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Abstract: Terraces, farmlands built along hillside contours, are common anthropogenically designed
landscapes. Terraces control soil and water loss and improve land productivity; therefore, obtaining
their spatial distribution is necessary for soil and water conservation and agricultural production.
Spatial information of large-scale terraces can be obtained using satellite images and through deep
learning. However, when extracting terraces, accurately segmenting the boundaries of terraces and
identifying small terraces in diverse scenarios continues to be challenging. To solve this problem,
we combined two deep learning modules, ANB-LN and DFB, to produce a new deep learning
framework (NLDF-Net) for terrace extraction using remote sensing images. The model first extracted
the features of the terraces through the coding area to obtain abstract semantic features, and then
gradually recovered the original size through the decoding area using feature fusion. In addition,
we constructed a terrace dataset (the HRT-set) for Guangdong Province and conducted a series
of comparative experiments on this dataset using the new framework. The experimental results
show that our framework had the best extraction effect compared to those of other deep learning
methods. This framework provides a method and reference for extracting ground objects using
remote sensing images.

Keywords: terrace; remote sensing; deep learning; NLDF-Net; terrace extraction

1. Introduction

Terraces are fields built along hillside contours, which are similar in structure to steps
and consist of several artificial horizontal and vertical planes [1]. Terraces first appeared in
Southeast Asia more than 5000 years ago, and, subsequently, were gradually distributed
along the southern and northern coasts of the Mediterranean [2]. Currently, terraces are
distributed across numerous countries, including Portugal, Switzerland, Nepal, Indone-
sia, the Philippines, Peru, China, Japan, and Ethiopia [3]. Terraces, due to their unique
design, transform steep slopes into a series of relatively flat, orderly artificial surfaces,
thus reducing gradient and slope length. This not only makes the slope more suitable
for cultivation, but also disrupts the continuity of the hydrological structure, increasing
water storage capacity. This is of great significance for enhancing land productivity and
ensuring soil and water conservation [4–7]. Studies have shown that constructing terraces
on sloping land can increase grain production by 44.8% [8,9], reduce runoff by 41.9%, and
reduce sediment concentration by 52% [10]. In addition, the reduction in soil erosion and
increase in soil moisture content also improve soil conditions, which are beneficial for
plant growth, and increase plant diversity and biomass [11]. Studies have shown that
the construction of terraces on sloping land can result in an average increase of 32.4% in
organic carbon sequestration [12,13]. However, certain studies have highlighted poten-
tial problems with terraces, such as the fact that improper design and management of
terraces can disrupt the water cycle [10], which not only fails to alleviate soil erosion but
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can actually exacerbate it [14,15]. In addition, with the rapid changes in economy and
society—such as the migration of rural labor and population, urban expansion, and the
decline in agriculture—land-use patterns in many regions have shifted, leading to a large
number of terraces being abandoned [15,16]. Terraces that are abandoned without timely
intervention are prone to soil wall collapses, which not only mar their aesthetic appeal but
can also exacerbate soil erosion [6,17]. Therefore, terraces have been widely considered for
use worldwide, and the scientific use of terraces is considered an important engineering
measure for achieving sustainable slope management and an important integrated land
and natural resource management system [3,18,19].

Obtaining accurate terrace ranges and location information is the first prerequisite
for terrace mapping, which is important for studying and managing terraces. Field inves-
tigation is the simplest and most effective method for studying small-scale terraces [20];
however, it requires considerable manpower and material resources and is not suitable
for large-scale terrace mapping. In recent years, with the development of remote sensing
image collection and processing technologies, the distribution range of terraces obtained
from remote sensing images has been widely used. Historically, visual interpretation
has been the primary means to obtain the spatial distribution of terraces [18,21–23]. This
method, which combines the professional knowledge and experience of interpreters to
comprehensively identify terraces, is a convenient and accurate extraction method [24,25];
however, it has low interpretation efficiency, high cost, and is limited in processing large
remote sensing image datasets, which encourages the development of automated terrace
mapping. With its high degree of automation, machine learning has developed rapidly
and achieved remarkable recognition results in large-scale terrace extraction [26–33]. In
particular, deep learning has become a research hotspot in the field of remote sensing inter-
pretation, credited to its high recognition accuracy [34–40]. For example, previous studies
extracted the spatial distribution of terraces in China’s Loess Plateau using the improved
U-net deep learning model, which provided an important basis for further research on the
ecological and economic value of terraces in the region [31,41].

