into blocks and performs downsampling to alleviate
high storage and computational complexity issues through independent measurement and
non-overlapping block recovery. To some extent, matrix storage requirements and algo-
rithm computational complexity will be reduced, and the robustness of the transmission
process will increase. When using BCS to process images, the images are mostly evenly
segmented, and a fixed sampling rate is used for random sampling. However, the texture
distribution of each spatial position in each frame of the image is different. When the same
observation matrix is used for sampling measurement, the non-stationary characteristics of
the image may cause block artifacts, especially at lower sampling rates, which will lead
to too many sampling points in smooth areas with fewer detailed textures and too few
sampling points in areas with rich texture details, which will affect the reconstruction
quality of later image [12–14].

To solve these problems, many studies have focused on optimizing the sampling
measurement process, by dynamically setting the sampling rates of different image blocks
during the sampling process, or classifying image blocks according to different parameters,
and then assigning different sample rates to different categories. These methods adaptively
select the number of samples from all blocks. The main difference lies in the way of
selecting samples or the adaptive measurement extraction process. Common adaptive
block compressive sensing (ABCS) methods include the following categories [15]. Adaptive
reweighted compressive sensing assigns measurements to each block based on statistical
information such as variance, entropy, and number of significant coefficients, in order
to effectively recover the image [16]. In reference [17] the standard deviation is used to
allocate adaptive sampling rates to each block based on its own data structure, in addition
to a fixed sampling rate, to achieve real sampling rate allocation. In this ABCS coding
system investigated by Li et al. [18], the structural complexity of blocks can be determined
by the error between blocks and sampling rates are allotted according to the error values
obtained. The ABCS method based on spatial entropy proposed in reference [19] has similar
complexity and reconstruction quality like ABCS method based on error between blocks
but differs only in the calculation process. Resources are allocated based on the amount
of information, where regions with rich information represent more edges and textures,
and higher sampling rates are allocated to blocks with more information and vice versa.
All the above methods are subclasses of ABCS and all use some adaptive measurement
extraction processes. However, all of them are based on uniform image segmentation
without considering the texture feature information of the image. Adaptive sampling
is limited by the size of the image block and cannot effectively separate complex and
smooth regions. When the sampling rates between adjacent blocks differ greatly, block
level artifacts are usually observed, making the reconstruction look highly pixelated.

Based on the above analysis, starting from the general mathematical model of com-
pressed sensing, a theoretical model of segmented compressed sensing is established. Faced
with the problem of incompatibility between traditional information acquisition modes
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and spaceborne ground observation tasks, a fully adaptive encoding and decoding com-
pressed sensing framework for remote sensing images is proposed. Unlike previous semi
adaptive or local adaptive methods, the advantages of the adaptive encoding and decoding
framework proposed in this paper are mainly reflected in four aspects: (1) the ability
to select encoding modes according to the image content; (2) capable of utilizing image
texture details for adaptive segmentation; (3) able to detect the sparsity of encoding blocks
and adaptively allocating sampling rates; (4) the reconstruction matrix can be adaptively
selected based on the size of the encoding block.

2. BCS Mathematical Model

When compressive sensing theory is directly applied to large-scale remote sensing
image reconstruction, large-scale imaging signals will lead to long encoding observation
time, huge computational complexity in image restoration algorithms, and large storage
space required for observation matrices [20,21]. Constructing a mathematical model for
block compression perception, which uniformly blocks the image and uses the same obser-
vation matrix to sample and measure each sub block separately, can effectively reduce the
size of the measurement matrix and the complexity of the image reconstruction algorithm,
improve image sampling efficiency and reconstruction performance. The mathematical
model of block compression perception observation process is as follows:

Assume that the size of the target image x is H × W, decompose the image into non-
overlapping encoding tree blocks (ETB), where d represents the sub-block size, d = h × w,
and the entire image is divided into B = (H × W)/(h × w) blocks, then the original signal
x defined on equal block sizes can be expressed as:

x =

x1, · · · , xd1︸ ︷︷ ︸
x[1]

, xd1+1, · · · , x2d1︸ ︷︷ ︸
x[2]

, · · · , x(B−1)d1+1, · · · , xBd1︸ ︷︷ ︸
x[B]


T

(1)

For each sub block, the same observation Φd matrix is used for independent sampling,
where Φd is a n̂ × d sized matrix, n̂ =

[
nd

HW

]
, n is the number of linear observation values,

and the entire image measurement matrix is composed of:

Φ =


Φd 0 · · · 0
0 Φd · · · 0
...

...
. . .

...
0 · · · 0 Φd

 (2)

The mathematical model of BCS can be expressed as:

y =


y1
y2
...

yB

 =


Φd 0 · · · 0
0 Φd · · · 0
...

...
. . .

...
0 · · · 0 Φd




x1
x2
...

xB

 = Φ


x1
x2
...

xB

 (3)

The set of observation vectors obtained is:

y = {yi|yi = Φdxi, i = 1, 2, · · · , B} (4)

Assuming the sparse signal x = {x1, x2, · · · xB}, given the observation matrix Φd ∈ Rn̂×d,
sparse basis matrix Ψ ∈ Rh×h, the sparse representation coefficient of the block signal after
the basis transformation is θ, where xi = Ψθ, then the sensor matrix Θ = ΦdΨ, compressed
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observation signal yi = Φdxi = Θθi. For any block K sparse coefficient θi, there is a constant
δK(0 < δK < 1) that makes the following formula valid.

