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Abstract: Mount Meager is a deeply eroded quaternary volcanic complex located in southwestern
British Columbia (BC) and is known for its frequent large landslides. In 2010, the south face of Mount
Meager collapsed, generating a long-runout debris avalanche that was one of the largest landslides
(50 × 106 m3) in Canadian history. Over the past 14 years, the landslide deposit has been reworked by
stream action, delivering large amounts of sediment to Lillooet River, just downstream. In this study,
we investigate 10 years of geomorphic evolution of the landslide deposit using orthophotos and
digital elevation models (DEMs) generated using Structure from Motion (SfM) photogrammetry on
aerial photographs acquired during unmanned aerial vehicle (UAV) and Global Navigation Satellite
System (GNSS) surveys. The SfM products were used to produce a series of precise maps that
highlight the geomorphological changes along the lower Meager Creek within the runout area of
the landslide. Comparison of DEMs produced from 2010, 2012, 2015, and 2019 imagery allowed
us to calculate deposit volume changes related to erosion, transport, and redeposition of landslide
material. We estimate that about 1.1 × 106 m3 of sediment was eroded from the landslide deposit
over the period 2015–2019. About 5.2 × 105 m3 of that sediment was redeposited inside the study
area. About 5.8 × 105 m3 of sediment, mainly sand, silt, and clay, were exported from the study area
and are being carried by Lillooet River towards Pemberton, 40 km from Mount Meager, and farther
downstream. These remobilized sediments likely reduce the Lillooet River channel capacity and thus
increase flood hazards to the communities of Pemberton and Mount Currie. Our study indicates
a landslide persistence in the landscape, with an estimated 47-year half-life decay, suggesting that
higher flood hazard conditions related to increased sediment supply may last longer than previously
estimated. This study shows the value of using SfM in tandem with historic aerial photographs, UAV
photos, and high-resolution satellite imagery for determining sediment budgets in fluvial systems.

Keywords: geomorphology; landslide; sediment transport; high-resolution topography; UAV; geomatics

1. Introduction

The Mount Meager massif, about 150 km north of Vancouver, British Columbia,
is an eroded volcanic complex comprising about 20 km3 of mainly andesitic and dacitic
volcanic rocks ranging in age from the Pliocene to the Holocene period [1–5]. It is part of the
Garibaldi volcanic belt and lies near the northern limit of the Cascade magmatic arc [1,3,6–8].
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The most recent eruption was an explosive event that occurred about 2360 years ago [9]
with an estimated Volcanic Explosivity Index (VEI) value of 4 [10]. A fumarole emerged
from a glacier cave on the massif in 2016 [8], sparking new studies to better understand the
volcanic system [11], which, in turn, led to the production of a volcanic hazard map [12]
and the installation of a preliminary monitoring system.

The massif has been deeply eroded by glaciers and streams that flow from it. Re-
lief, from the top of Mount Meager to Lillooet River on the east side of the volcano, is
about 2100 m. Steep slopes, developed in highly fractured and commonly hydrothermally
altered volcanic rocks [1,2], are metastable and subject to frequent landslides during the
Holocene [13–15]. The largest and most recent of the landslides [16–18] have been studied in
detail, as has the role of post-Little Ice Age deglaciation on slope stability [19]. A landslide
inventory has been created by Roberti et al. [20,21]

Mount Meager was investigated in the 1970s for its geothermal potential [22,23], and
interest in it as a power source has recently increased due to Canada’s national commit-
ment to achieve carbon neutrality by 2050, accompanied by new mapping and drilling
programs [24]. A run-of-the-river hydropower generation plant was recently constructed
on Lillooet River on the east flank of Mount Meager, which could potentially be affected by
future landslides [25].

Moreover, Mount Meager is an important case study for long-term sediment transfers
linked to large landslides, which provides context for the paraglacial sediment
paradigm [26–28]. Friele and Clague [28] advocated a modification of the classic paraglacial
paradigm at Mount Meager due to the recurrent instantaneous delivery of large volumes
of sediment into the Lillooet River watershed. Some years later, Northwest Hydraulic
Consultants [29] performed a study of sediment remobilization between Meager Creek and
Lillooet River following and resulting from the very large (50 × 106 m3) 2010 Mount Meager
landslide and in consideration of a possible increase in flood risk to downstream communi-
ties. The landslide was triggered during a summer heatwave and rapidly progressed from
the collapse of the south flank of Mt. Meager to a fast (>270 km/h), long-runout debris
avalanche [30]. The landslide temporarily dammed Meager Creek (19 h) and Lillooet River
(2 h), triggering the evacuation of the downstream community for fear of a possible failure
of the landslide dam and consequent flood wave.