However, terraces are characterized by intra-class feature heterogeneity, interclass
feature similarity, and fragmentation. Different types of terraces have different character-
istics, and certain non-terraced features are similar to those of terraces; moreover, certain
terraces have small areas and are not connected with each other. These characteristics
limit the identification accuracy of certain deep learning methods; in other words, the
process of distinguishing terraces from other land features and accurately extracting ter-
race boundaries in a complex terrain environment remains challenging [42]. Therefore,
enhancing the precision of deep learning models in extracting terraces is necessary. The
Asymmetric Non-local Block (ANB), as an attention mechanism, is divided into two parts:
the Asymmetric Pyramid Non-local Block (APNB), and the Asymmetrical Fusion Non-local
Block (AFNB). These blocks are commonly used modules for improving the accuracy of
deep learning [43,44]. They not only leverage non-local information but also, through
pyramid sampling, significantly reduce computational complexity and memory consump-
tion without sacrificing performance [45]. In the ANB, the softmax function is employed
for attention distribution. However, owing to the exponential operations utilized by the
softmax function, issues of computational overflow and underflow may arise. Moreover,
the computational results are highly sensitive to extreme values, which can lead to excessive
concentration or dispersion of attention weights [46]. In response to the aforementioned
issues, we have replaced the softmax function with a linear function and proposed the
Asymmetric Non-local Block with Linear Attention Distribution (ANB-LN). ANB-LN cir-
cumvents the need for exponential operations, further reducing computational complexity
while maintaining module performance, and enables a more rational distribution of atten-
tion. In addition to this method, the feature fusion mechanism is an effective module for
enhancing model precision. By merging high-level semantic information with low-level
spatial information, it not only improves the robustness of the model but also mitigates the
phenomenon of overfitting [47]. Among the common fusion methods, Add and Concat
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are utilized. Add involves summing the feature values, which increases the information
content of the features. Representative models of this approach are DenseNet [48] and
U-net [26]. Concat fusion involves concatenating the feature channels, which increases
the number of features. A representative model of this approach is ResNet [49]. We have
integrated the two fusion methods to propose a new fusion module—the Dual Fusion
Module (DFB). This module combines the advantages of both fusion types, enriching the
information content and quantity of features. During the decoding phase of the model, it
fully utilizes the feature information from the encoded regions, enhancing the robustness
and accuracy of the model’s segmentation. To improve the efficacy of deep learning in
extracting terraces, this study combined two deep learning modules, ANB-LN and DFB,
into a deep learning framework called the non-local linear distribution dual fusion net-
work (NLDF-Net), which was used to extract terraces from remote sensing images using
the simplified U-Net model as the baseline. In addition, considering that the terrace in
Guangdong Province, China, is characterized by intra-class feature heterogeneity, interclass
feature similarity, and fragmented patches [42], we constructed a high-resolution remote
sensing image set of terraces (HRT-set) in this area and conducted a series of comparative
experiments on the HRT-set dataset.