(1 − δK)∥θi∥2
2 ≤ ∥Θθi∥2

2 ≤ (1 + δK)∥θi∥2
2 (5)

Then it is said that matrix Θ satisfies the K order Block RIP condition, and the minimum
δd satisfying the above condition is the block finite isometric constant (Block RIC) of
matrix Θ.

3. Remote Sensing Images Adaptive Encoding and Decoding Framework

The framework of adaptive coding and decoding of remote sensing images is shown
in Figure 1, which consists of five parts: mode selection, feature factor extraction, adaptive
shape segmentation, adaptive sampling rate allocation, and image reconstruction:

(1) Mode selection stage: Design the maximum between-class variance (OTSU) method
to calculate the optimal threshold between the background and target pixels, and
adaptively select image processing modes (complex mode and simple mode) based
on the optimal threshold of the image;

(2) Feature factor extraction stage: Establish a texture roughness saliency model, take
edge roughness as the salient feature, use Robert and Prewitt operators to describe
the global feature saliency expression, and build the corresponding saliency models
for complex and simple patterns in the pattern selection stage;

(3) Adaptive morphological blocking stage: Introducing the idea of image quadtree parti-
tioning, based on setting the maximum and minimum coding blocks (CB), utilizing
feature saliency factors as constraint conditions, and adopting a top-down partitioning
strategy to recursively divide the image space into different levels of tree structures;

(4) Sampling rate adaptive allocation stage: Develop image sparsity judgment criteria,
adaptively set sparsity as the information density function of a given coding block
based on the different information densities between different coding blocks, and
adaptively allocate sampling rates for a given image block;

(5) Image adaptive reconstruction stage: Propose the adaptive blocked compression-
orthogonal matching pursuit algorithm (ABCS-OMP), adaptively select the recon-
struction matrix and sparse basis according to the encoding block category, set an
iterative threshold based on the known sparsity, and use the OMP algorithm to
reconstruct the encoding block.
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Firstly, this framework uses the maximum between-class variance method to calculate
the image content complexity and adaptively selects the coding mode. By extracting
image feature factors, a saliency model of the corresponding mode is established to guide
the adaptive morphological segmentation of the coding tree block. Then, by using the
information density function to detect the sparsity of the encoding block, the sparsity of the
image is explored as much as possible to achieve adaptive sampling rate allocation for the
image. Finally, the reconstruction matrix and sparse basis are adaptively selected based on
the coding block category, and the iteration threshold is set according to the known sparsity.
OMP algorithm is used to reconstruct the coding block.

3.1. Adaptive Mode Selection Stage

The image adaptive mode selection stage proposed in this section mainly includes
two parts: first, image content analysis, defining the global image complexity calculation
function; second, scene model classification, setting threshold parameters for adaptive
mode discrimination.

In view of the image content, this article defines an image complexity calculation
method based on the maximum between-class variance. According to the grayscale char-
acteristics of the image, the variance is used to calculate the uniformity of the grayscale
distribution, and the image is divided into two parts, the foreground and the background.
The larger the inter class variance between foreground and background, the greater the
difference between the two parts that make up the image, and the more obvious the contrast
between foreground and background. And when part of the background is mistakenly
classified into the foreground or part of the foreground is mistakenly classified into the
background, the difference between the two parts will be reduced, maximizing the inter-
class variance means minimizing the probability of misclassification [22]. Based on the
above analysis, by calculating the maximum inter class variance of the encoding tree block,
the optimal threshold of the image block is obtained, and the optimal threshold is used
for image segmentation. The image complexity C is defined as the number of foreground
pixels of the encoding tree block, and the complexity threshold α is set to complete the
adaptive mode selection of the encoding tree block.

Based on the maximum between-class variance to evaluate the complexity of image
content, the specific mathematical method is as follows: assuming that image pixels can
be divided into background and foreground parts according to the threshold, the image
with a size of M × N has a total pixel size of Sum = M × N, N1 and N2 are the number of
foreground and background pixels, respectively, then the proportion of background and
foreground pixels w1 and w2 can be expressed as:

w1 = N1
Sum

w2 = N2
Sum

(6)

If Pi represents the number of pixels with a grayscale value of i in the background,
and µt1 represents the mathematical expectation of the background pixels relative to the
entire image, the average grayscale value of the background pixels can be expressed as:

µ1 =
t

∑
i=0

i ∗ Pi
N1

=
t

∑
i=0

i ∗ Pi/Sum
N1/Sum

=
µt1

w1
(7)

Similarly, µt2 represents the mathematical expectation of foreground pixels relative to
the entire image, and the average grayscale value of foreground pixels can be expressed as:

µ2 =
M

∑
i=t+1

i ∗ Pi
N2

=
M

∑
i=t+1

i ∗ Pi/Sum
N2/Sum

=
µt2

w1
(8)
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Then the average gray value of the image within the 0 ∼ M gray level range is:

