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Abstract: In this paper, the results of a comparison between the soil moisture content 

(SMC) estimated from C-band SAR, the SMC simulated by a hydrological model, and the 

SMC measured on ground are presented. The study was carried out in an agricultural test 

site located in North-west Italy, in the Scrivia river basin. The hydrological model used for 

the simulations consists of a one-layer soil water balance model, which was found to be 

able to partially reproduce the soil moisture variability, retaining at the same time 

simplicity and effectiveness in describing the topsoil. SMC estimates were derived from 

the application of a retrieval algorithm, based on an Artificial Neural Network approach, to 

a time series of ENVISAT/ASAR images acquired over the Scrivia test site. The core of 

the algorithm was represented by a set of ANNs able to deal with the different SAR 

configurations in terms of polarizations and available ancillary data. In case of crop 

covered soils, the effect of vegetation was accounted for using NDVI information, or, if 

available, for the cross-polarized channel. The algorithm results showed some ability in 

retrieving SMC with RMSE generally <0.04 m3/m3 and very low bias (i.e., <0.01 m3/m3), 

except for the case of VV polarized SAR images: in this case, the obtained RMSE was 

somewhat higher than 0.04 m3/m3 (≤0.058 m3/m3). The algorithm was implemented within 

the framework of an ESA project concerning the development of an operative algorithm 
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for the SMC retrieval from Sentinel-1 data. The algorithm should take into account the 

GMES requirements of SMC accuracy (≤5% in volume), spatial resolution (≤1 km) and 

timeliness (3 h from observation). The SMC estimated by the SAR algorithm, the SMC 

estimated by the hydrological model, and the SMC measured on ground were found to be 

in good agreement. The hydrological model simulations were performed at two soil depths: 

30 and 5 cm and showed that the 30 cm simulations indicated, as expected, SMC values 

higher than the satellites estimates, with RMSE higher than 0.08 m3/m3. In contrast, in the 

5-cm simulations, the agreement between hydrological simulations, satellite estimates and 

ground measurements could be considered satisfactory, at least in this preliminary 

comparison, showing a RMSE ranging from 0.054 m3/m3 to 0.051 m3/m3 for comparison 

with ground measurements and SAR estimates, respectively. 

Keywords: SAR data; soil moisture; hydrological model; Artificial Neural Networks; 

inversion algorithms 

 

1. Introduction 

Soil moisture content (SMC), along with its temporal and spatial distribution, is widely considered 

as a key variable in numerous environmental disciplines, especially in climatology, meteorology, 

hydrology and agriculture. For hydrological and agricultural purposes, the SMC plays a fundamental 

role, since it controls the water available for vegetation growth [1,2], as well as the recharge of deep 

aquifers [3]. In meteorology, the SMC has a great impact on the energy transfer from surface into 

atmosphere by regulating the evapotranspiration [4]. Moreover, a timely and precise SMC knowledge 

has a significant impact in various risk management applications, such as drought and flooding 

prediction and management [5]. 

Due to high variability of SMC in time and space, proper estimation of this variable is quite 

challenging. Ground measurements and remote sensing methods can be considered powerful tools for 

the SMC quantification. Ground measurements, such as those obtained by using calibrated probes 

(e.g., those based on Time Domain Reflectometry (TDR) techniques), can provide reliable point-scale 

measurements and, in case of distributed sensors, can also help in understanding the soil moisture 

patterns across-scales [6,7]. However, when the catchment or basin scale is considered, the 

information needs to be spatially distributed and, in this case, ground measurements are not suitable, 

since their extension to a larger scale is very expensive and time-consuming, thus not being affordable 

from an economic and manpower point of view. On the other hand, microwave remote sensing 

techniques can allow detecting SMC at a basin scale.  

Remote sensing from active (SAR and scatterometer) and passive sensors (radiometers) have 

demonstrated to be good and flexible tools to detect spatial and temporal SMC [8–13].  