2. Materials and Methods
2.1. Study Area

Figure 1 shows the spatial location and elevation of study area, and images of classical
terraces. The study area was Guangdong Province, a representative province in southern
China. The terrain of the province is generally high in the north and low in the south
and the geomorphological types are complex and diverse. Mountains and hills are mainly
distributed in the north and plains are distributed in the south, with an average elevation
range of 70–120 m. Rice and other food crops, such as fruit trees, tea trees, and other cash
crops, are generally planted on terraces in the province. Because of special water and
heat conditions, some terraces can achieve annual vegetation coverage. In addition, the
terraces in the province are characterized by many types, including those with a small area
and fragmented distribution; more importantly, the types of ground objects around the
terraces are complex, which can allow for the verification of the anti-interference ability of
the model.
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Figure 1. (a) Topographical map of Guangdong province and (b–d) images of classical terrace
distribution areas, including (b) a terrace in Hongguan Town, Xinyi, Maoming, Guangdong; (c) a
terrace in Chaotian Town, Lianzhou, Qingyuan, Guangdong; and (d) a terrace in Tanjitou, Fengkai
County, Zhaoqing, Guangdong.
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In deep learning, the quality of the training set has a very important impact on the
accuracy of the model; therefore, to ensure the generalization ability of the model, the
diversity of terraces in the training set should be ensured. Therefore, we randomly selected
3000 rectangular areas of 5000 × 5000 pixels within Guangdong Province as sampling points
for identifying and marking terraces. Labelme (version 5.3.1), an open-source software
developed by MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL), was
used to manually extract the terraces from each sampling area. In the second step, the size
of the sampling area was considerably larger than that of the input model; therefore, the
3000 sampled images were cut into images of 768 × 768 pixels. Finally, images containing
terraces were selected to obtain the HRT set.

2.2. Technical Route

Figure 2 shows the steps of this method. The data in this study were obtained from
Google Maps, which holds a range of high-resolution satellite images with different zoom
levels [50]. The acquisition time was October to December during the period of 2020–2021,
when the crops cultivated on the terraces had been received and were relatively easier to
identify. The scale level used was 20, and the spatial resolution under this level was 0.3 m.
The unique strip characteristics of the terraces were evident.
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Figure 2. Schematic of the research workflow.

2.3. NLDF-Net Construction

The overall framework of NLDF-Net (Figure 3) mainly included the coding area on the
left and the decoding area on the right. Owing to the limitation of computing power, the
size of the image was resampled from 768 × 768 to 256 × 256, and a convolution operation
was performed to increase the number of feature maps and enrich the features. The feature
map groups of the third and fourth downsampling times were input into the AFNB-LN, and
the output results of the AFNB-LN and results of the fourth downsampling were summed
up and passed into the decoding area. In the decoding region, four upsampling times were
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performed and the feature maps of the coding and decoder regions were transformed using
the DFB after each upsampling; the last upsampling result was input into the APNB-LN,
and the input and output of the APNB-LN were added. After the final convolution and
resampling, the final output image was a binary image of 768 × 768 pixels. After the
model was constructed, the HRT set was used to train the model and identify the optimal
parameters. Specific model framework details are presented in the following sections.
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Figure 3. Architecture of the NLDF-Net framework.

2.3.1. Downsampling

Downsampling was the primary step in the coding area. First, the size of the feature
map group was reduced to half the original size by a max-pooling operation with a size
of 2 × 2, step size of 2, and 0 boundary-filling turns. Another convolution operation was
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performed with a convolution kernel size of 3 × 3, step size of 1, 0 boundary-filling turns,
and double the number of output feature maps (Equation (1)),

O =
I + 2 × p − k

s
+ 1 (1)

where O represents the output feature map size, I represents the input feature map size, k
represents the convolution kernel size, s represents the step size of the convolution kernel
sliding, and p represents the number of boundary-filling turns.

After the convolution operation, a batch normalization (BN) operation was performed,
thus reducing gradient disappearance and explosion, preventing overfitting, and expediting
the convergent speed of the iterative operation (Equation (2)),

z =
x − µ

σ
(2)

where z is the normalized result, x is the input, µ is the mean, and σ is the variance.
The normalized results were then passed into the activation function, which introduced

nonlinear factors to improve the expressiveness of the model. In this model, the ReLU
function, which is simple in operation and can improve the model, was used as the
activation function. The ReLU activation function was formulated using Equation (3):

f (x) = max(0, x) (3)

2.3.2. Upsampling

Upsampling was the main part of the decoding area. First, a transpose convolution
operation was performed, calculated using Equation (4). Upsampling parameters are
consistent with Formula (1); upsampling was used to recover the image size, which is
widely used in deep learning decoding area operations. After the transposed convolution,
the size of the feature map was twice as large as that of the original map and the number
of feature maps was half as large as that of the original map, which was fused with the
feature map of the corresponding coding region. The fusion result was then subjected to
another ordinary convolution operation for feature extraction, and the number of feature
maps was reduced to half that of the original.