µ =
t

∑
i=0

i ∗ Pi
N1

+
M

∑
i=t+1

i ∗ Pi
N2

= µt1 + µt2 = w1µ1 + w2µ2 (9)

The between-class variance is:

G = w1(µ − µ1)
2 + w2(µ − µ2)

2 = w1 ∗ w2 ∗ (µ1 − µ2)
2 (10)

Assuming that when the gray level is i = it, the between-class variance is the largest
Gmax, then the image complexity C can be expressed as:

CTB[B < it] = 0

C = nonzeros(CTB)
(11)

For the scene model, the main purpose of this section is to adaptively select an
appropriate processing method based on the image content and maximize the use of
the richness of the image to select an appropriate sampling method. According to the
global complexity calculation model, the complexity threshold α is set as the judgment
threshold for the image content complexity C. The original image is adaptively divided
into two categories: simple and complex. The complex type corresponds to scenery such as
cities, forests and clouds, simple types correspond to features such as oceans. In addition,
considering the great increase in the resolution of remote sensing images, the image content
information represented by a single coding tree block is greatly reduced, and there is a
significant disparity between the foreground and background of a single coding tree block
(for example: the content of the coding tree block is all ocean), resulting in a bimodal or
multimodal between-class variance function, and misjudgment of the maximum between-
class variance occurs. Based on this, the optimal threshold constraint it is added during
mode adaptive selection.

The specific steps of coding tree block adaptive mode selection based on the maximum
between-class variance are as follows:

Step 1: Divide each frame/scene of the original remote sensing image into 512× 512-sized
coding tree blocks (CTB).

Step 2: Calculate the histogram of the CTB and normalize it.
Step 3: Set the foreground and background classification thresholds i, i ∈ [0, M], and

iterate from 0.
Step 4: Calculate the between-class variance G = w1 ∗ w2 ∗ (µ1 − µ2)

2.
Step 5: i + 1, return to step 4 until i > M.
Step 6: Calculate the maximum between-class variance Gmax and the optimal threshold

it.
Step 7: Calculate the image content complexity C.
Step 8: Adaptive mode selection, define the adaptive mode selection threshold α and

the optimal threshold constraint condition iα. When C < α, it is in simple mode; When
C > α and it < iα, it is a simple mode; When C > α and it > iα, it is a complex pattern.

3.2. Feature Factor Extraction Stage

In addition to conventional statistical features such as variance and information
entropy, two-dimensional images also have visual saliency features such as texture and
edge information. The edges of an image are the most basic features, and feature maps
can be extracted based on the mutation of grayscale, color, and texture structure. The
saliency model studied in this section is mainly a pure mathematical calculation method.
The purpose of establishing the saliency model is to provide a basis for the adaptive
segmentation task of images. The edge detection operator is used to extract the edge
roughness information of images, and the corresponding saliency models are constructed
for the complex and simple modes in the pattern selection stage. By setting the saliency
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factor threshold of the global feature map, the quadtree is guided to adaptively partition
the image in the next stage.

The edges of images have two attributes: direction and amplitude. Edges can usually
be detected through first-order derivatives or second-order derivatives, where the first
derivative takes the maximum value as the corresponding edge position, and the second
derivative takes the zero crossing point as the corresponding edge position. The research
object of this article is that remote sensing images contain noise and radiation stripes.
The purpose of the research is to alleviate the resource constraints on the satellite and
speed up the processing timeliness. Therefore, noise and processing time are the primary
considerations when selecting operators. For this purpose, this section mainly discusses
the first-order gradient operator, Sobel operator, Roberts operator, Prewitt operator, Kirsch
operator and LoG operator [23,24].

Figure 2 shows the edge texture maps of remote sensing images of several typical
landmarks such as cities, forests, clouds, and oceans using different operators. It can be
observed from the figure that for images with rich content and texture details such as
cities, forests, and clouds, the edge details extracted by Sobel operator, Roberts operator,
and Prewitt operator are more comprehensive. However, the Sobel operator and Prewitt
operator have the phenomenon that the edge is too wide when extracting natural scenes
such as forests and clouds, which is not suitable for expressing the saliency of these types
of features. For scenes with relatively simple ocean image content, the Sobel operator and
Prewitt operator have good performance in extracting sea surface details. Compared to the
edge contours of ships, the Prewitt operator is superior. Based on the above analysis, with
edge roughness as the salient feature, the Roberts operator and Prewitt operator are used
to establish the saliency expressions for complex (such as cities, forests, clouds) and simple
(such as oceans) models, respectively.
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Figure 2. Comparison of edges of several typical remote sensing images extracted by different
operators. (1–4) are typical remote sensing images of cities, forests, clouds, oceans, etc. (a–g) are
the original images and edge schematic diagrams extracted from different images by 6 different
operators, namely: Gradient, LOG, Krisch, Sobel, Roberts and Prewitt.
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Based on this, the Roberts operator is used to detect complex CTBs and construct an
urban forest pattern saliency model. The correlation between the CTBs and the two Roberts
operators can be expressed as:

Gx = Rx ∗ f (x, y)

Gy = Ry ∗ f (x, y)

G =
√

Gx
2 + Gy

2 ≈ |Gx|+
∣∣Gy

∣∣ (12)

Among them, f (x, y) represents the CTB, Rx, and Ry are the horizontal and vertical
Roberts operators. If the threshold TR is set, the local feature saliency factor of complex
patterns can be expressed as:

s =

{
1, G >TR

0, G <TR
(13)

Similarly, use the Prewitt operator to detect simple CTBs and construct a simple
pattern saliency model. The correlation G between the CTB and two Prewitt operators can
be expressed as:

Gx = Px ∗ f (x, y)

Gy = Py ∗ f (x, y)

G =
√

Gx
2 + Gy

2 ≈ |Gx|+
∣∣Gy

∣∣ (14)

Px and Py are Prewitt’s two direction operators. If the threshold TP is set, the local
feature salience factor of the ocean model can be expressed as:

s =

{
1, G >TP

0, G <TP
(15)

3.3. Adaptive Shape Blocking Stage

The purpose of BCS is to fully utilize image texture features to make block segmen-
tation more accurate, improve the compression sampling effect of each image block, and
thus improve the overall image reconstruction effect. In BCS, the image is directly divided
into blocks of the same scale. Although the method is simple, it ignores the content and
structural texture of the image, inevitably resulting in image reconstruction effects.

In order to improve the reconstruction effect and achieve adaptive image segmentation,
this section proposes an image adaptive segmentation strategy based on quadtree, which
sets the saliency factor as a constraint condition, fully utilizes the texture structure of
the image itself, and guides the quadtree method to adaptively divide the image into
encoding blocks of different scales, with large scales corresponding to smooth regions of
the image and small scales corresponding to edge regions. The detailed process of dividing
512 × 512-sized CTBs using the adaptive blocking algorithm is shown in Algorithm 1.

3.4. Sampling Rate Adaptive Allocation Stage

After the CB undergoes two-dimensional discrete cosine transform (DCT), most of the
energy is concentrated in the low-frequency part in the upper left corner of the coefficient
matrix, while the high-frequency coefficients are distributed in the lower right corner. The
expression only contains the cosine term, and the CB can be represented by fewer spectral
coefficients. Moreover, when the absolute value of the low-frequency coefficients is greater
than the absolute value of the high-frequency coefficients, the CB becomes sparser and
the greater the proportion of the low frequency part. In this section. γ is used as the
sparsity judgment threshold of the DCT coefficient Ti,j. After DCT of the CB, the maximum
amplitude coefficient Tmax is used to normalize the absolute value

∣∣Ti,j
∣∣ of the coefficient. If

the normalized coefficient
∣∣Ti,j

∣∣/Tmax is less than the threshold γ, the coefficient determined
to be smaller is set to 0. Otherwise, the coefficient is regarded as the larger DCT coefficient.
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k represents the number of larger coefficients among the DCT coefficients of each coding
block. In this process, the γ threshold is constant across all encoding blocks, but k varies
between coding blocks. k is used as a measure of sparsity, defined as the information
density function of the coding block.

Algorithm 1. Adaptive morphological blocking algorithm based on quadtree images.

Task : Adaptiveblockingof512 × 512-sized coding tree blocks
Input : 512 × 512 encoding tree block Y, blocking threshold
σ, maximum encoding block lmax, minimum encoding block lmin
Initialization : blocklevel L = 0, encoding block size l = 0.
Step:
(1) Extract the feature map of the 512 × 512 CTB and calculate the salient factor s of the
CTB feature.
(2) Let L = L + 1, calculate the saliency factors sum of the feature map of the C-th coding
block (CB):

σ′ =
l

∑
i=1

l
∑

j=1
s

Among them, l = 512
2L .

(3) Compare σ′ in step (2) with the blocking threshold σ. If it is less than the blocking threshold
σ and lmin ≤ l ≤ lmax, the image division is completed. If σ′ is greater than the blocking
threshold σ and lmin < l, return to step (2).
Output : Adaptive Blocked Image Y′

From the above analysis, it can be seen that the smaller the k is, the sparser the coding
block is, and the better image reconstruction can be achieved through fewer sampling
points. This section adaptively allocates the sampling rate to the image block by calculating
the information density function of the CT. However, in the actual image processing process,
an image may contain many 512 × 512-sized CTBs, and a CTB can be adaptively divided
into multiple CBs of different sizes, especially high-resolution and large-width remote
sensing images. Assigning a sampling rate to each CB undoubtedly increases the burden of
on-board storage and transmission. Based on this, this article adopts clustering method to
cluster CBs with the same size in an image into one category, and assign the same sampling
rate to the CBs in the category according to their average information density. In fact, for
large-scale images, there may be hundreds to thousands of CBs in a class. Considering
the compression timeliness issue, if the number of CBs in the category is less than 10, the
average information density of all blocks is calculated; while if it is greater than 10, 10 CBs
are randomly selected to calculate the average information density.