Regarding the spatial resolution, the SMC estimates from microwave remote sensing can span from 

tens of meters up to 50 km, whereas, the highest temporal resolution can be achieved with monthly or 

bimonthly acquisitions. Low spatial resolution estimates can be instead available worldwide on a daily 

basis. Upcoming sensors such as Sentinel 1 and SMAP will represent a further step to overcome these 
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limitations. Sentinel 1 will work at C-band with a rather high spatial resolution of 5 m × 20 m and the 

temporal repetition frequency of 5–6 days over the European continent and 12 days for global 

acquisitions. Moreover, recent studies based on Sentinel 1-like data indicated that the improved 

radiometric resolution of Sentinel 1 may also produce a reduction in the retrieval errors on SMC [14].  

It is also worthwhile mentioning the NASA Soil Moisture Active Passive (SMAP) mission that will 

offer the uniqueness of radar and radiometric simultaneous observations at L-band, with a ground 

resolution of around 1 km and a temporal resolution of 3 days [15].  

It should be noted that all microwave sensors are able to estimate SMC referring to the first few 

centimeters of soil only. One proposed solution to improve the spatial and temporal resolution of 

available SMC information and to simulate SMC for deeper soil layers is related to the assimilation of 

SMC, derived from remote sensing data, into hydrological and land surface models [5,16]. The main 

aim of this procedure would be to update and/or calibrate intermediate or final states of the model 

variables; thus, obtaining an improved estimation of water discharge and/or atmospheric drivers, as a 

major output. Notable improvements have been made in the model assimilation scheme, especially in 

view of assimilating long-time series of SMC estimates. Reichle and Koster [17] assimilated the 

Global Soil Moisture Data Bank into NASA catchment land surface model, reaching an improvement 

in the annual cycle of surface and root zone SMC in comparison with ground data. Also the temporal 

behavior showed reduced but significant improvement in the correlation with ground measurements.  

Crow and Ryu [18] proposed a new algorithm to improve the forecast of run-off through the 

assimilation of soil moisture values in a sequential way. The work demonstrated that the assimilation can 

improve the retrieval of both pre-storm soil moisture conditions and storm-scale rainfall accumulations. 

Draper et al. [19] have focused their work on the assimilation of available data sets from passive 

(AMSR-E) and active (ASCAT) sensors into the NASA catchment land surface model. The impact of 

assimilating each dataset on the modeled soil moisture skill was evaluated using in-situ soil moisture 

observations in the SCAN/SNOTEL network in the US and the Murrumbidgee Soil Moisture 

Monitoring Network in southeast Australia. Their research demonstrated that the combined used of 

SMC estimates from active and passive sensors produced an increase in the retrieval accuracy for each 

land cover class, with significant improvements for both root-zone and surface soil moisture over 

croplands, grasslands, and mixed cover.  

A necessary step before data assimilation is the comparison between SMC estimated by models 

and by remote sensing data, in order to verify the compatibility between these two sources of 

information [16–20]. This step is essential to better understand if the back-propagated SMC simulated 

by the model can be then compatible with remote sensing estimates. Moreover, at local scale, some 

differences due to human interventions need to be properly evaluated in both model and remote 

sensing estimates, such as the presence of tillage activities. In this view, in fact, Pellenq [21] indicated 

that it is essential to accurately understand all the processes involved in the soil moisture variability as 

well as their scale interactions. In the study of Mattia [22], hydrological models were used to provide 

a-priori information in the retrieval process of SMC from remotely sensed data to help disentangling 

the effect of other variables (roughness and vegetation). 

Vischel [23] proposed a comparison of two independent methods for SMC estimation on a regional 

size catchment in South Africa (Liebenbergsvlei, 4,625 km2). The first estimates were derived from the 

physically-based distributed hydrological model TOPKAPI [24], while the second set of estimates was 
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derived from the scatterometer on board the European Remote Sensing satellite ERS. The analysis, 

carried out over two selected seasons of 8 months, showed a good correspondence between the 

modeled and remotely sensed soil moisture, with determination coefficients, R2, lying between 0.68 

and 0.92. In [25] an extensive comparison of meteorological models, such as MM5 and Noah, with 

simulated and real SMC estimates from ASAR data, with a focused analysis on the related 

uncertainties, has been proposed. 

