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Abstract: Effective features play an important role in synthetic aperture radar (SAR) image inter-
pretation. However, since SAR images contain a variety of terrain types, it is not easy to extract
effective features of different terrains from SAR images. Deep learning methods require a large
amount of labeled data, but the difficulty of SAR image annotation limits the performance of deep
learning models. SAR images have inevitable geometric distortion and coherence speckle noise,
which makes it difficult to extract effective features from SAR images. If effective semantic context
features cannot be learned for SAR images, the extracted features struggle to distinguish different
terrain categories. Some existing terrain classification methods are very limited and can only be
applied to some specified SAR images. To solve these problems, a jigsaw puzzle self-supervised
learning (JPSSL) framework is proposed. The framework comprises a jigsaw puzzle pretext task and
a terrain classification downstream task. In the pretext task, the information in the SAR image is
learned by completing the SAR image jigsaw puzzle to extract effective features. The terrain classifi-
cation downstream task is trained using only a small number of labeled data. Finally, fully connected
conditional random field processing is performed to eliminate noise points and obtain a high-quality
terrain classification result. Experimental results on three large-scene high-resolution SAR images
confirm the effectiveness and generalization of our method. Compared with the supervised methods,
the features learned in JPSSL are highly discriminative, and the JPSSL achieves good classification
accuracy when using only a small amount of labeled data.

Keywords: synthetic aperture radar (SAR); self-supervised learning; jigsaw puzzle; terrain classification

1. Introduction

Synthetic aperture radar (SAR) is an active earth observation system. As an active
sensor with high resolution, wide coverage, all-weather imaging capability, and strong pene-
tration capabilities, SAR systems have a wide range of uses, such as disaster monitoring [1]
and environmental protection [2]. With the development of satellite technology, SAR
systems provide a wealth of accurate earth observation images in various military and
civil applications [3]. How to effectively interpret images generated by SAR systems has
become the focus of current research. In SAR image interpretation, SAR image terrain
classification [4] is an important task. The SAR image terrain classification task refers to
effectively distinguishing and labeling different contents in SAR images. It has important
value in agricultural detection [5], terrain surface classification [6], and tsunami disaster
assessment [7]. Passah et al. [8] conducted a comprehensive study and analysis on SAR
image terrain classification, proving the wide application of SAR image terrain classifica-
tion. With remote sensing deep learning development, SAR image terrain classification has
a wider range of application scenarios [9].

A key point in the SAR image terrain classification task is how to extract effective fea-
tures. Traditional algorithms are mostly machine learning approaches based on handcrafted
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features. Over the past few decades, many traditional algorithms have been applied to fea-
ture extraction from SAR images [10]. Various features can be used to describe SAR images,
including color, texture, spatial feature relationship, etc. To combine the characteristics of
SAR images, Dai et al. [11] proposed a structure-based multi-level local pattern histogram
(MLPH) feature and used it in SAR image classification tasks. Ansari et al. [12] used the
correlation of multiple texture features to complete the task of urban change detection. The
method based on the gray level co-occurrence matrix (GLCM) [13] is also widely used to
extract SAR image features. It constructs statistics such as entropy, contrast, and correla-
tion to describe image texture features by calculating the distribution of pixel pairs with
a certain spatial position. Feature extraction methods based on transform domains such as
Gabor transform [14] and wavelet transform [15] extract multi-scale and multi-directional
features to capture complex local structural information of images. However, traditional
algorithms often involve high manual feature extraction and classifier construction costs.
Moreover, traditional algorithms usually lack learning capabilities and lack generalization
capabilities when faced with complex tasks. This makes it difficult for features to capture
implicit patterns and complex relationships between different terrains, which may limit
model performance.

How to effectively and automatically extract features with learning capabilities is
a hot topic in current research. With the development of artificial intelligence, the suc-
cessful application of artificial intelligence covers almost all aspects of Earth-observation
missions [16]. Artificial intelligence is also of great use in SAR data [17]. Deep learning
theory [18] has been widely used in SAR image interpretation tasks due to its advantage of
automatically learning high-level semantic features in the image. Su et al. [19] explored
the performance of deep learning methods in SAR image interpretation. Wang et al. [20]
designed separated convolutional streams to combine the intensity and gradient amplitude
features of SAR images. Geng et al. [21] proposed a deep supervised and contractive neural
network (DSCNN) for SAR image classification. Atteia et al. [22] proposed a method
that integrates the power of autoencoder deep neural networks in mapping input features
into representative latent-space features with the feature selection power of the principal
component analysis (PCA) algorithm; the findings of this study revealed the superiority
of the autoencoder deep learning network in generating latent features. Yue et al. [23]
proposed a novel semi-supervised CNN method that can improve the reliability of un-
labeled samples. However, some problems exist with using deep learning methods to
extract features from SAR images. SAR images contain a variety of ground features. Unlike
optical images, the annotation of SAR images often requires the experience of geoscience
experts. It requires a lot of manpower, financial resources, and time to annotate SAR images.
Therefore, collecting high-quality labeled SAR image data is difficult. However, the deep
learning method is data-driven, and the amount of labeled data is positively correlated
with the network’s performance.

To solve this problem, a new learning paradigm, self-supervised learning (SSL) [24],
is proposed. Self-supervised learning methods use a large number of unlabeled data to
pre-train a general model and then fine-tune it on downstream tasks using very few labeled
data. This method can alleviate the defect of insufficient labeled data and make full use
of the information in the data itself. Many scholars have investigated the application of
self-supervised learning in the field of computer vision. The development and challenges
of self-supervised learning are introduced in [25]. Jing et al. [26] summarized the common
deep neural network architectures used for self-supervised learning. To bridge the gap
between the progress of SSFL in computer vision and remote sensing, Wang et al. [27]
summarized some representative methods of SSFL and analyzed their application in
remote sensing tasks. According to the type of supervision acquired, the pretext tasks in
self-supervised representation learning methods can be divided into different categories.
Tao et al. [28] explored the performance of remote sensing image scene classification
under different self-supervised learning signals and proved that self-supervised learning
can learn useful features from many unlabeled remote sensing images. Generative-based
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pretext tasks train the model to reconstruct the original input from a partially corrupted
one for feature learning. Considering the differences between remote sensing images and
natural images, Sun et al. [29] proposed a basic remote sensing model framework called
RingMo and used the strategy of PIMask to reserve some pixels in the masking block
randomly. Contrast-based pretext tasks bring different augmented views (positive sample
pairs) of the same image closer and separate views (negative sample pairs) of other images.
Jung et al. [30] proposed contrastive self-supervised learning of remote sensing smoothed
representations based on the SimCLR framework, using multiple neighboring images as
positive samples.