Furthermore, according to the principle of compressed sensing, image reconstruction
relies on both the measurement results and the prior of signal sparsity. Therefore, the
number of measurements m depends largely on the sparsity k of the CB, rather than the
length n × n of the CB. For high-quality reconstruction of the CB, the following constraints
must be satisfied [25]:

ck log(n × n/k) ≤ m ≪ n × n (16)

where c is a constant. In practical situations, according to the rule of thumb, the number of
measured values m must be at least three times greater than the sparsity k.

Figure 3 is a flow chart of the sampling rate adaptive allocation method based on
information density function and the specific algorithm is shown in Algorithm 2.

3.5. Image Adaptive Reconstruction Stage

Most traditional compressed sensing reconstruction algorithms use a fixed observation
matrix for the observation samples of all CBs, such as Gaussian random matrix, Bernoulli
random matrix, partial Fourier matrix, Toeplitz matrix, Hadamard matrix, etc. This natu-
rally ignores the image content and texture structure, does not fully exploit the sparsity of
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the image, and the sparsity is different between different CBs. Applying the same sampling
rate can easily cause the reconstructed image to be highly pixelated.

Algorithm 2. Sampling rate adaptive allocation algorithm based on information density function.

Task: Adaptive allocation of sample rate to different scale CBs
Input : Different scale CB n ∗ n, n ∈ [4, 8, 16, 32, 64]
Step:
(1) CB clustering. After the adaptive partitioning, the CBs of different sizes are grouped into Sortn∗n
according to the size.
(2) The coding block undergoes discrete cosine transform. Count the number of CBs num in each
category. When num ≤ 10, calculate the DCT coefficients coe f si of all CBs in the category; when
num > 10, randomly select 10 CBs to calculate the DCT coefficients.
(3) Calculate the CB information density function k:

normalized_coe f s = coe f s/max(coe f s)

coe f s[normalized_coe f s < γ] = 0

k = nonzeros(coe f s)
(4) Calculate various types of adaptive sampling rates Samplen∗n:

Samplen∗n = 3 ∗
num
∑

i=1
k/num

(5) To prevent the difference between adaptive sampling rates from being too large, set the upper
bound of the sampling rate Samplemax and the lower bound of the sampling rate Samplemin:

Sample =

{
0.2, 0 < Sample < 0.2

0.9, 0.9 < Sample
Output : Adaptive sampling rate Sortn∗n for various types of Samplen∗n

Based on the image adaptive coding in Sections 3.1–3.4, this section proposes an
adaptive block compressed sensing-orthogonal matching pursuit algorithm (ABCS-OMP)
in the decoding and reconstruction stage. The reconstruction matrix and sparse basis
are adaptively selected for the CB category, the iteration threshold is set according to the
known sparsity, and the OMP algorithm is used to reconstruct the image block. Figure 4
is the complete workflow structure diagram of the remote sensing image fully adaptive
coding and decoding compressed sensing framework designed in this paper, in which
the ABCS-OMP algorithm is shown in Algorithm 3, where the input in Algorithm 3 is the
measured value of the image after adaptive sampling and observation, and the output is
the adaptive reconstruction algorithm to restore the measured value to the original image.

Algorithm 3. Adaptive decoding-orthogonal matching pursuit algorithm based on CS.

Task: Coding block adaptive decoding reconstruction
Input: observation value
Y, measurement matrix Φn∗n, sparse basis Ψn∗n, coding block sparsity kn∗n
Step:
(1) Initialize. Residual r0 = yi, number of iterations t = 1, sparse representation coefficient
θ = 0 ∈ Rn∗n, encoding block index set Λ0 = ∅.
(2) Calculate the sensing matrix. According to the coding block size n ∗
n adaptively selects the measurement matrix Φn∗n and the sparse basis Ψn∗n, and calculates the
sensing matrix Ti:

Ti = Φn∗n ∗ inv(Ψn∗n)
(3) Calculate the index jtwith the greatest correlation, jt = argmax

j
∥Ti[j]rt−1∥2.

(4) Update index set Λt, Λt = Λt−1 ∪ jt.
(5) Find the least squares solution θ̂t =

(
Ti Λt

TTi Λt

)−1Ti Λt
Tyi.

(6) When t ≥
kn∗n, the algorithm ends, return the sparse representation coefficient θ̂t, otherwise let t = t + 1
and return to Step 3.
(7) Calculate the reconstruction CB vector y′:

y′ = inv(Ψn∗n) ∗ θ̂t
′
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4. Simulation

The operating system used in the test was Windows 10 flagship Edition 64-bit, the
processor was 11th Gen Intel(R) Core (TM) i7-1165G7 @ 2.80 GHz, the test tool was MATLAB
2019b, and the timing functions were tic and toc. In order to verify the effectiveness of the
full-process adaptive encoding and decoding method for remote sensing images proposed
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in this article, the aerospace remote sensing data set NWPU VHR-10 [26] and Landsat
7 Cloud Cover Assessment Validation Data [27] were selected as test images. This chapter
mainly contains four performance analysis tests: (1) Discuss the adaptive mode selection
threshold α in Section 3.1; (2) Verify the establishment of simple and complex modes in
Section 3.2 combined with the adaptive morphological blocking in Section 3.3; (3) Discuss
the sparsity judgment threshold γ of DCT coefficient Ti,j in Section 3.4; (4) Performance
comparison of different algorithms. In order to verify the performance of the algorithm
in this paper, it is compared with various algorithms in terms of subjective reconstruction
effects, objective evaluation indicators, and encoding and decoding calculation time.