In this paper, temporal evolutions of SMC measured on ground, and SMC derived from both SAR 

data and a hydrological model have been compared to each other, in order to mainly address the 

temporal compatibility of the two estimated SMC values. This multiple correlation between SMC 

estimated through SAR data, SMC obtained from the hydrological model, and SMC measured on 

ground, was carried out with the double purpose of, on one side, testing the ability of these two 

approaches in simulating the real SMC, and, on the other hand, checking the possibility of using a 

rather simple hydrological model for spatially and temporally extrapolating SMC, whenever SAR data 

are missing. The paper is organized as follows. In Section 2, the test sites and the available datasets are 

described. Section 3 describes the retrieval process used to estimate SMC from SAR images, while 

Section 4 introduces the proposed hydrological model. Comparison results are discussed in Section 5. 

Section 6 draws conclusions, possible applications and future works. 

2. Test Site and Available Data Sets 

The investigation was carried out on the Scrivia test site, which is located in North-West Italy 

(central coordinates: 45°N, 8.80°E) (Figure 1). It is a flat agricultural plain of about 300 km2, situated 

close to the confluence of the Scrivia and the Po rivers. The site is characterized by large homogeneous 

agricultural fields of wheat, corn, sugarbeet, and potatoes [26]. The weather is generally cloudy and 

rainy in spring and fall, with average SMC > 0.30–0.35 m3/m3, and sunny and dry in summer, with 

average SMC < 0.15–0.20 m3/m3. According to the crop calendar of this area, in fall (October and 

November) most fields were bare and with SMC > 0.20–0.25 m3/m3, whereas in spring (March, April) 

almost half of the agricultural area was covered by growing wheat. The other half consisted of very 

rough bare fields, waiting for the seeding of corn. In spring SMC was usually rather high (>0.30 m3/m3) 

due to the frequent rainfall. In May corn was sowed in very smooth fields. These fields were irrigated and 

therefore their SMC was highly variable. In June-July, the SMC was usually very low (0.10–0.15 m3/m3) 

due to the absence of rainfall, except in the irrigated fields. Wheat was in the ripening phase in June 

and harvested at the beginning of July. 

ENVISAT/ASAR images were mainly collected from 2003 to 2009 in both HH/HV and VV 

polarizations and at an incidence angle of 23°. In Table 1 a list of available ENVISAT/ASAR images 

and their configuration is shown. Simultaneously with satellite acquisitions, ground campaigns were 

carried out in the sub-area of “Castelnuovo Scrivia”. The ground measurements, mainly collected on 

23 “reference” fields, involved all the significant vegetation and soil parameters, such as plant density, 

leaf and stalk dimensions, the number of leaves per plant, plant water content, SMC, and surface 

roughness. At least 5–6 samples of SMC (measured with TDR probes, which measure an average 

SMC of about 10–15 cm, depending on the soil density) and vegetation were collected for each field 

considered, while surface roughness was measured with a needle profilometer along and across the 

rows [26]. 
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Figure 1. Map of Northern Italy. The red star represents the test area of the Scrivia. 

 

Table 1. ENVISAT/ASAR acquisitions over the Scrivia test site (APP: Alternate 

Polarization Precision Image, IMP: Image Mode Precision, IMS: Image Mode Single 

Look Complex). 