Predictive-based pretext tasks focus on learning semantic contextual features. Ji et al. [31]
combined rotation prediction and contrastive learning to achieve few-shot scene classification
for optical remote sensing images and introduced adversarial model perturbations to enhance
generalization. The jigsaw puzzle-based learning signal is a type of predictive learning
signal. Jigsaw puzzle learning [32] has a history of hundreds of years since it was proposed.
Jigsaw puzzles are associated with learning, and people can help develop intelligence by
completing them. It has been shown that jigsaw puzzles can be used to assess visuosp
atial processing abilities. Doersch et al. [33] randomly extracted pairs of image patches
from an image and predicted the position of the second image patch relative to the first
image patch, demonstrating that visual similarity between images can be captured using
features learned from the context within images. Noroozi et al. [34] applied the idea of
jigsaw puzzles to natural images, where the learned features capture semantic information.
Du et al. [35] fine-grained visual classification by progressive multi-granularity training of
jigsaw puzzle pieces. Li et al. [36] proposed combining jigsaw puzzles with GAN to form
JigsawGAN, a combination of generative and predictive learning signals. By solving the
jigsaw puzzle problem, the network can maximize the information in the input data to obtain
the characteristics of the image itself.

SAR image annotation is a difficult task, and existing terrain classification methods
have certain limitations for SAR images. Also, extracting complex features in SAR images
effectively is not easy. Aiming to mitigate these problems, this paper proposes a jigsaw
puzzle self-supervised learning framework (JPSSL) for the SAR image terrain classification
task. The framework mainly includes the jigsaw puzzle pretext task and the downstream
task of SAR image terrain classification. This pretext task can develop the visual–spatial
representation of the convolutional neural network context object and mine the representa-
tive characteristics of the unlabeled data as supervisory information. Downstream tasks
achieve excellent experimental results using only a small number of labeled data.

The main contributions of this paper are as follows:

1. Considering that SAR images contain a variety of terrain types, it is not easy to extract
effective features of different terrains from SAR images. A jigsaw puzzle pretext task
for SAR images is designed. This task can be learned from the image itself through
a large amount of unlabeled data, and the features extracted by the network are more
discriminative. Models learned through this task can learn rich data representations
that have strong generalization capabilities.

2. A jigsaw puzzle self-supervised learning framework (JPSSL) for the SAR image terrain
classification task is proposed. This framework has a low dependence on data. With
a few negligible-cost patch-level data, JPSSL can automatically capture image feature
representation in the pretext task and effectively transfer it to the downstream task,
achieving superior performance compared to supervised methods under the same
conditions in terrain classification.

3. The proposed framework in this paper can perform terrain classification on SAR
images of different granularities and has achieved excellent experimental results on
SAR images of different resolutions and scenes.

The structure of the remainder of this paper is as follows. Section 2 details the self-
supervised learning algorithm proposed in this paper. Section 3 details dataset information,
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experimental settings, experimental results, and analysis. Finally, the whole paper is
concluded in Section 4.

2. Method

This paper proposes a SAR image terrain classification method based on self-supervised
learning for jigsaw puzzles. A complete framework is shown in Figure 1, in which JPSSL
consists of two stages: the pretext jigsaw puzzle task and the downstream terrain classification
task. Figure 1a shows the structure diagram of the pretext task. Shuffled image patches are
input to predict which permutation is used to shuffle them. The Alexnet network is used in
the pretext task. Figure 1b shows the downstream task training part. The pre-trained encoder,
consistent with the upstream task, is transferred to the downstream task and connected to the
classifier. Downstream task fine-tuning only uses a small amount of labeled data. Figure 1c
shows the downstream task testing part, including the SAR image terrain classification and
FC-CRF post-processing. Algorithm 1 shows the pseudocode of JPSSL.

① 

② 

③ 

④ 

⑤ 

⑥ 

⑦ 

⑧ 

⑨
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... ...

......

99

100 6,8,2,1,7,9,3,5,4
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Figure 1. JPSSL framework. JPSSL consists of the pretext jigsaw puzzle task and the downstream
terrain classification task. In the pretext jigsaw puzzle task, shuffled image patches are input to predict
which permutation is used to shuffle them. The downstream terrain classification task includes the
SAR image terrain classification training and testing part.
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Section 2.1 describes how to acquire the data and detail the jigsaw puzzle pretext
task designed for SAR images. Section 2.2 introduces the downstream task of terrain
classification for SAR images and fully connected CRFs (FC-CRFs) for image processing.

2.1. Pretext Task
2.1.1. Data Collection

This paper designs a low-cost data acquisition method to obtain patch-level data using
only a small amount of prior knowledge. For large-scene high-resolution SAR images,
the natural area covers a large area. There are some large-scale aggregation areas in these
natural areas, such as farmland, forest, water, and buildings. After comparing the SAR
image with the corresponding optical image, patch-level sampling of different categories
in the large-scale aggregation area can be obtained as the experimental data. Figure 2
shows the SAR image and its corresponding optical image. The square area in the figure
represents the large-scale aggregation area found in the SAR image.

Water Forest Building Farmland

Figure 2. Comparing SAR images and optical images to obtain large-scale accumulation areas.
The square area in the figure represents the large-scale aggregation area found in the SAR image.

2.1.2. Pseudo-Label Acquisition

The core of self-supervised learning is pseudo labels, which help the model learn the
hidden information in unlabeled data. The jigsaw puzzle permutation set is investigated to
obtain pseudo labels.

If the image for the jigsaw puzzle task is divided into 3 × 3 tiles and shuffled, there
are 9! = 362,880 species of possible permutations. Different permutations are used as
pseudo labels for the pretext task. However, many shuffled permutations are similar to
the original permutation, as shown in Figure 3b. These similar permutations only change
a small number of image block positions compared with the original permutation, and
effective feature representations cannot be learned from these permutations. Therefore,
it is necessary to choose a permutation method that is greatly different from the original
permutation. The Hamming distance [37] is used to obtain the pseudo-label. The Hamming
distance is used in data transmission error-control coding, which indicates the number of
different characters in the corresponding positions of two strings of the same length. XOR
operation is performed on the two strings and counts the number of 1s as the Hamming
distance. The Hamming distance can be divided into maximum Hamming distance,
minimum Hamming distance, and average Hamming distance. To select the permutation
that is very different from the original permutation, which is shown in Figure 3c, we use
the maximum Hamming distance to select permutations. The permutations selected in this
way differ significantly from the original permutation. Multiple permutations determined
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by the maximum Hamming distance are combined to form the permutation set of the
jigsaw puzzle task, i.e., the set of pseudo labels of the pretext task. The specific method is
to calculate the Hamming distance between the shuffled and original permutations. These
permutations are sorted from large to small, and the largest top N permutations are selected
to form the permutation set for the pretext task.

7 8

4 5
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6

1 2 3

7 8

4 5

9

6

1 2 3

7 8

4 5

9

6

1 3 2

7 8

4 5
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1 3 2

3 5

1 7

4

9

6 8 2

3 5

1 7

4

9

6 8 2

(a) (b) (c)

Figure 3. Permutation selection diagram. (a) represents the original permutation; (b) represents
the permutation that only changes the position of few image blocks; (c) represents the proposed
permutation selection method.

2.1.3. Pretext Task Process

The pretext task based on jigsaw puzzle learning is a predictive–discriminative self-
supervised learning task. The network inputs shuffled image blocks to determine the
correct permutation and learn effective feature representations.