4.1. Analyze Adaptive Mode Selection Threshold α

In this section, the adaptive pattern selection method based on the maximum between-
class variance method proposed in Section 3.1 is simulated and verified, and the judgment
criteria of the two constraint conditions of the adaptive pattern selection of image content
complexity C and the optimal threshold it are discussed.

Firstly, the aerospace remote sensing data set NWPU VHR-10 and Landsat 7 Cloud
Cover Assessment Validation Data are divided into blocks to form a set of 512 × 512-sized
CTBs, and the set was selected to construct three complex image content data sets of clouds,
cities and forests, as well as a simple ocean image content data set. Each data set contains
30 512 × 512-sized CTBs. Each data set contains 30 512 × 512-sized coding tree blocks.
The image content complexity C and optimal threshold it of each coding tree block in the
four data sets are calculated according to the adaptive mode selection algorithm of the
maximum inter-class difference method.

In this test, the image is quantized by 8bit, and the maximum image content complexity
of a single CTB is 262,144. The larger the complexity C, the richer the image content and
the more texture details. Figure 5 is a two-dimensional scatter plot of the complexity
and optimal threshold of the four datasets. It is observed that the point distribution
of the complexity C and the optimal threshold it of the cloud, city and forest complex
content datasets are relatively stable, and the complexity C almost all are greater than
32,768 (maximum complexity), and the optimal threshold I is also almost all greater than
0.125 (maximum optimal threshold). It was observed that the point distribution of the
complexity C and the optimal threshold it of the cloud, city and forest complex content
datasets is relatively stable. The complexity C is almost all greater than 32,768 (one-eighth
of the maximum complexity), and the optimal threshold it is also almost entirely greater
than 0.125 (one-eighth of the maximum optimal threshold).
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Based on the above analysis, α = 32768 defines the judgment threshold of image
content complexity C, and iα = 0.125 is the judgment threshold of the optimal threshold
it. Combining threshold α and iα, the maximum between-class variance method is used
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to adaptively select modes for the four datasets of clouds, cities, forests and oceans. The
test results and accuracy are shown in Table 1, where “1” indicates complex modes and “0”
indicates simple mode. The test results show that the adaptive mode selection threshold
determined in this chapter has a mode selection accuracy of more than 90% for CTBs such
as oceans, clouds, cities and forests. The image adaptive mode selection algorithm based
on the maximum between-class variance method can be used for remote sensing image
adaptive mode selection.

4.2. Image Adaptive Morphological Blocking Test

In order to test the simple and complex saliency models constructed in Section 3.2,
as well as the two inn ovations proposed in Section 3.3 using feature saliency factors to
guide quadtrees to adaptively divide images into shapes, this section selects cities, airports,
forests, and clouds. As well as typical remote sensing image features such as oceans, the
effectiveness of the proposed method is tested, and compared with several current typical
image adaptive blocking methods, the advantages of the proposed method are analyzed.
The test results are shown in Figure 6.
Table 1. Datasets adaptive mode selection test based on maximum between-class variance method.

Dataset Oceans Clouds Cities Forests

The number of “1” 3 30 29 29
The number of “0” 27 0 1 1

Accuracy 90% 100% 97% 97%

The test results show that compared to the three methods based on difference, mean
and variance, and grayscale entropy, the saliency factor method proposed in this paper
can effectively perform adaptive image segmentation for complex terrain such as cities,
airports, forests, and clouds based on edge textures; secondly, for simple ocean images,
sea surface ships and ripples can be detected. The detection of edge details and adaptive
morphological division are the advantages of the proposed method. The method based
on saliency factors proposed in this article first uses the maximum between-class variance
method to construct two adaptive selection modes, simple and complex. Then two feature
saliency models are established based on the modes, and finally the feature saliency factor
is used to guide the quadtree to carry out adaptive morphological division of images.
Whether it is a simple ocean image or a complex city, forest, and cloud image, the image
can be partitioned according to the image texture details. The method proposed in this
paper has good stationarity.

4.3. Analyze Sparsity Judgment Threshold γ

In the adaptive allocation method of sampling rate based on the information density
function, by setting the sparsity threshold γ, the sparsity k is adaptively set to the informa-
tion density function of a given block, and the sampling rate is allocated to the coding block
according to the average information density, so as to achieve adaptive downsampling
of images. The smaller the judgment threshold γ, the larger the sparsity k, the higher the
sampling rate, and the smaller the reconstruction error. However, as the average percentage
of coefficients used to reconstruct the CB increases, the compression effect of the algorithm
decreases. In order to further balance the relationship between the reconstruction error e
and the reconstruction coefficient percentage, the following simulation test is performed:

(1) Set the sparsity judgment threshold γ to 30 points between
[
10−4, 10−1].

(2) Calculate the reconstruction error e and the reconstruction coefficient percentage for
different γ respectively.