 Dates Product Polarization Swath/Inc. Angle 

1 7 November 2003 APP HH/HV 2/23° 

2 30 April 2004 APP HH/HV 2/23° 

3 4 June 2004 APP HH/HV 2/23° 

4 22 October 2004 IMP VV 2/23° 

5 26 November 2004 APP HH/HV 2/23° 

6 11 March 2005 IMS VV 2/23° 

7 30 May 2005 APP HH/HV 2/23° 

8 31 March 2006 IMP HH 2/23° 

9 26 September 2008 IMS VV 2/23° 

10 24 April 2009 IMS VV 2/23° 

11 29 May 2009 IMS VV 2/23° 

3. Retrieval Approach for Estimating SMC from SAR Images 

The algorithm used for estimating SMC has already been described in [26,27], and it is based on an 

artificial neural network (ANN) approach. The ANN is a feedforward multilayer perceptron (MLP), 

with two hidden layers of ten neurons each [28,29]. The algorithm was implemented within the 

framework of an ESA project (4000103855/11/NL/MP/fk) concerning the development of an operative 

algorithm for the SMC retrieval from Sentinel-1 data. 
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Studies carried out in the past pointed out that the main constraint for obtaining a good accuracy 

with ANN approaches is the “robustness” of the training process, which has to be representative of a 

variety of surface conditions as wide as possible. In order to meet these requirements, the dataset 

implemented for the ANN training was obtained by combining experimental satellite measurements of 

backscattering coefficients (σ°) and corresponding ground parameters, derived from the archives 

available at IFAC and EURAC. Since these datasets were not sufficiently wide for training the ANN 

and completely setting the neurons and weights, data simulated using electromagnetic forward models 

have been included in the training set. The backscattering of the bare rough surfaces was obtained 

using the Advanced Integral Equation Model (AIEM) and Oh model [30–32], while the contribution of 

light vegetation was accounted for by using the “Water Cloud Model” [33–35], deriving the 

information on vegetation water content from the NDVI trough a semi-empirical relationship. 

Minimum and maximum values of the soil parameters measured during the experimental campaigns 

(soil moisture and surface roughness) were considered in order to define the range of variability of 

each soil parameter. The input parameters were the incidence angle (between 20° and 50°), the soil 

height standard deviation (Hstd, between 1 and 3 cm), the correlation length (Lc, between 4 and 8 cm), 

the dielectric constant (derived from SMC values between 5% and 45%), and NDVI (between 0.2 and 

0.8). Since the relationship between Hstd and Lc is rather complicated and it is difficult to obtain 

reliable measurements of the Lc parameter, we decided to keep these two quantities independent, 

associating one random variable with each of these. The consistency between experimental data and 

model simulations was verified before including the simulated data (more than 10.000 data) in the 

training set. The ANN training was carried out by considering the simulated backscattering at the 

various polarizations and the incidence angle as input of the ANN, and the soil parameters as outputs. 

After training, the ANNs were tested on a different dataset that was obtained by re-iterating the model 

simulations [27]. Six ANNs were defined and trained specifically, in order to cover all the possible 

combinations of input data (i.e., 1. VV polarization only, without NDVI; 2. HH polarization only, 

without NDVI; 3. VV polarization and NDVI; 4. HH polarization and NDVI; 5. VV and VH 

polarizations; 6. HH and HV polarizations). If available, the cross-polarized channel was considered 

instead of NDVI to account for the effect of dense vegetation cover. The training was carried out by 

considering the EO data (measured or modeled) as ANN inputs and the SMC as output.  

After training, the ANNs were tested on a different dataset, obtained by re-iterating the model 

simulations. The most favorable results were obtained when co- and cross-polarizations were 

available, showing a determination coefficient (R2) equal to 0.80, and RMSE < 0.04 m3/m3 [27]. The 

ANN algorithm was tested and validated in six main test sites (four in Italy, one in Australia, and one 

in Spain), where SAR images and simultaneous ground truth data had been collected for several years. 