The network architecture of the jigsaw puzzle pretext task is shown in Figure 1a.
The image is divided into nine image blocks according to the oblique clipping method, as
shown on the left side of Figure 1a, where the size of each image block is the same. Since the
areas in SAR images are very complex, some SAR images contain homogeneous content,
such as water and farmland. The images of these areas have no outstanding features. After
flatly clipping these nine image blocks, it is challenging to learn the correct permutation
through the network, which is not conducive to learning effective feature representation.
The nine image blocks clipped using the flat clipping method in some areas of the SAR
image are very similar, and it is difficult for the network to determine the differences
between them, so it is difficult to identify the correct permutation. Using the flat clipping
method significantly increases the difficulty of the pretext task, meaning the pretext task
cannot be trained normally. It is hard to train the network using the flat clipping method
through experiments. Therefore, we used the oblique clipping method to solve the pretext
task effectively, which is equivalent to a shortcut. Specifically, each column was raised
to a certain height when clipped, and the pixel values beyond the image were set to 0.
Specific differences were observed in the image blocks after clipping, which helped solve
the pretext task.

The initial permutation order of the nine image blocks was set to [1, 2, 3, 4, 5, 6, 7,
8, 9], and normalization was performed on the nine image blocks. The permutation set
of the pretext task was obtained through the pseudo-label acquisition method designed
in Section 2.1.2. When the pretext task experiment was performed, a permutation was
randomly selected in the permutation set, such as the 100th permutation [6, 8, 2, 1, 7,
9, 3, 5, 4]. These nine image blocks were sent into the network in order [6, 8, 2, 1, 7,
9, 3, 5, 4] to predict the index of the selected permutation. The pretext task network
structure is a modification of AlexNet, in which the number of convolutional kernels in
each convolutional layer is fewer. Before the first fully connected layer (fc6), each image
block is transmitted in the network with shared weights. They are integrated after the first
fully connected layer (fc6) to form the input to fc7. Finally, the features are sent to a softmax
classifier to obtain the final output value.

During training, the indices must be assigned to the pre-defined permutation set, and the
network returns a vector containing the probability value of each index. The final output of
the network can be viewed as a conditional probability of the spatial permutation of objects.
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p(M | C1, C2, . . . , CN) = p(M | F1, F2, . . . , FN)
N

∏
i=1

p(Fi | Ci). (1)

M represents the selected permutation, Ci represents the ith image block, and Fi
represents the middle feature representation. Our goal was to enable features Fi to identify
semantic properties of relative positions between image blocks.

Suppose only one jigsaw puzzle task is generated for a SAR image. In that case,
it is possible that the network only learns information about the absolute position and
not semantically relevant information. When multiple jigsaw puzzles need to be gen-
erated for one image, with M as the location list collection M = (L1, L2, . . . , LN), then
p(M | F1, F2, . . . , FN) can be written as follows:

p(L1, L2, . . . , LN | F1, F2, . . . , FN) =
N

∏
i=1

p(Li | Fi); (2)

therefore,

p(M|C1, C2, . . . , CN) = ∏N
i=1 p(Li|Fi)∏N

i=1 p(Fi|Ci) = ∏N
i=1 p(Li|Ci). (3)

The position Li of each image block is completely determined by the corresponding
feature Fi.

The cross-entropy loss function [38] is used in the network. Cross-entropy is a concept
in information theory. Given two probability distributions, p and q, the cross-entropy of p
represented by q is as follows:

H(p, q) = −∑
x

p(x)logq(x). (4)

The cross-entropy loss function used in the pretext task is defined as follows:

Lupstream = − 1
S ∑

j

Y

∑
a=1

yjalog(pja), (5)

where S is the selected sample size, Y is the number of categories, yja represents the true
distribution reflected by the training set, and pja represents the predicted probability that
the observed sample j belongs to category a.

2.2. Downstream Terrain Classification Task
2.2.1. Task Process

The training stage of the downstream task consists of an encoder and a classification
head. The encoder part is identical to the jigsaw puzzle pretext task, so the encoder part
can directly use the weights trained on the jigsaw puzzle pretext task. The weights of the
convolutional layers are transferred, and the weights before the last convolutional layer
are frozen. This means only the last convolutional layer and the fully connected layer are
trained in the downstream task, as shown in Figure 1b. A small amount of patch-level
image data is used for training. The output of the training phase is the probability of the
terrain category of the input image patches, and the model is fine-tuned using a multi-class
cross-entropy classification loss. The multi-class cross-entropy classification loss function is
defined as follows:

Ldownstream = E[− log P(y
′
i/yi)], (6)

where E represents the mathematical expectation, which is the superposition of multi-
ple functions. yi represents the real terrain category of patch-level data, and y

′
i is the

corresponding terrain category label.
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Unlabeled large-scene high-resolution SAR images need to be preprocessed before the
testing phase. The SAR image needs to be cropped into image patches of the same size as
the downstream task training data. The overlap cropping method is used to crop image
patches so each image patch has a central region. The test image patches are fed into the
network to obtain the predicted terrain category, and all pixels in the central region are
predicted as the pixel values corresponding to the terrain category. After all the image
data have been tested in the test phase, the central region of the image data is spliced to
obtain the final result of terrain classification. The overlapping range in the clipping process
affects the size of the central region, and this hyperparameter experiment is carried out in
the analysis of experimental results in Section 4.

2.2.2. Fully Connected CRFs

This patch-level segmentation method produces errors at the edges of different regions
and produces a jagged structure. Therefore, the post-processing method is used to improve
classification performance and obtain high-quality results. FC-CRFs are obtained by im-
proving CRFs to combine the relationship between all pixels in the original image to process
the classification results obtained by deep learning. This method can optimize the rough
and uncertain marks in the classification image and correct the fine misclassified regions to
obtain more detailed segmentation boundaries. The efficient probability approximation
algorithm [39] is adopted to implement FC-CRFs. A random field X = {X1, X2, . . . , XN}
is created for N pixels of an image, where Xj denotes the label assigned to pixel j. Also,
the RGB vector of the pixel is defined to form a random field I = {I1, I2, . . . , IN}, where
Ij represents the RGB vector of pixel j. FC-CRFs follow the Gibbs distribution and can be
written as follows:

P(x = X | I) =
1

Z(I)
e−E(X|I). (7)

E(X | I) is an energy function composed of a unary potential function and a binary
potential function.

E(X | I) = ∑iψu(xi) + ∑i,jψb(xi, yj). (8)

The first term, ψu(xi), is the unary potential function produced by the obtained
prediction result map, representing the probability distribution of the label assigned to
the pixel. The second term, ψb(xi, yi), is a binary potential function that constrains the
relationship between pixels and is defined as follows:

ψb(xi, yj) = u(xi, yj)∑ ωKG( fi, f j), (9)

KG( fi, f j) = W1e
−

|pi−pj |
2

2θ2
α

−
|Ii−Ij |

2

2θ2
β + W2e

−
|pi−pj |

2

2θ2
γ . (10)

u(xi, yj) is a label-compatible item, and energy can only be transmitted under the
condition of the same label. KG( fi, f j) is the characteristic function, where pi and pj are
position vectors, Ii and Ij are color vectors, and θα, θβ and θγ are hyperparameters.

This FC-CRF post-processing method can eliminate misclassified points on the edges
of different regions and inside and remove the jagged structure that appears in the image.
It can alleviate some unavoidable errors when using the patch-level method and obtain
high-quality results.
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Algorithm 1 The training process of JPSSL.

Require:
Input image i, permutation set p, training set t, and category label l.
The jigsaw puzzle encoder J, the jigsaw puzzle classifier C, and the classification model P.