N = (I − 1)s − 2p + k (4)

2.3.3. ANB-LN

AFNB-LN was modified on the basis of APNB-LN, the main difference being that the
input was changed from a single input source to two input sources: a high-level feature
map group, Fh ∈ RCh×Hh×Wh, and a low-level feature map group, Fl ∈ RCl×Hl×Wl. Using
APNB-LN as an example, the feature map group F ∈ RCx×H×W was input into APNB-LN
and three 1 × 1 convolution kernels were used for one convolution operation, respectively,
to generate the query matrix Q ∈ RCy×H×W, key matrix K ∈ RCy×H×W, and value matrix
V ∈ RCy×H×W. Matrices K and V were pyramid-sampled, respectively, and the sizes of
different sampling layers of the pyramid set in this model were n × n ∈ {1 × 1, 3 × 3, 6
× 6, 8 × 8}. The sampled results were then reshaped into Kr∈R Cy×S and Vr∈R S×Cy. Qr
and Kr represented the matrices multiplied and the results were normalized using linear
normalization, as shown in Equation (5). The normalized result was a matrix multiplied by
Vr to obtain the output result of the APNB-LN.

f (x) =
xj − min(x)

∑n
i=1 xi − min(x)

(5)

where xj is a single element of the input vector, x is the input element, and n is the total
number of elements in the input vector.
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2.3.4. DFM

The two sets of the feature maps, Features 1 and 2, were Concat-fused to obtain Feature
3, whose number of channels was the sum of Features 1 and 2. The Concat fusion result
was subjected to a 3 × 3 convolution to restore the number of channels to the original
number to obtain Feature 4. Fusion was performed on Feature 4 and the two groups of
feature maps were fused (Features 1 and 2) to obtain the double fusion result.

2.4. Experimental Methods
2.4.1. Comparisons with Different Module Combination

To evaluate the effectiveness of DFM and ANB-LN, we conducted a series of compara-
tive experiments that analyzed the effect of each module by controlling the variables and
removing different modules from the NLDF-Net. We focused on five experimental groups:
No-attention without an attention module, Softmax-attention using Softmax for attention
distribution, Add-fusion using only the Add fusion mode, Concat-fusion using only the
Concat fusion mode, and our proposed NLDF-Net combining APNB-LN, AFNB-LN, and
DFM.

2.4.2. Comparisons with Advanced Deep Learning Models

To verify the performance of the NLDF-Net, we selected several advanced deep
learning models for comparison, including:

1. U-Net: The U-shaped structure comprises two parts: encoding and decoding. Each
layer of the model had more feature dimensions, enabling it to use diverse and
comprehensive features. In addition, information from different levels of feature
maps in the encoding stage is utilized by Concat fusion; therefore, accurate prediction
results can be obtained with fewer training samples [26]. Although U-Net originated
from medical image segmentation, it is widely available in the field of remote sensing
because of its excellent performance [51,52].

2. IEU-Net: This model was designed for the extraction of terraces in the Loess Plateau
region of China, and is constructed upon the U-Net framework. Specifically, it involves
the addition of a dropout layer with a probability of 0.5 following the fourth and
fifth sets of convolutional operations [53]. In other words, during each training
iteration of the model, 50% of the neurons are randomly dropped out, a method that
effectively prevents overfitting. Additionally, batch normalization (BN) is applied
after each convolutional layer [54]. As previously mentioned, the inclusion of batch
normalization (BN) enhances the training speed of the model. In a previous study, this
model achieved high accuracy in extracting terraces from the Loess Plateau region of
China [41].

3. Pyramid Scene Parsing Network (PSP-Net): By introducing a pyramid pooling mod-
ule, the model aggregates the context of different regions so that it can use global
information to improve its accuracy [28]. In addition, an auxiliary loss function (AR) is
proposed; that is, two loss functions are propagated together, and different weights are
used to jointly optimize the parameters, which is conducive to the rapid convergence
of the model. This model yielded excellent results in the ImageNet scene-parsing
challenge.