Scrivia, Matera, and Spanish sites were agricultural areas, whereas Cordevole and Alto Adige were 

mountainous sites. The Australian one, which was chosen in order to test the algorithm in 

meteorological and climatic conditions far from the Italian sites, was characterized by natural pastures 

and agricultural fields. Detailed descriptions of these areas are given in [26,27]. By using the ANN 

algorithm, a series of SMC maps of the area of Scrivia was generated from the available 

ENVISAT/ASAR images of Table 1. The 11 derived maps are shown in Figure 2. Although SMC data 

measured on ground are available for only a portion of the image, we can note that the variations of 

SMC are in agreement with the season, showing a general lower value in summer and a higher value in 
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fall and spring, when rainfall is significant (average monthly rainfall > 100 mm, especially in spring). 

The areas where SMC the estimate of is not likely, i.e., urban areas, water bodies, forests, and dense 

vegetation, were masked with the help of a land use map, combined with a threshold derived from 

NDVI data. The latter allowed the masking of dense vegetation, i.e., areas covered by agricultural or 

natural herbaceous vegetation, dense enough to hamper the SMC retrieval (that of course depended on 

the growing cycle and changed in time). 

Figure 2. Soil moisture content (SMC) maps in (m3/m3) obtained through the Artificial Neural 

Network (ANN) algorithm by using ENVISAT/ASAR images collected on the Scrivia area 

(central coordinates: 45°N–8.80°E). Masked areas are: white = urban, magenta = forests, dark 

green = dense vegetation, blue = open water. The dimensions of the images are 20 × 20 km. 

In the red circle, the area where ground measurements were collected is shown.  
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In Table 2, a comparison between SMC values, measured on ground and estimated from SAR data, 

is shown. The SMC values (both estimated and measured) were averaged over a portion of the image 

(marked with a red circle) corresponding to the area where ground truth data were collected. The 

statistical parameters of the regression between these two datasets, although made up by few points, 

are the following: slope = 0.964, R2 = 0.91, RMSE = 0.023 m3/m3 (p < 0.05). The aim of Table 2 was 

to support the SMC maps of Figure 2, providing an average seasonal trend of SMC. However, looking at a 

field by field comparison, represented in the diagram of Figure 3, the following regression line between 

SMC estimated (SMCSAR, in m3/m3) and SMC measured (SMCmeas, in m3/m3) was obtained: 

SMCSAR = 0.85SMCmeas + 3.2 (R2 = 0.74, RMSE = 0.036 m3/m3, and p < 0.05) 

Table 2. Comparison between the average SMC values estimated from the backscatter of 

the images of Figure 2 (SMCSAR, in m3/m3) and the corresponding SMC values measured 

on ground (SMCmeas, in m3/m3), averaged on 23 fields. 

 Dates  SMCSAR  SMCmeas  

1 7 November 2003 0.297 0.3 

2 30 April 2004 0.37 0.38 

3 4 June 2004 0.12 0.15 

4 22 October 2004 0.20 0.21 

5 26 November 2004 0.28 0.28 

6 11 March 2005 0.26 0.31 

7 30 May 2005 0.20 0.22 

8 31 March 2006 0.29 0.28 

9 26 September 2008 0.17 0.17 

10 24 April 2009 0.27 0.29 

11 29 May 2009 0.24 0.21 

Figure 3. SMC estimated by the algorithms (SMCSAR, in m3/m3) on all the available fields 

of the Scrivia area as a function of the SMC measured on ground (SMCmeas, in m3/m3). 

The continuous line represents the regression equation of the dataset. 
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4. Description of the Hydrological Model 

In this section, the results of a comparison between SMC SAR estimates and some hydrological 

model simulations are presented with reference to the test site of Scrivia. 

We used the simple daily step model, described in [36], based on a one-layer soil water balance 

model, which was found to be able to reasonably reproduce soil moisture variability and has the 

advantage of describing the top soil layer with simple formulations. The model considers a single, 

homogeneous, well mixed soil layer for which daily water balance is computed accounting for 

precipitation, runoff, gravity-driven infiltration and actual evapotranspiration. The model ignores the 

effect of groundwater, which is usually acceptable for not extremely shallow soils. This simplification 

should not be applied whenever topsoil moisture is controlled by capillary rise from the water table. In 

many cases, however, including those considered in the present paper, it may be safely assumed that 

the water table is sufficiently deep to exclude any significant effect on topsoil moisture. We provide 

hereafter a short description of the model, extracted from Appendix A in [36]. 