This paper presents a detailed analysis of the geomorphic evolution of the 2010 Mount
Meager landslide deposit along lower Meager Creek over the 10-year period ending in 2019.
The study is based on the application of geomatic techniques to gain an in-depth view
of sediment mobilization and redeposition triggered by the 2010 landslide. By analyzing
DEMs created from orthophotos acquired through conventional aerial flights, unmanned
aerial vehicles (UAVs), and Global Navigation Satellite System (GNSS) surveys, including
datasets obtained immediately before the 2010 Mount Meager landslide, we created static
and dynamic versions of aerial geomorphic change that illustrate the evolution of the
landscape impacted by the event. Additionally, we estimated sediment volumes eroded
and redeposited within the landslide area, as well as volumes exported from the area by
the Lillooet River. This study presents a novel analysis of landslide deposit erosion and
remobilization, contributing to the understanding of how landslide sediments may affect
fluvial systems and associated flood hazards.

1.1. The 2010 Mount Meager Landslide

On 6 August 2010, the unstable, hydrothermally altered south flank of Mount Mea-
ger (2554 m a.s.l.) collapsed, producing a long-runout debris avalanche that delivered
50 × 106 m3 of blocky-to-clayey debris to the river system draining the volcano (Figure 1).
The collapse was triggered by snow and ice melting during hot summer weather; however,
the slope had been slowly deforming since at least 1947 [20]. The landslide traveled 12.7 km
down the Capricorn and Meager Creeks over a vertical elevation range of 2183 m. The travel
angle from source to toe was 9.75◦ [18]. The landslide dammed Meager Creek for 19 h,
impounding a lake with about 2.9 × 106 m3 of water before draining [18].
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Figure 1. Area and path of the 2010 Mount Meager landslide.

It also briefly dammed Lillooet River at the mouth of the Meager Creek. Downstream
communities (Pemberton and Pemberton Meadows) were evacuated due to the possible
flood hazard associated with the breaching of the landslide dams, but fortunately, the flood
wave was contained by the constructed levees in Pemberton Valley. However, landslide
sediments are still being reworked and carried downstream, reducing the channel capacity
of the Lillooet River and increasing the likelihood of future flooding in Pemberton and
Mount Currie [29].

1.2. Description of the Landslide Deposit

The 2010 Mount Meager landslide deposit has been described in detail by
Roberti et al. [30] and thus is only briefly reviewed here. These authors subdivided the
deposit into five main areas: (1) the Meager Creek barrier at the mouth of Capricorn Creek,
(2) the ‘plug’, (3) the ‘terrace’, (4) the distal area upstream of the confluence of Meager
and Capricorn creeks, and (5) the distal area downstream of Capricorn Creek to Lillooet
River (Figure 1). In this study, we focused on two of the five areas that hosted the bulk
of the landslide deposits and where subsequent reworking of the deposit has occurred:
the Meager Creek barrier (MB in Figures 1 and 2) and the plug (PL in Figure 1).

The landslide achieved its peak velocity when it reached the mouth of Capricorn
Creek [31]. There, it struck the rising valley slope bordering Meager Creek on the southeast
and ran 270 m up it. The flow split into two lobes, one of which traveled southwest up
Meager Creek, and the other downvalley to Lillooet River. It left a hummocky deposit
up to 10 m thick at the mouth of Capricorn Creek that created a dam blocking Meager
Creek. The deposit downvalley of the barrier consists of compressional ridges formed
of mixed debris and large gray blocks. The water rose rapidly behind the barrier; upon
overtopping it, it rapidly incised the debris dam at the mouth of Capricorn Creek and
spread the reworked debris downstream [32].
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Figure 2. View to the northwest near the confluence of Capricorn and Meager creeks; Meager Creek
barrier (MB) in the foreground. Part of the landslide travelled up Meager Creek (left side of image),
but most of it travelled down Meager Creek to Lillooet River.