4. D-LinkNet: LinkNet is used as the backbone network, and an additional dilated
convolution layer is added to the central part of the network. The dilated convolution
layer fully uses the information from the deepest feature map of the coding layer while
expanding the receptive field using convolutions with different expansion rates [55].
This method performed well in the DeepGlobe road extraction challenge based on
remote sensing images, and has therefore been widely used in extracting other ground
objects [56].
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2.4.3. Precision Evaluation

An accuracy evaluation was used to compare the predicted results of the model
with the actual results to judge the model’s accuracy. Specifically, the effectiveness of the
model for terrace recognition was quantitatively evaluated with respect to five evaluation
factors: overall accuracy (OA), precision, recall, F1 score (F1), and intersection over union
(IoU) [57,58], where OA represents the proportion of correct classification results in the total
classification results, precision represents the proportion of correct results in the terrace
prediction results, recall represents the missed detection rate of the terrace prediction
results, F1 is the harmonic mean of the precision and recall rates, and IoU represents the
degree of coincidence between the predicted and true results. The indices were calculated
using Equations (6)–(10):

OA =
TP + TN

TP + TN + FN + FP
(6)

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

F1 =
2 × Precision × Recall

Precision + Recall
(9)

IoU =
TP

TP + FP + FN
(10)

2.4.4. Model Training Details

We conducted five repeated experiments by fixing different random seed parameters
and training set assignments, and the final results were presented as average values.
Furthermore, considering the significant disparity in the proportion of terraced and non-
terraced pixels in the sample, F1 and IoU were better representations of model performance,
and we selected these two indicators for t-test based on this rationale. The experimental
platform used a GPU (NVIDIA GeForce 3090) and a Windows 10 Professional 64-bit
operating system. The programming languages used were Python version 3.11.5, CUDA
version 12.1, and PyTorch Library version 2.1.2. The epoch, batch size, and initial learning
rate were 100, 8, and 1 × 10−4, respectively, when the learning rate decay strategy was
implemented; specifically, the learning rate became one-tenth of the original after every 25
iterations. The loss value, calculated from the loss function, was used to quantify the gap
between the predicted value and the true value, and the model kept reducing the loss value
during training to make the predicted result close to the real value. This training used the
cross-entropy loss function as the loss function, shown in Equation (11),

L = −
N

∑
i=1

[yi·log(pi) + (1 − yi)· log(1 − pi)] (11)

where yi denotes the label value of pixel i, which is 1 for terraces and 0 for non-terraces,
and pi represents the probability that pixel i is predicted to be 1.

3. Results
3.1. HRT-Set Result

After labeling, segmentation, and screening, 3939 terrace sample datasets were ob-
tained. In addition, 500 images of interference ground objects were added during training,
some of which are shown in Figure 4. The first row of images of terraces shows the
intra-class feature heterogeneity of terraces, these different types of terraces maintain the
characteristics of strip distribution as a whole, and the main difference between the bare
land and planting stages is reflected in the vegetation coverage, which is higher in the
latter than in the former. The planting area of the shrub terraces is larger than that of
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the rice terraces. The second row reflects the interclass feature similarity of the terraces;
these features have striped distribution characteristics similar to terraces and are widely
present in the extraction of terraces, which helps improve the robustness of the model to
extract terraces and meet the requirements of the actual situation. The third row shows the
characteristics of the fragmented distribution of the terraces. As seen in the figure, some
terraces are small and disconnected, with obvious fragmentation. The main reason for this
is that some hillsides have large ups and downs, which complicate the building of terraces
in pieces.
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Figure 4. Some classical examples of remote sensing images from the HRT-set: (a) rice terraces in
the bare-soil stage; (b) rice terraces in the planting stage; (c) shrub terraces in the bare soil stage; (d)
shrub terraces in the planting stage; (e) neat forest belts; (f) ridges and furrows; (g) fields; (h) striped
roads; and (i–l) fragmented terraces.