Ensure:
Classification model P.

1: The pretext task:
2: for epochs do
3: Randomly choose a permutation p1 from the permutation set p.
4: Divide the input image i into 9 image blocks according to p1.
5: Send the image blocks into the network to predict the index of the input permutation

through Formula (3).
6: Calculate the loss of the pretext task by Formula (5).
7: Update the parameters of J, and C.
8: end for
9: The downstream task:

10: Select a small number of training data with category label l from the training set t.
11: Transfer the pre-trained encoder J to the classification model P.
12: for epochs do
13: Obtain predicted label distribution l(t), and calculate classification loss by

Formula (6).
14: Fine-tuning parameters of the classification model P.
15: end for
16: Classify, colorize, and stitch images using classification models P.
17: Post-processing with FC-CRF.

3. Experiments

In this section, the effectiveness of the present method is demonstrated on a 25-class
SAR scene dataset and three large-scene high-resolution SAR images. More precisely,
in Section 3.1, the 25-class SAR scene dataset and three large-scene high-resolution SAR
images are introduced in detail. Then, the evaluation metrics for pretext and downstream
tasks are proposed. In Sections 3.2 and 3.3, the present method is validated on the 25-class
SAR scene dataset and the large-scene high-resolution SAR images. All experiments are
carried out using Ubuntu 18.04 using a Pytorch 1.8.0 environment with Intel Xeon CPUs
and NVIDIA RTX 2080Ti. Intel Xeon CPUs are central processing units produced by Intel
Corporation of the United States. NVIDIA RTX 2080Ti is a graphics card produced by Intel
Corporation of the United States.

3.1. Experimental Data and Evaluation Indicators
3.1.1. The 25-Class SAR Scene Data

The scene dataset used was constructed by applying a regular grid to several high-
resolution SAR images acquired by the TerraSAR-X satellite in HH polarization with
spotlight mode. These images were taken over Rosenheim, Toronto, Java, Colorado, Bei-
jing, and Hong Kong airports. The scene dataset contains rich scenes, including water,
farmland, forests, residential areas of different densities, etc. These 25 types of scene data
are a wasteland, airport runway, three types of water, agriculture, four types of build-
ings, sparse residences, four types of dense residential buildings with different densities,
skyscrapers, two types of Rivers, two types of roads, farmland, forest, grass houses, train
tracks, and vegetated farmland mixtures. Each type of scene data contains 400 data, and
the size of each image is 200 × 200.

3.1.2. Large-Scene High-Resolution SAR Image Data

Three large-scale high-resolution SAR images from different regions acquired by
different satellites were used to conduct SAR image terrain classification experiments.
The three SAR images are the SAR images of the Jiujiang area in China, the Napoli area
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in Italy, and the PoDelta area in Italy. The SAR image of the JiuJiang area in China was
taken by the Gaofen-3 satellite. The image size is 8000 × 8000, the imaging mode is DV
polarization, and the ground resolution is 3m. The SAR images of the Napoli area and
the PoDelta area in Italy were taken by Cosmo-SkyMed satellites. The image sizes are
16,000 × 18,332 and 16,716 × 18,308, respectively; the imaging mode is HH polarization,
and the ground resolution is 2.5 m. The original SAR images were stored in 16-bit data,
while a standard CNN was used to process the 8-bit image data, so the SAR images needed
to be pre-processed. The image pixel values were normalized to the range of 0–255 by
truncated linear stretching [40] for all SAR images. Pixels in the above three images were
sorted into five terrain categories: water, forest, buildings, farmland, and unknown class.
No predictions were made for unknown class regions during training and testing.

3.1.3. Evaluation Indicators

There are certain differences in the evaluation indicators of the pretext task and the
downstream task under the two different experiments.

1. Pretext Task
The evaluation indicators of the pretext tasks under two different experiments are
consistent. First, a permutation is randomly selected from the pre-defined permutation
set, and image blocks are shuffled according to this permutation. The shuffled image
blocks are input into the network to obtain a probability vector. The index value of
the largest value in the probability vector is the predicted result, and the accuracy is
calculated using the real index value of the permutation. The jigsaw puzzle pretext
task can be regarded as a multi-classification problem, and the results of the pretext
task are displayed in the form of classification accuracy. The UPaccuracy is used to
represent the accuracy rate of the pretext task, where TP represents the number of
positive classes predicted as positive classes, TN represents the number of negative
classes predicted as negative classes, and N represents the total amount of data.
UPaccuracy: Pretext task accuracy.

UPaccuracy = (TP + TN)/N. (11)

2. Downstream Task

There are some differences in the evaluation indicators of the downstream tasks of the
two experiments.

The downstream task of 25-class SAR scene data classification is a scene classification
task, and the results of the final downstream task are presented as the accuracy of a multi-
classification problem. The accuracy rate calculation formula is equivalent to Formula (11).

The downstream task of large-scene high-resolution SAR image terrain classification
can be regarded as a segmentation task. The pixel accuracy (PA), Kappa coefficient, mean
intersection ratio (MIoU), and frequency-weighted intersection ratio (FWIoU) are used to
measure the overall classification performance. The check precision rate (CPA), Recall, and
the F1 score are used to measure the classification performance of individual categories.
The relevant evaluation indicators and their definitions are as follows.

There are k + 1 classes (including the unknown class), and pi,j represents the number
of pixels that belong to class i but are predicted to class j. The unknown class is not involved
in the calculation of the evaluation metric.

CPA: Proportion of correct predictions that are positive to all positive predictions.

CPA =
k

∑
i=0

pii

∑k
j=0 pij + pii

. (12)
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Recall: Proportion of correct predictions that are positive to all positive data.

Recall =
k

∑
i=0

pii

∑k
j=0 pji + pii

. (13)

F1Score: The harmonic mean of recall and CPA.

F =
2 × CPA × Recall

CPA + Recall
. (14)

PA: Proportion of correctly labeled pixels to total pixels.

PA =
∑k

i=0 pii

∑k
i=0 ∑k

j=0 pii
. (15)

Kappa: Used for consistency testing to penalize model bias to obtain a more unbiased model.

Kappa =
po − pe

1 − pe
pe =

a1 × b1 + a2 × b2 + · · ·+ ac × bc

n × n
. (16)

po represents the proportion of correctly classified data to the total data, which is
equivalent to PA; a1, a2, · · · , ac represent the amount of real data for each class; b1, b2, · · · , bc
represent the amount of predicted data for each class; c represents the number of categories;
n represents the total amount of data.

MIoU: Calculates the ratio of the intersection and union of sets of true and predicted values.

MIoU =
1

k + 1

k

∑
i=0

pii

∑k
j=0 pij + ∑k

j=0 pji − pii
. (17)

FWIoU: An improvement of MIoU, which sets weights according to the frequency of
occurrence of categories.

FWIoU =
1

∑k
i=0∑k

j=0 pij
×

k

∑
i=0

pii

∑k
j=0 pij + ∑k

j=0 pji − pii
. (18)

3.2. 25-Class SAR Scene Data Classification

In this section, the classification experiment of 25-class SAR scene data is detailed.
First, the experimental settings for pretext and downstream tasks are introduced. Then, the
effects of permutation set size, frozen layers, and the amount of labeled training data are
explored. Under the optimal parameter setting, the effectiveness of the proposed method
is confirmed compared with the comparative method. Finally, the extracted features are
qualitatively evaluated by image retrieval.