The landslide deposited most of its material as it was losing energy just above Lillooet
River (the plug in Figure 1). Here, the landslide deposit is a multi-meter-thick body of
debris characterized by hummocky topography, blocks up to 7 m high, and compressional
and transcurrent ridges and depressions [18,30]. When the barrier dam at the mouth of
Capricorn Creek breached, the escaping waters reworked part of the landslide deposit in
lower Meager Creek, leaving deep channels at the north edge of the deposit. Meager Creek
is currently eroding the south edge of the plug, leaving a tall, rapidly retrogressing scarp.

2. Materials and Methods
2.1. Dataset Availability

This study was developed based on comparisons between existing data and data
collected in the field specifically for the project. Some data in the literature were used
previously to carry out the first studies on the 2010 landslide (Table 1). The first data
product of relevance is a GeoEye image collected by the Province of BC in July 2010 in the
area at the confluence of Meager Creek and Lillooet River. A pair of GeoEye stereo satellite
images dating to 2012 were subsequently used to obtain a DEM and an orthophoto [18].
Additional data collected over the years since the landslide include: (1) 2011 helicopter
orthophotos and a DEM generated from photogrammetry, with partial coverage of the
study area [30], (2) a 2012 orthophoto and a DEM (Province of BC), and (3) a 2015 Province
of BC Lidar DEM.
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Table 1. Dataset used in this study.

Year Dataset Reference Resolution (m/Pixel)

July 2010 GeoEye orthophoto
(before landslide) Province of BC, 2010 0.5

September 2010
GeoEye orthophoto

and DEM
(after landslide)

[18] 0.5 (orthophoto)
5 (DEM)

2011 Helicopter SfM
orthophoto and DEM [30] 0.10 (orthophoto)

0.34 (DEM)

2012 Aerial orthophoto
and DEM Province of BC, 2012 0.12 (orthophoto)

12 (DEM)

2015 Lidar digital terrain
model (DTM) Province of BC, 2015 0.5

2019 UAV orthophoto
and DEM This work 0.05 (orthophoto)

0.25 (DEM)

2.2. 2019 UAV Survey

The research workflow for this study included the use of UAVs, GNSS, and satellite
images (Figure 3). We first reviewed available orthophotos and DEMs, planned a UAV
survey to create up-to-date base maps, and carried out a GNSS campaign to georeference
the UAV products. Next, we processed the UAV images with Agisoft Metashape [33]
in order to create orthophotos and a Digital Surface Model (DSM). Finally, we mapped
geomorphic features, created and compared multi-temporal topographic profiles, and
performed sediment budget volume calculations based on DEM differencing. There is
no vegetation within the landslide area; therefore, the surface model matches the terrain
model. For this reason, all DSMs are generically called DEMs.
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Figure 3. Workflow summarizing research procedures used in this study. The yellow ellipses are data
collection activities; the orange hexagon is the SfM elaboration; light-blue ellipses are singular data
processing and analysis steps; green rectangles are cartographic products; and the red hexagon is the
multi-temporal comparison of the entire dataset. The numbers indicate the sequence of steps.

Three different UAVs were used to survey the study area in 2019 (Table 2). Seventeen
flight paths at a height from 110 m to 120 m above the ground were planned and executed
using the PIX4D Capture app [34]. The UAVs captured 4164 photos over a total travel
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distance of 116,978 m, with 80% front overlap and 70% side overlap. The photos were
processed using the SfM photogrammetric technique [35] in Agisoft Metashape [33].

Table 2. UAVs used in the study.

UAV Model Sensor Focal Length
(mm)

Resolution
(Mpix)

GSD (cm)
at 100 m

DJI Phantom 4 cmOS Sensor ½.3′ ′ 3.61 12 4.27
DJI Mavic Pro cmOS Sensor ½.3′ ′ 4.73 12 3.26
Parrot Anafi cmOS Sony Sensor ½.4′ ′ 4.73 12 3.26

To georeference the SfM models and create high-precision DEMs and orthophotos, we
completed a differential GNSS campaign using two Topcon HiPer Lite geodetic receivers
and the post-processing static method [36]. We placed 25 targets within the study area
that were clearly visible in the UAV images and collected their precise locations (0.2 m
mean accuracy). Locations of the points were calculated in ITRF2000 (NAD 83) Epoch
2010.0 and provided in the UTM10N adjusted grid. All elevation values were referenced to
the orthometric (above sea level) reference level; the mean error of the calculated points
is 0.01 m. The target points were identified in the SfM-generated models and used as
Ground Control Points (GCPs) to improve the accuracy of the model in indirect georef-
erencing [37]. They also were used as checkpoints (CPs) to check the spatial accuracy
of the model. Accuracies of the SfM model within the 2 km2 study area are about 5 cm
(GCPs) and 15 cm (CPs). The final products generated from the SfM model are a DEM
with a resolution of 18 cm and an orthophoto with a pixel size of 4 cm. We used the 2019
orthophoto as the base map for geomorphic mapping and the corresponding DEM to
generate topographic profiles and perform multi-temporal volumetric analysis.