The model computes soil volumetric water content variations (1/day) at daily time step as:  

Δθ = MIN((θs − θ)L, MAX(P − Iex − AET − K(θ), (θ − θr)L)), if θ < θFC,  

Δθ = MIN ((θs − θ)L, MAX(P − Iex − AET − MIN((θ − θFC)L, K(θ), (θ − θr)L))), if θ ≥ θFC 

In the above expressions, θFC = soil volumetric water content at field capacity (−), θWP = soil 

volumetric water content at wilting point (−), PET = potential evapotranspiration (mm/day), L = soil 

thickness (mm), θ = soil volumetric water content (−), θr = residual soil volumetric water content (−), 

Iex = infiltration excess, AET is the actual evapotranspiration, and K(θ) is the saturation-dependent 

hydraulic conductivity. The model assumes that drainage of the topsoil follows gravity only. 

Moreover, drainage is not allowed to exceed θ − θFC during one time step. Actual evapotranspiration, 

AET (mm/day), is:  

AET = βmin(PET, θ − θr) × L 

where β is a function that accounts for soil water content during reduced evapotranspiration. In the 

present formulation, we adopt the SWAT model formulation [37]: 

β = min (1, 
஘FCି஘஘FCି஘WPexp(−2.5)) 

Saturation-dependent hydraulic conductivity K(θ) is:  

K() = KsatΘ0.5(1 − (1 − Θ ౤౤షభሻଵି భ౤)2 

which is the well-known Mualem-Van Genuchten model [38,39] with tortuosity parameter τ = 0.5, where Θ ൌ θ െ θ୰θୱ െ θ୰ 

Ksat = saturated hydraulic conductivity, mm/day,  

n = exponent in Van Genuchten soil water retention curve model. 

Infiltration excess is:  

Iex = max (0, P − (KsatK(Θ))0.5 − Sc) 
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where Sc represents the storage capacity of the soil surface; in the present case, a value of 10 mm was 

assumed by default; the geometric mean of Ksat and K(Θ) represents an infiltration capacity, which 

needs to be higher than K(Θ), in order to allow infiltration when soil is in dry conditions. Water in 

excess of θs is computed as:  

Sex = max(0,P − Iex − AET− ΔθL − K(Θ)) 

Runoff (RO) is computed as: 

RO = Sex + Iex 
Infiltration (F) is given by:  

F = max(0, P − AET − ΔθL − RO) 

Day by day, soil water content is updated on the basis of the above calculations. Besides the 

parameters representing physical characteristics of the soil, which can be in principle determined by 

experimental measurements, the model requires input of the L parameter (soil thickness). 

The minimum set of parameters required as input includes precipitation, mean, minimum and 

maximum temperature at daily steps and an indication of soil texture. Potential evapotranspiration is 

estimated using the well-known Hargreaves-Samani formula [40]. The hydraulic behavior of the top 

soil layer is described using parameters estimated on the basis of soil texture.  

Soils in the test area are predominantly loamy-sands (sand 51%, clay 13%, silt 36%) with a mean 

bulk density of 1.18 kg/L, according to the soil map of Regione Piemonte (www.regione.piemonte.it) 

that was used for this study. Data on precipitation and temperature were obtained from the Agenzia 

Regionale per la Protezione Ambientale (ARPA) Piemonte station of Castelnuovo Scrivia for the 

period of interest. Taking precipitation and temperature data from a single station implies ignoring the 

spatial variability of these parameters, and assuming that the station is representative of the whole area. 