3.2.1. Experimental Settings for Pretext and Downstream Tasks

The pretext task uses 25-class scene data; each type of data contains 400 training data,
and the size of each image is 200 × 200. The pretext task training and verification sets are
divided according to a ratio of 7:3. The images are resized to the size of 255 × 255 and
divided into nine image blocks according to Section 2.1.3. The batch size of the training
set and the verification set are set to 64 and 32, respectively. The initial learning rate is set
to 0.01, and the training epoch is set to 300. The learning rate iteration criterion is that the
learning rate becomes 1/2 of the original for every 50 epochs. The optimizer is the SGD
optimizer, the momentum is set to 0.9, and the weight decay is set to 0.0001.

The model trained by the jigsaw puzzle pretext task is the pre-trained model for the
downstream task. Only the probability of the terrain class of the input image patch is
output in the test phase of the downstream task. The downstream task sets the initial
learning rate to 0.01 and the training epoch to 100. The learning rate iteration criterion is
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that the learning rate becomes 1/2 of the original for every 50 epochs. The optimizer is the
SGD optimizer, the momentum is set to 0.9, and the weight decay is set to 0.0001.

3.2.2. Analysis of Influencing Factors

1. Permutation Set Size
As the method of pseudo-label acquisition, the permutation set’s size affects both the
pretext and downstream tasks. To explore the effect of the size of the permutation set
on the 25-class SAR image scene classification task, experiments on the permutation
set size parameter are conducted. The training data for the downstream task are ten
randomly selected data for each category, and the weights of all convolutional layers
are frozen. The accuracy rates for the pretext and downstream tasks with different
permutation set sizes are shown in Table 1. 0.635 is the highest accuracy for the
downstream task, shown in bold in Table 1.

Table 1. Experiments with different permutation set sizes for the pretext task and the downstream task.

Permutation Set Size 50 80 100 120 200 300 500

Pretext task 0.81 0.76 0.72 0.71 0.61 0.52 0.45
Downstream task 0.51 0.635 0.63 0.57 0.59 0.43 0.37

It can be seen from the experimental results in Table 1 that as the permutation set size
increases, the difficulty of the jigsaw puzzle pretext task increases, which leads to
a decrease in the accuracy of the pretext task. The main measure of the performance of
the self-supervised task is how well the downstream task performs, and our ultimate
goal is to determine the parameters that perform best in the downstream task. As can
be seen from the results of the downstream task in Table 1, although the pretext task
accuracy is the highest when the permutation set size is set to 50, the accuracy of the
downstream task is lower at this point. Better downstream task results are achieved
for the permutation set size of 80.

2. Frozen Layers
The model obtained from the pretext task for the downstream task is the transfer
learning process. In the experiments shown in Table 1, the transfer learning method is
adopted to transfer the weights of all convolutional layers to the downstream task
and freeze them, which means the gradient is not updated during the training process.
Table 2 shows the downstream task accuracy using different freezing layer methods
when the permutation set size is 80. The training data used are consistent with those
in Table 1.

Table 2. Experiments with different frozen convolutional layer parameter methods.

How to Freeze Parameters Permutation Set Size Downstream Task Accuracy

Method I 80 0.635
Method II 80 0.726
Method III 80 0.67
Method IV 80 0.65

In Table 2, Method I freezes all convolutional layer weights, Method II freezes all
weights before the last convolutional layer, Method III freezes all weights before
the last two convolutional layers, and Method IV freezes all weights before the last
three convolutional layers. Bold in Table 2 indicates the highest accuracy. It can
be concluded from Table 2 that the downstream task achieves the highest accuracy
when all weights before the last convolutional layer are frozen. In the subsequent
experiments, the permutation set size was set to 80, and the parameters of all weights
before the last convolutional layer were frozen during transfer learning.
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3. Amount of Labeled Training Data

With sufficient labeled data, the supervised learning approach is superior to the self-
supervised learning approach. Self-supervised learning aims to reduce the reliance on
labeled data and achieve better results with a small amount of labeled data. The impact
of the amount of labeled training data is explored for the downstream task. The rest of
the data, except the training data, are used as the validation set and compared with the
supervised method that does not use pre-trained weights.

It can be seen from Table 3 that when the amount of training data for each class is small,
the present method can achieve better results than the supervised method. The difference
between the two methods gradually decreases as the amount of training data increases.
The self-supervised learning method does not show advantages when the amount of train-
ing data is further increased. It can be seen from the table that when only 10 training data
are selected for each class, the improvement effect of the present method is the largest.

Table 3. Experiments with different amounts of labeled training data for the downstream task.

Downstream Task Accuracy

Amount of Data per Class 3 10 25 35 50

JPSSL(no pretraining) 0.304 0.479 0.715 0.82 0.9
JPSSL 0.501 0.731 0.854 0.874 0.9

3.2.3. Image Retrieval

The extracted features are qualitatively evaluated. Images are manually selected in
the 25-class dataset, and the output features from convolutional layers determine the kth
nearest neighbor of the selected images. The extracted features are qualitatively evaluated
using the Euclidean distance. The Euclidean distance is defined as follows:

L2(xi, xj) =

√
n

∑
l=1

(xl
i − xl

j)
2. (19)

The feature space X is an n-dimensional real vector space. Both xi and xj belong to X.
xi = (x1

i , x2
i , . . . , xn

i )
T , xj = (x1

j , x2
j , . . . , xn

j )
T .

The output features of the convolutional layer are used to determine the top three
neighbor images through the input image, as shown in Figure 4.

input image 1 2 3

Figure 4. Image retrieval graph for different images. 1, 2, and 3 represent the input image of the nearest
neighbor image, the second nearest neighbor image, and the third nearest neighbor image in turn.
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It can be seen from Figure 4 that the images retrieved are of the same class as the query
image, which means that the features extracted from the convolutional layer are sensitive
to similar objects. The effectiveness and discriminativeness of the extracted features can
be proven.

3.3. Terrain Classification of High-Resolution Large-Scene SAR Images

In this subsection, the terrain classification experiments of large-scene high-resolution
SAR images are introduced in detail. First, the settings of pretext tasks and downstream
tasks are introduced. Then the effects of the cut image block size, the permutation set size,
the normalization method, the number of labeled training data, the central area, and the
selection of labeled data are explored. Section 3.3.2 elaborates the influence of the above
factors in the Jiujiang image. The hyperparameters of the Napoli and PoDelta images are
determined identically in Section 3.3.3. Section 3.3.3 analyzes the experimental results of
three large-scene high-resolution SAR images in detail.