2.3. Multi-Temporal Digital Elevation Model (DEM) Analysis

We investigated changes within the landslide runout area and estimated landslide
sediment volumes mobilized in the decade following the landslide by creating and compar-
ing precisely located topographic profiles on DEMs. Calculations of mobilized sediment
volume were performed with a DEM difference (DoD) application in a GIS [38]. Differences
between DEMs show elevation changes, with negative values indicating net erosion and
positive values indicating net deposition [39]. We determined what we consider to be the
most relevant changes in DoD by calculating a Level of Detection (LoD). The LoD equation
is derived from error propagation theory and yields a value that delimits a threshold below
which elevation changes are unreliable [40–43]. The LoD equation we used [40] is:

LoD = tcrit
√

(δ1
2 + δ2

2) (1)

where tcrit is the value corresponding to the confidence interval (in this study, 95% corre-
sponds to a tcrit of 1.96), δ1 is the error of the older DEM, and δ2 is the error of the newer
DEM. DoD analysis was performed by comparing the 2015 DEM with the 2019 DEM, which
are the two DEMs with the highest resolution available for our study.

3. Results
3.1. Volumetric Analysis

In order to understand the volumetric changes, two topographic profiles were estab-
lished in two separate sectors: one along the major scarp in the area, located along Meager
Creek about 1 km east of the barrier (A-A′ in Figure 4) and the other farther downstream
along the plain south of the plug (B-B′ in Figure 4). The two sectors were chosen because
qualitatively their morphology showed an erosional system in the first case and a depo-
sitional system in the second. Multi-temporal quantitative analysis of the cross-section
A-A′ (Figure 4) shows 100 m of horizontal erosion of a scarp from 2015 to 2019. In contrast,
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cross-section B-B′ (Figure 4), which is within an area characterized by deposition, shows an
increase in elevation of up to 4 m along the profile line.
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The two profiles in Figure 4 provide only limited views of erosion and deposition over
the survey area. Thus, to better understand and display the pattern over the entire study
area, we performed a DoD analysis on the two datasets with the best resolution: the 2015
and 2019 DEMs. In Figure 5, we show a comparison between the 2019 DEM (hillshade
view) and the DoD. The figure reveals areas dominated by erosion and areas where there
has been net deposition.
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Figure 5. (A) 3D view of the 2019 DEM (hillshade view), providing a better understanding of the
study area landscape. (B) DoD created by subtraction of the 2015 and 2019 DEMs. Areas of erosion
are shown in red, and deposition is indicated in green. The blue symbol at the upper right corner
of (B) indicates the viewpoint and direction of (A).

In order to better understand the contours of the depositional and erosional areas, a
cut-and-fill map was created at a pixel resolution of 1 m and is shown in Figure 6.

The level of detection (LoD) of the two DEMS, calculated using Equation (1), is 0.1 m
(Table 3).

The DoD analysis revealed considerable geomorphic change, with elevation differ-
ences between the two DEMs ranging from −44 m to +37 m (the highest positive values,
however, are considered ‘noise’, reflecting the growth of trees in wooded areas). The net
sediment budget for the study area over the period 2015–2019 is summarized in Table 4.
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Figure 6. Areas of erosion and deposition along lower Meager Creek between 2015 and 2019.
The detailed description of depositional and erosional areas is described in detail in the following
paragraphs (Section 3.2) and Figures 7 and 8.

Table 3. Error and level of detection of the two DEMs used in the volumetric calculations.

DEMs Error (m) LoD (m)

DEM 2015 0.2 0.1
DEM 2019 0.07 0.1

Table 4. Volume of sediment mobilized during the period 2015–2019.