It is well known that precipitation and temperature vary significantly in space, and such assumption 

would not be suitable when modeling large catchments, especially with complex topography. For the 

purposes of our analysis, however, this statement can be considered acceptable, as the spatial extent 

considered is rather limited, and the local topography is very simple. On the other hand, including data 

from other, far away measurement stations would introduce extrapolation errors that are not desirable 

in this context. 

Knowing soil properties, hydraulic parameters can be indirectly estimated using pedotransfer rules or 

expert systems, such as the popular artificial-neural-network-based ROSETTA (http://cals.arizona.edu/ 

research/rosetta/). After estimating hydraulic properties and the respective standard errors, the 

ensemble of soil moisture time series, corresponding to all possible combinations of the mean values 

and values at the extremes of the range for the parameters, may be easily derived. Results of the 

ensemble of model predictions, measurements, and earth-observation-based estimates will be compared.  

5. Comparison of Results and Discussion 

For the test site of Scrivia, 11 processed satellite images (see Table 1) were available, as well as 

corresponding ground measurements of soil moisture for the same days. The comparison with the 

hydrological model simulations is not a validation stricto sensu, but rather a “soft” validation or 

additional test that served to complement the comparison with ground data. The model provided a 

continuous simulation of soil moisture that was shown to be in general agreement with the 
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observations. Available SMC measurements could also be used to calibrate the model. Once the model 

was calibrated for the sites on which data were available, the predicted SMC was compared with the 

SAR simulated data. The SMC values, both measured and simulated, have been averaged over the area 

where ground measurements were gathered (see Figure 2). Since the model referred to the average 

SMC within the soil layer, while SAR SMC products reflected only shallow soil conditions, a careful 

examination of the two variables needed to be performed. 

The comparison was carried out by running the hydrological model with parameters for all soil 

textural classes present in the study area, and by considering the variability of the soil hydraulic 

parameters estimated by ROSETTA. The latter considered two soil depths: 30 and 5 cm, as depicted in 

Figure 4, in which the average and the 95% confidence interval of the resulting simulation ensemble 

for the two depths were indicated. As clearly appearing from both figures, the 30 cm simulations 

indicate that SMC values were higher than the satellites estimates, which naturally refer only to the 

upper layer of soil. In the 5-cm simulations, instead, the agreement between hydrological simulations, 

satellite estimates and ground measurements may be considered satisfactory.  

Figure 4. Temporal evolution of SMC (in m3/m3) derived from hydrological model (black 

points), ground truth (triangles) and ANN algorithm (diamonds) samples, for 30 cm-topsoil 

(top) and 5 cm-topsoil (bottom) on Scrivia test site. Average and 5%–95% intervals 

are displayed. 

 

 

A comparison between the available data was carried out and shown in Figure 5a, where the SMC 

estimated with the hydrological model (SMCmod) was directly compared to SMC measured on ground 

(SMCmeas). Subsequently, a comparison between SMCmod and SMC estimated from SAR data 
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(SMCSAR) was also carried out (Figure 5b). The obtained regression lines for both diagrams are 

the following: 

• Hydrological model: SMCmod = 0.84SMCmeas + 0.044 (R2 = 0.55)  

• SMCSAR = 0.638SMCmod + 0.08 (R2 = 0.54)  

Considering the low number of available measurements, these correlations have been found 

significant, with 95% confidence level (p-value). 

Figure 5. (a) SMC estimated with the hydrological model (SMCmod, in m3/m3) compared to 

SMC measured on ground (SMCmeas, in m3/m3). (b) SMC estimated from SAR (SMCSAR, 

in m3/m3) compared to SMC estimated by the hydrological model (SMCmod, in m3/m3).  