(3) Draw γ and reconstruction error curves.
(4) Draw the reconstruction coefficient percentage and reconstruction error curve.
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Figure 6. Comparison of test results for multiple image adaptive blocking methods. (1–5) are typical
remote sensing images of cities, airports, forests, clouds, oceans, etc. (a–e) are the original images and
test results of four adaptive morphological division methods, namely difference method, mean and
variance method, gray entropy method and the significant factor method in this article, etc.

The test results are shown in Figure 7. As γ increases, the reconstruction error increases
and the percentage of coefficients used for reconstruction decreases. To further observe
the reconstruction effect, the reconstruction effect diagram is displayed at four different
positions on the curve. From an empirical perspective, point (B) is the highest error that
can be tolerated, and the reconstruction effect is good. To sum up, the sparsity judgment
threshold γ = 0.02 is the optimal value (or close enough to the optimal value).

4.4. Performance Comparison of Different Algorithms

In this section, the classic compressed sensing reconstruction algorithm (CS-OMP) [28]
based on orthogonal matching pursuit, the widely used uniform block compressed sensing
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reconstruction algorithm (BCS-OMP) [29] and the BCS-SPL [30] algorithm optimized in
two-dimensional compression, block compression and mathematical model are selected for
testing and comparison. And analyzed from the aspects of sampling rate, encoding time,
decoding time, peak signal-to-noise ratio, structural similarity and subjective reconstruction
effect. The whole-process adaptive encoding and decoding framework for images based on
compressed sensing proposed in this article has four functions: (1) It can select the encoding
mode according to the image content; (2) It can use the image texture details to adaptively
block; (3) It can detect the sparsity of the encoding block and adaptively allocates the
sampling rate; (4) The reconstruction matrix can be adaptively selected according to the
coding block size. The framework does not need manual intervention to set the compression
ratio in advance, which effectively avoids the problem of mismatch between the sampling
rate and the redundancy of the image, and can explore the sparsity of the image to the
maximum extent and allocate the sampling rate reasonably.
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The sequence of experiments was as follows: Firstly, the ABCS-OMP algorithm was
used for adaptive sampling of the input image to obtain the optimal or near-optimal
sampling rate of the image; then, the same sampling rate was set for the three methods of
CS-OMP, BCS-OMP and BCS-SPL to compare the reconstructed image quality of different
algorithms. Under the same compression ratio and consistent test environment, this section
selects five typical remote sensing images with different image complexities, such as cities,
airports, forests, clouds, and oceans for performance testing, and compares them from
both subjective and objective aspects. Among them, Table 2 shows the adaptive sampling
results of 5 different types of images by the method proposed in this paper, where ‘SubR’
represents the subsampling rate of each type of image block, and ‘Num’ represents the
number of each type of image block. Table 3 lists the test results of different indicators of
the four algorithms for 5 images. The subjective test results are shown in Figure 8.
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Table 2. Number of various image blocks and sub-sampling rate.

City Airport Forest Cloud Ocean

4 × 4
SubR 0.9000 0.5625 0.9000 0.9000 0.8813
Num 13732 4132 14596 10524 1460

8 × 8
SubR 0.2000 0.2000 0.2000 0.2000 0.2000
Num 587 1131 343 665 591

16 × 16
SubR 0.2000 0.2000 0.2000 0.2000 0.2000
Num 19 483 26 200 269

32 × 32
SubR 0 0 0 0 0.2000
Num 0 0 0 0 89

64 × 64
SubR 0 0 0 0 0.2000
Num 0 0 0 0 10

Sampling rate 0.7867 0.2914 0.8263 0.6963 0.2624

Table 3. Objective evaluation index test results of different algorithms.

Test Image Algorithm
Objective Evaluation Index

Sampling Rate Coding Time Decoding Time PSNR SIMM BRISQUE

City

CS-OMP 0.7867 0.0818 181.2283 26.1894 0.6794 43.4582
BCS-OMP 0.7867 0.0566 86.31.82 26.3191 0.7448 22.4270
BCS-SPL 0.7867 0.5851 3.9024 31.5552 0.8226 39.7210

ABCS-OMP 0.7867 0.8285 2.9680 35.9815 0.9150 15.0426

Airport

CS-OMP 0.2914 0.0824 10.2454 28.1141 0.2486 41.0038
BCS-OMP 0.2914 0.0505 7.1032 26.6067 0.3481 32.3333
BCS-SPL 0.2914 0.5697 6.8631 35.9875 0.6513 39.3433

ABCS-OMP 0.2914 0.4773 3.2485 36.3416 0.8039 28.5709

Forest

CS-OMP 0.8236 0.0853 152.2923 30.4309 0.7029 41.5029
BCS-OMP 0.8236 0.0580 99.2431 32.9563 0.8465 28.0624
BCS-SPL 0.8236 0.5935 4.1734 37.8384 0.8236 31.0780

ABCS-OMP 0.8236 0.8924 3.1422 39.0126 0.9298 25.9349

Cloud

CS-OMP 0.6963 0.0807 55.8707 33.9590 0.6893 20.9542
BCS-OMP 0.6963 0.0499 60.1737 31.5285 0.7389 26.2792
BCS-SPL 0.6963 0.5643 5.2329 42.0761 0.8310 38.5014