Volume

Erosion −1.1 × 106 ± 1 × 105 m3

Deposition 5.2 × 105 ± 1 × 105 m3

Total balance −5.8 × 105 ± 1 × 105 m3

3.2. Multi-Temporal Orthophoto Analysis and Geomorphic Mapping

By comparing all datasets in a GIS environment, it was possible to create a geomorphic
map that depicts landforms on a yearly to multi-annual timescale between 2010 and 2019.
The purpose of this exercise was to determine and depict the changes and evolution of the
landslide runout area over timescales of six months to five years, principally due to erosion
and redeposition of the landslide debris by Meager Creek and Lillooet River. The following
subsections summarize these changes, starting in 2010 and ending in 2019.

3.2.1. 2010 before the Landslide

Prior to the 2010 landslide, the study area experienced other, albeit much smaller,
landslides, with the most recent being a debris flow that descended Capricorn Creek,
blocked Meager Creek and impounded an upstream lake in 2009 [18]. We used the July 2010
GeoEye orthophoto for an overview of the study area before the 2010 event. Figures 7 and 8
show the situation in two areas in July 2010, one month before the 2010 landslide at Meager
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Creek. One area is just downstream of the Capricorn-Meager Creek confluence (Figure 7;
the location is shown by the orange rectangle in Figure 1). The second area is along Meager
Creek just upstream of its confluence with Lillooet River (Figure 8; purple rectangle in
Figure 1). In July 2010, the active floodplain of Meager Creek was about 220 m wide
(Figure 7A), and the area directly outside the floodplain was forested. Two active channels
of Meager Creek just upstream of the Lillooet River confluence are also separated by forest
(Figure 8A).

3.2.2. July 2010 to September 2010

The debris avalanche on 6 August 2010 overran the entire study area and completely
changed the channels of Capricorn Creek and lower Meager Creek, creating a dam at their
confluence (Meager Barrier, Figures 1 and 2) and affecting a reach of Lillooet River more
than 3 km in length. Meager Creek had a riverbed about 200 m wider than before the
landslide (Figure 7B). There are two channels of Meager Creek in areas that were previously
tree-covered, and the first scarp eroded by the creek is located just southwest of the image.
The entire area at the confluence of Meager Creek and Lillooet River was covered by debris
avalanche deposits. The eroded plug of landslide debris at the mouth of Capricorn Creek is
visible in Figure 8B. Meager Creek flowed through an area that was previously forested.

3.2.3. 2010 to 2011

The data from 2011 (Figures 7C and 8C) do not cover the entire study area; thus, river
channels from that time are not included in the images. However, in the northwest corner
of Figure 7C, it is evident that Meager Creek had started to erode into the deposits, creating
a first system of erosional scarps. The erosional scarp in the plug has changed little since
2010 and thus is represented by a white line because it has the same location as the one in
Figure 8B,C.

3.2.4. 2011 to 2012

A new set of scarps was created by Meager Creek close to its channel between 2011
and 2012 (Figure 7D). The gap in the plug had broadened (Figure 8C), with a large loss of
sediment to the downstream channel.

3.2.5. 2012 to 2015

In the 2015 image (Figure 8E), the erosional gap in the plug area had significantly
widened, with little vertical incision. However, in the area depicted in Figure 7E, it can be
seen that Meager Creek had further incised its channel, leaving abandoned fluvial terraces
at its margin. The surface above the highest terrace, upon which the northern channel of
Meager Creek (Section 3.2.2) flowed in 2010, is unchanged.

3.2.6. 2015 to 2019

Between 2015 and 2019, Meager Creek continued to incise its channels, creating the
scarps highlighted in Figure 7F. It was bordered by two erosional scarps separated by only
50–180 m in 2019. This observation indicates that the stream incised more vertically than
laterally over this four-year period. The plug area, on the other hand, maintained the same
erosional trend, as shown by the earlier time series (Figure 8A–D), with a total widening of
the breach of 30–80 m from 2010 to 2019.
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Figure 7. Evolution of fluvial erosional scarps along Meager Creek downstream of the confluence
of Meager and Capricorn creeks (area evidenced in orange in Figure 1). Red scarps shown in each
panel are those created during that period. White scarps are those created in past years. (A) 2010,
before the landslide (B) July to September 2010, (C) 2010 to 2011, (D) 2011 to 2012, (E) 2012 to 2015,
(F) 2015 to 2019.
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Figure 8. Evolution of fluvial erosional scarps along Meager Creek just downstream of the confluence
of Meager and Capricorn creeks (area evidenced in purple in Figure 1). Red scarps shown in each
panel are those created during that period. White scarps are those created in past years. (A) 2010,
before the landslide (B) July to September 2010, (C) 2010 to 2011, (D) 2011 to 2012, (E) 2012 to 2015,
(F) 2015 to 2019.
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4. Discussion