3.3.1. Experimental Settings for Pretext and Downstream Tasks

The SAR image terrain classification data are obtained by the data acquisition method
in Section 2.1.1. The three large-scene high-resolution SAR images used are all composed
of five categories: water, forest, buildings, farmland, and unknown class. Limited by label
data, only four areas are classified: water, forest, building, and farmland. In addition to
these areas, there are also some small areas in the three SAR images. These small areas are
difficult to distinguish between categories when labeling, so they are marked as unknown
classes. We do not consider unknown class areas in the process of terrain classification.
The image patches of the same size are cut out for each category. The image used for the
jigsaw puzzle task is cut into nine blocks according to the method on the left side of Figure 1,
and the pixel value beyond the image is set to 0. The image blocks are sent to the network
according to the selected permutation to predict which permutation is selected. The batch
size of the training and verification sets are 64 and 32, respectively. The initial learning rate
is set to 0.01, and the training epoch is set to 300. The learning rate iteration criterion is that
the learning rate becomes 1/2 of the original for every 50 epochs. The optimizer is the SGD
optimizer, the momentum is set to 0.9, and the weight decay is set to 0.0001.

In the downstream task, the model obtained by the pretext task is fine-tuned for the
downstream task. Twenty data of each terrain category are randomly selected as training
data from the patch-level data generated in Section 2.1.1. The training process of the
downstream task is shown in Figure 1. The training batch size is set to two due to the small
number of training data, the initial learning rate is set to 0.01, and the training epoch is
set to 100. The learning rate iteration criterion is that the learning rate becomes 1/2 of the
original for every 50 epochs. The optimizer is the SGD optimizer, the momentum is set to
0.9, and the weight decay is set to 0.0001. The testing process of the downstream task is
shown in Figure 1. The high-resolution SAR images are cropped into patches of the same
size during the training process. Then, the test data are inputted into the network to predict
the terrain category. To obtain the pixel-level classification result, the pixel corresponding
to the prediction output category is used as the pixel in the central region of the test image
patches. After all the test data are tested, the central predicted regions of all the test image
patches are stitched together and processed by FC-CRF to obtain the terrain classification
results for the complete SAR image.

3.3.2. Analysis of Influencing Factors

1. Cut Image Patch Size
When the low-cost data acquisition method is used, patch-level data need to be
selected in each type of large-scale aggregation area in SAR images. The size of the
cut image patches affects the results of the pretext and downstream tasks. The size
of the JiuJiang SAR image is 8000 × 8000, and the image resolution is 3 m. Image
patches that are cut too small cannot effectively provide the context information of
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the image, and image patches cut too large lead to the degradation of classification
performance. Experiments on the size of the cut image patches are conducted.
Due to the relatively small size of the JiuJiang SAR image, five different cut image
patch sizes are used for our experiments. Bold in Table 4 indicates the highest values
of different indicators. As can be seen from Table 4, the accuracy of the pretext task
is higher when the image patch sizes are 75 × 75, 120 × 120, and 150 × 150. Images
can be divided into nine blocks without gaps in these three cases. Meanwhile, images
cannot be evenly divided into nine blocks when the image patch sizes are 50 × 50,
150 × 150, and 100 × 100. The performance of self-supervised tasks mainly concerns
the performance of downstream tasks. It can be seen from Table 4 that when the cut
image patch size is 75 × 75, the PA of the model can reach 85.3%, the MIoU can reach
68.8%, and the overall classification performance is the best. Therefore, the image
patch size is set to 75 × 75 for the JiuJiang SAR image.

Table 4. Experiments with different cut image patch sizes for the pretext task and the downstream
task on JiuJiang data.

Image Patch Size Pretext Task Downstream Task
Accuracy PA Kappa MIoU FWIoU

50 × 50 0.758 0.835 0.754 0.630 0.764
75 × 75 0.88 0.853 0.784 0.688 0.798

100 × 100 0.68 0.782 0.689 0.616 0.715
120 × 120 0.913 0.724 0.616 0.567 0.651
150 × 150 0.838 0.754 0.653 0.578 0.698

2. Permutation Set Size and Normalization Method
As the pseudo-label acquisition method of this task, the size of the permutation set has
an impact on SAR image terrain classification. The permutations of the pretext task
according to the maximum Hamming distance proposed in Section 2.1.2 are selected
and combined to form the permutation set. The cut image patches of 75 × 75 pixels
are used to conduct experiments on the JiuJiang SAR image. For the training process
of the downstream task, 20 labeled training data for each terrain category are selected.
For the downstream task training process, the scene classification experiment is used.
The performance of scene classification is positively correlated with the performance
of final terrain classification and is relatively simpler. Table 5 shows the performance
of the pretext and downstream tasks for different permutation set sizes.

Table 5. Experiments with different permutation set sizes for the pretext task and the scene classifica-
tion task on JiuJiang data.

Permutation Set Size 50 80 100 125 150 175 200 300

Pretext task accuracy 0.935 0.885 0.855 0.844 0.767 0.709 0.68 0.59
Scene classification accuracy 0.948 0.945 0.949 0.944 0.948 0.95 0.944 0.936

It can be seen from Table 5 that as the size of the permutation set increases, the
difficulty of the pretext task increases, and the accuracy of the pretext task decreases.
However, it can be seen from Table 5 that the accuracy of the downstream task is
almost constant, and a slight change in the accuracy of the scene classification task
causes little change on the terrain classification task. The accuracy of downstream
tasks tends to be consistent under different permutation set sizes through multiple
experiments. It can be concluded that the permutation set size has little impact
on the terrain classification result. Considering the calculation cost and the final
performance, and to be consistent with Section 3.2.2, the permutation set size in the
terrain classification experiment is set to 80.
To better solve the SAR image jigsaw puzzle problem, normalization methods for
image blocks have been researched. Normalization can reduce internal covariance so



Remote Sens. 2024, 16, 1635 16 of 24

the model can be trained effectively. The normalization methods for the nine image
blocks used for the jigsaw puzzle task are explored in Table 6, and the results under
different normalization methods for the pretext and downstream tasks are shown in
Table 7. Bold in Table 7 indicates the highest accuracy for different tasks.

Table 6. Different normalization methods.

Mode Normalization Methods

Mode I Individual normalization for each image block

Mode II All image blocks are normalized using a uniform mean standard deviation

Mode III Each image block uses a uniform mean and each image blockâĂŹs standard deviation
is handled separately

Mode IV Each image block uses a uniform standard deviation and each image blockâĂŹs mean
is handled separately

Table 7. Experiments with different normalization methods for the pretext task and the scene
classification task.

Normalization Mode Mode I Mode II Mode III Mode IV

Pretext task accuracy 0.937 0.784 0.933 0.918
Scene classification accuracy 0.948 0.933 0.932 0.925

As seen in Table 7, the best results are obtained in both the pretext and downstream
tasks when using mode I. Therefore, mode I is used for the jigsaw puzzle task.
The same pattern applies to the other data as well.

3. Amount of Labeled Training Data
The amount of labeled training data affects the performance of the final terrain
classification task. Self-supervised learning aims to reduce reliance on labeled data and
achieve better results with a small amount of labeled data. The effect of the amount of
labeled data is explored under the best hyperparameters of the above experiment. For
the JiuJiang SAR image, the cut image patch with the size of 75 × 75 pixels is used,
and the size of the central area selected when cropping the image from the SAR image
is 25 × 25. Table 8 shows the results with and without the transfer pre-trained model.

Table 8. SAR image terrain classification under different amounts of labeled training data.

The Amount of Data per Class JPSSL (No Pretraining) JPSSL
PA MIoU PA MIoU

10 0.745 0.533 0.827 0.638
20 0.767 0.582 0.850 0.686
30 0.822 0.641 0.824 0.664

The bold in Table 8 indicates the highest values of PA and MIoU. It can be seen
from Table 8 that when 20 labeled training data are selected for each category, the
performance of the model is the best, and the classification performance is improved
to a certain extent relative to the supervised method. The same pattern applies to
other data as well.