ABCS-OMP 0.6963 0.5782 3.4125 40.4628 0.9586 19.7492

Ocean

CS-OMP 0.2624 0.0836 4.7509 43.8920 0.1684 49.5071
BCS-OMP 0.2624 0.0580 4.5081 35.5093 0.4340 50.3378
BCS-SPL 0.2624 0.5543 6.0009 40.2244 0.6557 49.1216

ABCS-OMP 0.2624 0.2922 3.2660 50.8027 0.9925 46.5433

Analyzed from both subjective and objective perspectives, the traditional CS-OMP
algorithm has a slow calculation speed at high sampling rates and serious artifacts in
reconstructed images at low sampling rates. The classic BCS-OMP algorithm also has a
slow calculation speed at high sampling rates and the block-level artifacts are obvious at
low sampling rate, resulting in highly pixelated reconstructed images. Compared with
the previous two methods, the optimized BCS-SPL algorithm has greatly improved the
operation speed and image reconstruction quality. However, due to multiple Wiener
filtering, the edge of the image is not sharp enough, the edge details are not kept intact
enough, the structural similarity of objective evaluation indicators is low, and the pixel
blocks at the edge are obvious when the simple image content is reconstructed.

Compared with the first three algorithms, the ABCS-OMP algorithm proposed in
this article has four main advantages: (1) In the mode selection stage, through the com-
prehensive analysis of the image, the maximum inter-class variance is used to calculate
the image complexity, the parameters are combined with the mode, and the observation
mode is selected according to the content to improve the compression efficiency; (2) In the
adaptive segmentation stage, the image space is recursively divided into tree structures of
different levels based on the edge feature significance factor guided by quadtree, which
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makes full use of the structure texture of the image itself, divides the image into smooth and
edge regions for partition processing, which can alleviate the problem of high pixelation
of reconstructed images; (3) In the adaptive sampling rate allocation stage, according to
the different information density of the encoded block, the sparsity adaptive is set as the
information density function of the given block, and the encoded block is dynamically
sampled, which can excavate the compressibility of the image as much as possible and
effectively avoid image artifacts; (4) In the adaptive reconstruction stage, OMP calculation
is used to accelerate the reconstruction speed by using the prior knowledge of known image
block sparsity. The simulation results are consistent with the analysis results. From the
subjective and objective evaluation indicators of codec time, PSNR, SIMM and BRISQUE,
the fully adaptive coding and decoding compressed sensing framework designed in this
paper maintains a peak-to-noise ratio and structural similarity above 35 dB and 0.8 for
remote sensing images with complex edge texture, which have good stability. Secondly,
especially for ocean images with relatively simple image content, when the sampling rate
is 0.26, the peak signal-to-noise ratio reaches 50.8 dB and the structural similarity is 0.99.
Compared with the other three methods, the BRISQUE value of the image recovered by
ABCS-OMP method is the smallest, with better clarity and less distortion. In the subjective
aspect, the reconstructed image has clear edge details and good reconstruction effect, while
the block effect is effectively suppressed.
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Figure 8. Image reconstruction effects of different algorithms. (1–5) are typical remote sensing images
of cities, airports, forests, clouds, oceans, etc. (a–e) are the original images and the test results of
four algorithms, namely CS-OMP, BCS-OMP, BCS-SPL, and the ABCS-OMP method proposed in
this paper.
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5. Conclusions

In order to solve the problem of incompatibility between traditional information
acquisition modes and spaceborne earth observation tasks, this paper draws on the theory
of compressed sensing and starts from the general mathematical model of compressed
sensing to establish a theoretical model of block compressed sensing and proposes a full
process adaptive encoding and decoding framework for remote sensing images. Firstly,
this framework uses the maximum between-class variance method to calculate the image
content complexity and adaptively selects the coding mode. By extracting image feature
factors, a saliency model of the corresponding mode is established to guide the adaptive
morphological segmentation of the coding tree block. Then, by using the information
density function to detect the sparsity of the encoding block, the sparsity of the image is
explored as much as possible to achieve adaptive sampling rate allocation for the image.
Finally, the reconstruction matrix and sparse basis are adaptively selected based on the
coding block category, and the iteration threshold is set according to the known sparsity.
OMP algorithm is used to reconstruct the coding block. Compared with CS-OMP, BCS-
OMP, BCS-SPL and other methods, the framework proposed in this article does not require
manual preset compression ratio, can select the sampling mode according to the image
content and adaptively sets the compression efficiency by detecting sparsity, so as to achieve
the requirements of fast compression on the satellite and high fidelity reconstruction on the
ground. Under a certain compression ratio, the method proposed in this article has better
stability characteristics for images with complex textures, and can effectively alleviate
block-level artifacts and enrich image texture details. For simple image content, when the
sampling rate is 0.26, the structural similarity increases by 52.3%, the peak signal-to-noise
ratio has reached 50.8 dB, and the reconstructed image has better decoding image quality
and visual effects.
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