3.2. Comparisons with Different Module Combination

Figure 5 shows the evaluation metrics results of the comparisons with different module
combinations. The OA, Precision, Recall, F1, and IoU of our proposed method on the HRT-
set dataset were 91.9%, 80.0%, 81.3%, 80.6%, and 67.6%, respectively, and the values of
other indicators besides recall were the highest. The OA value of our NLDF-Net model was
0.7% and 0.2% higher than that of No-attention and Softmax-attention, while F1 increased
by 1.6% and 0.2%, and IoU increased by 2.4% and 0.4%, respectively. Using the t-test, in
terms of F1 and IoU, NLDF-Net shows a highly significant difference with No-attention and
significant differences with Softmax-attention. Moreover, a comparison of the experimental
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results of Add-fusion, Concat-fusion, and our NLDF-Net, showed that the OA values of
our model were 0.3% higher than those of both add fusion and Concat fusion methods;
furthermore, precision increased by 0.1%, F1 increased by 0.5% and 0.4%, and IoU increased
by 0.8% and 0.7%, respectively. The t-test showed that, as far as F1 is concerned, NLDF-
Net showed a highly significant difference with Add-fusion and significant difference
with Concat-fusion; for IoU, NLDF-Net showed a highly significant difference with both
Add-fusion and Concat-fusion. The experimental results show that coupling the attention
module (ANB-LN) and fusion module (DFB) improved the accuracy of our model.
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The visual prediction results are shown in Figure 6. We selected some representative
images for display, which featured houses, forest land, orchards, roads, bare land, and
other interference factors, as well as high vegetation coverage. In addition, some terraces
had small areas and irregular boundaries. According to the experimental results in the
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first and second rows of Figure 6, the model successfully excluded orchards and large-area
houses and accurately extracted the boundaries of the terraces with evident characteristics.
However, compared with the single-fusion method, the double-fusion method excluded
parts of barren land with similar characteristics to the terrace. As seen from the images
in the third and fourth rows, compared with the other experimental groups, our model
excluded forest land with a strip distribution, whereas the other experimental groups
were confused. In the experimental results in the fourth row, our model could not only
completely identify the terraces but also extract the irregular terrace boundaries, whereas
the other experimental groups had difficulty achieving such an effect.
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(a) Original images. (b) Ground truth label. (c–g)Predicted labels of No-attention, Softmax-attention,
Add-fusion, Concat-fusion, and NLDF-Net, respectively.

3.3. Comparisons with Advanced State-of-the-Art Deep Learning Models

Figure 7 presents the precision evaluation metrics results of the comparisons with
advanced state-of-the-art deep learning models. Compared to D-Link, IEU-Net, PSP-
Net and U-Net, the OA values of NLDF-Net, increased by 1.9%, 1.9%, 3.6%, and 3.2%,
respectively, whereas the Precision increased by 4.0%, 3.2%, 8.0%, and 8.4%. F1 increased
by 5.0%, 6.1%, 8.6%, and 7.0%, respectively, while IoU increased by 6.5%, 8.3%, 11.3%, and
9.4%, respectively. According to the t-test, NLDF-Net was significantly different from all
other models in terms of F1 and IoU. The results show that our framework outperformed
the other frameworks for all indicators, suggesting that the NLDF-Net framework may be
superior for identifying terraces in southern China.
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Figure 7. Evaluation metrics results of the comparisons with advanced state-of-the-art deep learning
models. The bolded part is the highest value for each indicator. (a) OA, precision, recall results. (b) F1
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A visualization of the prediction results is shown in Figure 8. From the images in the
first row, compared with the other three models, both D-Link and our model excluded the
interference factor of the orchard, whereas compared with D-Link, our model was able
to exclude the interference factor of the road. The images in the second row show that,
compared with the other two models, IEU-Net, D-Link, and our model did not miss the
small-area terrace on the left, though our model was able to better identify the boundary
of two small-area terraces. The third row of images shows that our method successfully
identified small-area terraces without the effects of the interference factors of small-area
houses. In addition, our model identified and eliminated road interference factors. As
shown by the images in the fourth row, compared with other models, our model better
identified some terraces with small areas and unobvious features, while other models could
not.
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4. Discussion