4. Central Prediction Area Size
The choice of the central prediction area size of the cut image patch impacts the
model’s classification accuracy. The larger the central area size, the coarser the clas-
sification, but the more efficient it is. The smaller the central area size, the finer the
classification, but the less efficient it is. Therefore, choosing the appropriate size of the
central prediction area is important. Based on the above experiments, experiments
on different central prediction area sizes are carried out using JiuJiang data. Table 9
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shows the classification performance of different central prediction area sizes. Bold in
Table 9 indicates the highest values of different indicators.

Table 9. Experiments with different center prediction area sizes.

Central Prediction Area Size PA Kappa MIoU FWIoU

15 × 15 0.870 0.808 0.705 0.812
25 × 25 0.867 0.803 0.699 0.807
75 × 75 0.834 0.756 0.650 0.767

The experimental results are consistent with the theoretical analysis. When the size of
the central prediction area is reduced from 25 × 25 to 15 × 15, the model’s classification
performance is improved by less than 0.1% but the training time and memory are
significantly increased. Considering classification performance and efficiency issues,
the central area is set to 25 × 25 pixels.

5. Selection of Labeled Data
When selecting a small amount of labeled data for the downstream task, images from
different aggregation areas for each category should be selected evenly. If the selected
data are not sufficiently representative, it leads to a decrease in the performance
of the model. In the JiuJiang data set, the images of water in different large-scale
aggregation areas are slightly different, so we experiment with the selection of labeled
data. Figure 5a shows the randomly selected data, and Figure 5b shows the manually
selected data. Bold in Table 10 indicates the highest values of different indicators.

(a)  Randomly selected samples

(b) Manually selected samples

Figure 5. Randomly selected data and manually selected data.

It can be seen from Table 10 that various performance indicators are improved to
a certain extent if manually selected data are used. The selection of representative
data can improve the performance of the model. Considering the issue of model
performance, more representative data for each category will be selected in subsequent
SAR image experiments.

Table 10. Experiments to change training data.

PA Kappa MIoU FWIoU

randomly selected data 0.853 0.784 0.688 0.798
manually selected data 0.867 0.803 0.699 0.807
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3.3.3. Large-Scene High-Resolution SAR Images Terrain Classification

By comparing the proposed method with several terrain classification methods on
different data, the effectiveness of the proposed method is proven. The Deeplabv3+
method [41], Segformer method [42], SimCLR method [43], and the supervised method
that does not use pre-trained weights are used in comparative experiments. Finally, the
results of terrain classification combined with the JPSSL framework and FC-CRF are shown.
The Deeplabv3+ method achieves advanced classification performance of images by ex-
tracting multi-scale features and gradually recovering spatial information. The supervised
method does not use pre-trained weights as the baseline.

1. Jiujiang Data
The experiments are conducted under the best settings explored in Section 3.3.2. Figure 6
shows the visualization results of terrain classification on JiuJiang data for the present
method and the comparison methods, and Table 11 shows the evaluation indicators
of terrain classification on JiuJiang data for the present method and the comparison
methods. Bold in Table 11 indicates the highest values of different indicators. As the
deeplabv3+ method requires a large amount of training data to achieve good results,
overfitting is serious if a small amount of training data is used, which results in poor final
classification performance. The indicators obtained using the JPSSL method improved
to a certain extent compared with different comparative experiments. The forest and
farmland categories of the JiuJiang image are very similar and cannot easily be distin-
guished from each other. Compared with the baseline, the present method improves
the F1 score indicators of the forest class and farmland class by 17% and 23%, respec-
tively. Comparison of Figure 6f,g shows that the present method can better distinguish
forest and farmland. It can be seen from the table that the present method achieves
the highest in all indicators. Compared with the baseline, there is a 10% improvement
in PA, MIoU, and FWIoU, and a 14% improvement in Kappa indicators. After using
FC-CRF post-processing, the overall metrics are improved by approximately 2%, and
the classification effect of forest and farmland is improved. A comparison of Figure 6b,h
shows the excellent result achieved by the present method.

(a) (b) (c) (d)

(e)

Water Forest Building Farmland Others

(f) (g) (h)

Figure 6. Visualization of terrain classification results with different methods on Jiujiang data. (a) SAR
image. (b) Ground truth. (c) Deeplabv3+. (d) Segformer. (e) SimCLR. (f) JPSSL (no pre-training).
(g) JPSSL (pre-training). (h) JPSSL (pre-training + FC-CRF).
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Table 11. Terrain classification results with different methods on JiuJiang data.

Method PA Kappa MIoU FWIoU
F1score

Water Forest Building Farmland

Deeplabv3+ 0.610 0.432 0.352 0.501 0.884 0.187 0.411 0.403
Segformer 0.652 0.511 0.402 0.516 0.941 0.372 0.622 0.078
SimCLR 0.827 0.748 0.645 0.752 0.956 0.480 0.859 0.747

JPSSL (no pre-training) 0.767 0.663 0.582 0.702 0.963 0.338 0.867 0.603
JPSSL (pre-training) 0.867 0.803 0.699 0.807 0.964 0.503 0.899 0.834

JPSSL (pre-training + FC-CRF) 0.884 0.827 0.725 0.829 0.973 0.567 0.892 0.858

2. Napoli Data
The size of the SAR image in the Napoli area of Italy is 18,332 × 16,000, a large image
with a higher resolution than the SAR image of JiuJiang. Due to the difference in image
size, resolution, and imaging method, the hyperparameters suitable for the JiuJiang
SAR image may not be suitable for the Napoli SAR image. The cut image patch size is
one of the most significant points. Based on the hyperparameter experiment of the
cut image patch size of the JiuJiang SAR image, the experiment is conducted on the
cut image patch size of the Napoli image, and supplements are made accordingly.
Table 12 represents the impact of different cut image patch sizes for the pretext task
and the downstream terrain classification task. Bold in Table 12 indicates the highest
values of different indicators.

Table 12. Experiments with different cut image patch sizes in Napoli, Italy, data.

Image Patch Size Pretext Task Downstream Task
Accuracy PA Kappa MIoU FWIoU

50 × 50 0.728 0.788 0.710 0.618 0.674
75 × 75 0.856 0.786 0.707 0.620 0.675

100 × 100 0.656 0.784 0.709 0.631 0.679
120 × 120 0.894 0.804 0.733 0.649 0.697
150 × 150 0.805 0.787 0.711 0.630 0.675
200 × 200 0.740 0.789 0.712 0.625 0.673
255 × 255 0.890 0.768 0.682 0.596 0.644

It can be seen from Table 12 that when the cut image patch size is 120 × 120 pixels, both
the pretext task and the downstream terrain classification task achieve the highest
indicators. For the SAR image in Napoli, Italy, the cut image patch size is set to
120 × 120 pixels, and the rest of the parameters are universal and consistent with the
corresponding parameters of the JiuJiang SAR image.
The experiments are conducted using the best parameter settings presented above.
Figure 7 shows the visualization results of terrain classification on the Napoli data
for the present method and the comparison methods, and Table 13 shows the evalu-
ation indicators of terrain classification on Napoli data for the present method and
the comparison methods. Bold in Table 13 indicates the highest values of different
indicators. The Deeplabv3+ method is seriously overfitted when only 20 training data
are used for each class. The indicators obtained using the JPSSL method improved
to a certain extent compared with different comparative experiments. Compared
with the baseline, the F1 score indicators of the forest and building categories in-
creased by 20% and 10%, respectively, which shows the present method improves
the discriminative performance of forest and building features. The present method
achieves the highest indicators in terms of overall indicators. Compared with the
baseline, PA shows approximately 6% improvement, and Kappa, MIoU, and FWIoU
show roughly 8% improvement. After using FC-CRF post-processing, the overall
metrics hare improved by approximately 1.5%, and the classification effect of forest
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and farmland improved overall. A comparison of Figure 7b,h shows the excellent
result achieved by the present method.