Surveys by Northwest Hydraulic Consultants [29] indicate that the channel of Lillooet
River in the Pemberton Valley below Meager Creek has been aggrading since the 2010
landslide, creating an elevated flood risk to the communities of Pemberton, Pemberton
Meadows, and Mount Currie. The Mt. Meager area is subject to a high frequency of
post-glacial landslides [14,28], creating a temporal imbalance of sediment delivery to the
fluvial system. The total volume of sediment evacuated from the accumulation area during
the period 2010–2015 is 5.5 × 106 m3 [29]. Adding our negative sediment balance for the
period 2015–2019 (Table 4) to this value yields a total of 6 × 106 m3 of sediment eroded
from the landslide deposit area since 2010.

Northwest Hydraulic Consultants [29] estimated that the half-life for evacuation of
sediment from the Meager Creek landslide area is 28.8 years. Similarly, many researchers
have investigated the evolution of other landslide bodies eroded by streams and have
calculated a range of values for the half-life of exponential decay in the landslide sediment
stored in the system. ranging from approximately 5 to 50 years [29,44–50].

The trend in sediment export from the landslide area can be approximated by the
following exponential decay function [51]:

t½ = (tln2)/ln(vi/vf) (2)

where t½ is the half-life of the decay function, t is the time a measurement is made, vi is
the initial volume of the accumulation, and vf is the volume at time t. Figure 9 shows
some representative half-life decay curves based on Equation (2). The curve for the Mount
Meager landslide was generated from differences in volumes of sediment evacuated from
the landslide area at two different times, based on our data and those reported by Northwest
Hydraulic Consultants [29]. We have made a new estimate of 47 years for t½ based on the
entire period of our study (2010–2019). Our results suggest that remnants of a landslide as
large as this might persist for centuries see also ([45,46,51–53]).
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Figure 9. Graphs summarizing remobilization of the sediment deposited by the Mount Meager
landslide in the lower Meager Creek Valley. Solid black lines represent volume changes of the
landslide body over time for a specific half-life curve. The curves show trends in erosion, rapidly
at first but diminishing over time. The blue solid line represents volume changes calculated using
the data for the period 2010–2015, with a corresponding half-life of 28.8 years [29]. The red solid line
represents the volume changes calculated for the period 2010–2019, with an overall half-life of 47 years
(this study). The blue dashed line shows the annual sediment reduction based on t½ = 28.8 years [29].
The red dashed line shows the annual reduction in the volume of sediment for the period 2010–2019
based on the half-life value of 47 years.
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This study has important implications for the erosive dynamics of landslide accu-
mulations in paraglacial settings. In addition, this finding is significant from a flood-risk
perspective, because a long half-life for retention of landslide debris reduces the rate of
downstream channel aggradation and thus lowers the risk to downstream communities.
However, it does not eliminate that risk.

Meager Creek Valley is an important and dynamic area from a geomorphic perspective.
Surface processes are concentrated in this area with such energy that sudden and possibly
unexpected morphological changes can happen. For this reason alone, it will be important
to maintain an active monitoring campaign of the type reported in this paper to document
and understand changes as they happen, as well as to plan for adverse consequences to
downstream communities.

5. Conclusions

This study focuses on the evolution of the deposit of the debris avalanche that fell
from the south flank of Mount Meager in August 2010. We used geomatic and geomorphic
techniques to track the evolution of the deposit and found that Meager Creek and Lillooet
River continuously eroded the landslide deposit between 2010 and 2019. Our results,
in combination with data obtained by Northwest Hydraulic Consultants, suggest that
about 6 × 106 m3 of sediment was evacuated from the area over the study period. We also
estimated a 47-year half-life decay in deposit erosion and sediment supply to the river
system, suggesting a longer sediment persistence in the landscape than previously reported.
This sediment is being carried downstream by the Lillooet River past the communities
of Pemberton, Pemberton Meadows, and Mount Currie. It is prudent to monitor the
Lillooet River channel in future years to assess the risk to these communities posed by
channel aggradation.
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