In this study, we proposed NLDF-Net, an automatic mapping method for extracting
terraces in southern China based on high-resolution remote sensing images. In addition,
we constructed a terrace HRT dataset for Guangdong Province, China, upon which we
conducted comparative experiments, including the comparisons of different module com-
binations and of our model with other classical network models. The comparisons with
different module combination results showed that the performance and accuracy of our
NLDF-Net model improved after adding the attention mechanism compared to that of
the No-attention group, likely because the attention mechanism can capture long-range
dependencies. In other words, the relationship between pixels at a certain distance in the
image is established, which can improve the attention of the model to terraces in a complex
background of ground objects. Comparing the results of the Softmax-attention experi-
mental group to our model results, our proposed linear attention allocation exceeded the
softmax attention allocation because the softmax operation uses the exponential function
for normalization, where a large input value drives an overly large output value; therefore,
the attention is only allocated to the area with the largest input value and other areas
are overlooked. Linear normalization uses the data of the entire input array to allocate
attention, which prevents the above problems and makes the attention allocation more
reasonable, thereby improving the accuracy of the corresponding model. By comparing
the results of the Add-fusion and Concat-fusion experimental groups, the double-fusion
method outperformed the single-feature fusion method, likely because by combining the
two methods, the DFM could fully fuse the features from the encoding and decoding stages,
make better use of semantic and detailed information, and promote the effect of the model.
Features of the encoding layer have fewer convolutions, higher resolution, and contain
more location and detailed information. After multiple convolutions of the coding layer, the
semantic information is enhanced, but the corresponding feature resolution and perception
of details are reduced. Using only a single-fusion method of Concat or add often causes the
loss of some features; therefore, the efficient fusion of the two can provide their respective
advantages and improve the effect of the model. Through the comparison experiments
of other advanced models, the five quantitative indicators of our model are higher than
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those of other models. Figure 6 shows that in the selected verification sample areas, the
recognition effect of our model was best due to the following advantages: NLDF-Net
can (1) accurately extract terraces by eliminating interference elements in complex terrain
environments, (2) effectively extract complex terrace boundaries, and (3) identify terraces
with small area and unobvious characteristics. However, our model has some limitations.
This model was designed for the recognition of high-resolution spectral images and cannot
use low-resolution terrain data, such as DEM data, though elevation change is an important
characteristic of terraces. After adding terrain data, the recognition results of some terraces
with unobvious spectral and textural features were greatly improved, and the recognition
accuracy of the model was also improved.

5. Conclusions

In this study, considering the characteristics of small areas, fragmented distribution,
high vegetation coverage, interclass feature similarity, and intra-class feature heterogeneity
of terraces in southern China, we proposed a deep learning model, NLDF-Net, combining
ANB-LN and DFB, capable of recognizing terraces in southern China using high-resolution
remote sensing images. First, the model gradually extracted the spectral and textural
features of the terrace through four layers of downsampling in the coding area, after which
the downsampling results of the third and fourth layers were input into the AFNB-LN
for attention promotion. Subsequently, the size of the original input image was gradually
restored by four upsampling layers in the decoding area, in which each upsampling was
fully fused with the downsampled feature map through the DFB. The last upsampling
result was input into the APNB-LN for attention promotion. Finally, the output result was
obtained by compressing the number of feature maps.

We then created a high-resolution terrace dataset of Guangdong Province, China,
based on Google Earth’s HRT set, which contains training sets of different types of terraces
in different seasons. Comparisons with different module combination on the HRT set
proved the effectiveness of the ANB-LN and DFB modules, and comparison experiments
with other advanced models proved the superiority of NLDF-Net. A visual comparison
of the prediction results reveals that our model accurately extracted the boundaries of the
terraces and identified terraces with unobvious features or small areas. However, owing
to the problem of resolution mismatch, our model cannot utilize low-resolution terrain
data, and this limitation produces some terrace recognition results with unclear spectra
and textures that appear fragmented or even unrecognizable. In the future, we will explore
how to solve the problem of mismatched model input resolution such that the model can
use topographic and spectral data simultaneously, improve the stability of the model, and
accurately extract various types of terraces in more diverse scenes.
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