(a) (b) 

In Table 3, R2, slope, RMSE, and p of all the correlation carried out between SMC measured on 

ground, estimated from SAR data and from the model at two depths (5 and 30 cm) are shown. We can 

note that the best correlation was obtained by directly comparing SMCSAR and SMCmeas and the worst, 

at least in terms of RMSE, between SMCSAR and SMCmod at 30 cm. It can be observed that the SMC 

can be better approximated by the hydrological model at 5 cm. The RMSE values range from 0.051 

and 0.054 m3/m3 for SMC estimated with the hydrological model (at 5 cm depth) and SMC measured 

on ground and simulated from SAR data, respectively.  

Table 3. Statistical parameters (R2, Slope, RMSE, in m3/m3, and p) of all the performed 

regression equations between SMC estimated from SAR (SMCSAR) data and from the 

hydrological model (SMCmod) at two depths (5 and 30 cm), and the SMC measured on 

ground (SMCmeas). 

 R2 Slope RMSE (m3/m3) p 

SMCSAR/SMCmeas 0.90 0.93 0.023 <0.05 

SMCmod(5 cm)/SMCmeas 0.55 0.84 0.051 <0.05 

SMCmod(30 cm)/SMCmeas 0.75 0.71 0.075 <0.05 

SMCSAR/SMCmod(5 cm) 0.54 0.64 0.054 <0.05 

SMCSAR/SMCmod(30 cm) 0.63 0.95 0.088 <0.05 
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Although high spatial resolution products, such as SAR images, usually show a low revisit time, 

thus hampering their use for simulating soil moisture dynamics, they can be valuable for testing 

hydrological models and, in particular, hydrological patterns as well as basic assumptions of the model 

itself. In this view, the test of the soil moisture product with independent hydrological simulations can 

be considered an interesting result. 

6. Conclusions and Future Works 

It is well known that microwave remote sensing techniques can provide rather accurate estimates of 

soil moisture content (SMC). However, the SMC obtained in this way only refers to the first 

centimeter layer of the soil, thus limiting its assimilation into hydrological models.  

In this paper, a comparison between SMC obtained from SAR images, through an inversion 

algorithm based on an Artificial Neural Network (ANN) approach, and SMC estimated from a 

hydrological model was performed. The outputs of two models were subsequently compared with field 

measured SMC. The hydrological model estimated SMC of the two different depths: 30 cm and 5 cm. 

The first output tended to overestimate the SMC values obtained from SAR images, which, as 

expected, simulated a shallow SMC. The result of the hydrological model for the first 5 cm depth was 

instead much more in agreement with satellite data. The RMSE values of these comparisons were 

0.052 m3/m3 for the SMC estimated from the hydrological model and 0.023 m3/m3 for the SMC 

estimated from SAR data. 

It is highlighted that products derived from high-temporal frequency satellite images at low spatial 

resolution have already been used for the assessment of the temporal dynamics of soil moisture. On the 

other hand, high spatial resolution products, such as those considered in this work, which present lower 

temporal frequency (and consequently are of limited importance with respect to soil moisture 

dynamics), may be extremely valuable for testing hydrological patterns and basic assumptions of the 

models, such as hydrological connectivity and similarity. For these reasons, a deeper investigation on 

the reliability and compatibility of the soil moisture products derived from SAR images, by using 

independently derived hydrological simulations, have an important role in hydrological research. 

A further comparison between SAR SMC estimates and hydrological model simulations over the 

Scrivia test site was carried out. The hydrological model reproduced similar values of SMC as 

compared to the ANN algorithm outputs and ground measurements, provided that the soil layer 

considered was of the order of only a few centimeters.  

The found accuracies of the model simulations, the SAR estimates, and the ground measurements 

indicate that most of them are within the requested accuracies for satellite products of soil moisture, 

which, in case of GMES Sentinel-1, is ≤0.05 m3/m3. This result supports the idea that the model 

simulations may be used as a substitute in case of missing SAR data of dense temporal series or for 

extending the point-scale measurement of SMC to a more distributed and larger spatial scale.  

The comparison conducted in this research can be considered a preliminary exercise, while 

comparisons with more complex spatially-explicit models should be expanded during future research.  
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