(a) (b) (c) (d)

(e) (f) (g) (h)

Water Forest Building Farmland Others

Figure 7. Visualization of terrain classification results with different methods on Napoli data. (a) SAR
image. (b) Ground truth. (c) Deeplabv3+. (d) Segformer. (e) SimCLR. (f) JPSSL (no pre-training).
(g) JPSSL (pre-training). (h) JPSSL (pre-training + FC-CRF).

Table 13. Terrain classification results obtained using different methods on Napoli data.

Method PA Kappa MIoU FWIoU
F1score

Water Forest Building Farmland

Deeplabv3+ 0.660 0.548 0.498 0.545 0.952 0.393 0.785 0.321
Segformer 0.740 0.654 0.577 0.620 0.974 0.531 0.861 0.384
SimCLR 0.770 0.693 0.622 0.664 0.954 0.525 0.825 0.684

JPSSL (no pre-training) 0.745 0.650 0.562 0.620 0.978 0.301 0.778 0.648
JPSSL (pre-training) 0.804 0.733 0.649 0.697 0.981 0.501 0.872 0.688

JPSSL (pre-training + FC-CRF) 0.820 0.754 0.665 0.719 0.986 0.540 0.853 0.731

3. PoDelta Data

The data of the PoDelta region of Italy and the Naples region of Italy are both obtained
from the same Cosmo-SkyMed satellite with the same resolution, imaging method, and
imaging band. The size of the PoDelta SAR image is 18,308 × 16,716, which is close to the
size of the Napoli SAR image. Therefore, the experiment is conducted on the cut image
patch size of the PoDelta image based on Table 12.

Bold in Table 14 indicates the highest values of different indicators. It can be seen from
Table 14 that when the cut image patch size is 120 × 120 pixels, the downstream terrain
classification task achieves the highest indicators. For the PoDelta, Italy, SAR image, the
cut image patch size is set to 120 × 120 pixels, and the rest of the parameters are universal
and consistent with the corresponding parameters of the JiuJiang SAR image.

The experiments are conducted under the best parameter settings presented above.
Figure 8 shows the visualization results of terrain classification on the PoDelta data for the
present method and the comparison methods, and Table 15 shows the evaluation indicators
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of terrain classification on PoDelta data for the present method and the comparison methods.
Bold in Table 15 indicates the highest values of different indicators. The Deeplabv3+ method
is seriously overfitted when only 20 training data are used for each class and works poorly in
the forest and building classes. The indicators obtained using the JPSSL method improved
to a certain extent compared with different comparative experiments. Compared with
the baseline, the F1 score indicators of building and farmland increased by 45% and 22%,
respectively, which shows the present method improves the discriminative performance
of building and farmland features. The present method achieves the highest indicators in
terms of overall indicators. Compared with the baseline, PA, Kappa, and FWIoU show
an improvement of approximately 8%, and MIoU shows an improvement of roughly 14%.
After using FC-CRF post-processing, PA and FWIoU are improved by approximately 2%,
and Kappa and MIoU are greatly improved overall. By observing the results and indicators,
it is found that the classification effect of the building category is effectively improved.
A comparison of Figure 8b,h shows the excellent result achieved by the present method.

Table 14. Experiments with different cut image patch sizes in PoDelta, Italy, data.

Image Patch Size Pretext Task Downstream Task
Accuracy PA Kappa MIoU FWIoU

50 × 50 0.755 0.907 0.800 0.522 0.881
75 × 75 0.873 0.911 0.808 0.520 0.887

100 × 100 0.678 0.908 0.799 0.522 0.879
120 × 120 0.873 0.929 0.846 0.588 0.904
150 × 150 0.822 0.913 0.813 0.526 0.885
200 × 200 0.748 0.920 0.828 0.595 0.897
255 × 255 0.918 0.913 0.813 0.571 0.885

(e) (f) (g) (h)

(a) (b) (c) (d)

Water Forest Building Farmland Others

Figure 8. Visualization of terrain classification results with different methods on PoDelta data. (a) SAR
image. (b) Ground truth. (c) Deeplabv3+. (d) Segformer. (e) SimCLR. (f) JPSSL (no pre-training).
(g) JPSSL (pre-training). (h) JPSSL (pre-training + FC-CRF).
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Table 15. Terrain classification results with different methods on PoDelta data.

Method PA Kappa MIoU FWIoU
F1score

Water Forest Building Farmland

Deeplabv3+ 0.773 0.575 0.373 0.727 0.900 0.073 0.123 0.727
Segformer 0.925 0.838 0.603 0.901 0.989 0.287 0.665 0.868
SimCLR 0.923 0.834 0.595 0.889 0.980 0.323 0.627 0.870

JPSSL (no pre-training) 0.842 0.672 0.442 0.814 0.987 0.365 0.125 0.664
JPSSL (pre-training) 0.929 0.846 0.588 0.904 0.988 0.299 0.582 0.881

JPSSL (pre-training + FC-CRF) 0.948 0.885 0.662 0.924 0.988 0.337 0.766 0.918

The method proposed in this paper shows the best performance on three different SAR
images. Using this method can achieve better results with a small amount of labeled data
and alleviate the drawback of difficulty in obtaining labeled data. At the same time, using
this method can improve the discriminability of features and make it easier to distinguish
different features in similar areas.

4. Conclusions

In this paper, a JPSSL framework for SAR image terrain classification was proposed.
A jigsaw puzzle task for SAR images was designed to obtain relevant information from SAR
images by shuffling the image blocks to determine the correct permutation. Applying the
pre-trained model obtained from the pretext task to the downstream terrain classification
task can reduce the dependence of the deep learning model on labeled data and alleviate
the problem of model overfitting concerning small data. The pretext task designed in this
paper can learn from the information of the image itself, and the learned features are more
discriminative and can distinguish complex features. The framework designed in this
paper is suitable for images of different granularities and achieved excellent results on SAR
images of different resolutions and different scenes.

The method to achieve the best terrain classification accuracy for SAR images with dif-
ferent resolutions and sizes was explored in this paper. The results of the scene classification
experiment and the terrain classification experiment show that this method achieved excel-
lent results when using a small amount of labeled data. Meanwhile, better classification
accuracy can be obtained than with fewer labeled data than other supervised comparison
methods. In future work, we will explore more suitable self-supervised learning methods
for SAR images with different polarization modes.
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