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Abstract: As the most serious of the many worse new pathological changes caused by diabetes, there
are many risk factors for the occurrence and development of diabetic retinopathy (DR). They mainly
include hyperglycemia, hypertension, hyperlipidemia and so on. Among them, hyperglycemia is
the most critical cause, and plays a vital role in the pathological changes of DR. High-sucrose diets
(HSDs) lead to elevated blood glucose levels in vivo, which, through oxidative stress, inflammation,
the production of advanced glycation end products (AGEs) and vascular endothelial growth factor
(VEGF), cause plenty of pathological damages to the retina and ultimately bring about loss of vision.
The existing therapies for DR primarily target the terminal stage of the disease, when irreversible
visual impairment has appeared. Therefore, early prevention is particularly critical. The early
prevention of DR-related vision loss requires adjustments to dietary habits, mainly by reducing sugar
intake. This article primarily discusses the risk factors, pathophysiological processes and molecular
mechanisms associated with the development of DR caused by HSDs. It aims to raise awareness of
the crucial role of diet in the occurrence and progression of DR, promote timely changes in dietary
habits, prevent vision loss and improve the quality of life. The aim is to make people aware of the
importance of diet in the occurrence and progression of DR. According to the dietary modification
strategies that we give, patients can change their poor eating habits in a timely manner to avoid
theoretically avoidable retinopathy and obtain an excellent prognosis.

Keywords: high-sucrose diet; diabetic retinopathy; hyperglycemia; dietary modification strategies

1. Introduction

Carbohydrates are one of the three primary macronutrients essential for human energy
production and are an important source of energy for maintaining normal physiological
activities and functions [1]. However, long-term excessive intake of carbohydrates, which
is a high-sucrose diet (HSD), especially foods containing high amounts of glucose and
fructose, can lead to increased sugar intake and cause metabolic disorder, cardiovascular ab-
normalities [2], neurological disturbances [1,3] and inflammation [4–6]. This can manifest as
hyperglycemia [7], obesity [8–10], insulin resistance [8], hypertension [11], impaired cardiac
metabolic function [12], mood and behavioral disorders, impaired working memory [13],
food addiction [1,14], intestinal infections and microbial dysbiosis [15,16]. In addition,
HSDs can also contribute to psychopathology [17]. An HSD in women of childbearing
age and during pregnancy can impact the memory processes of offspring [18] and may
contribute to a predisposition to developing mental disorders in early life or adulthood.

As the most severe of the many worse new pathological microvascular changes caused
by diabetes, diabetic retinopathy (DR) is the leading pathogeny of preventable vision loss
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in the young, especially working-age people worldwide [19]. The International Diabetes
Federation (IDF) estimates that, by 2045, the global population aged 20–79 with diabetes will
rise to 780 million [20]. It is estimated that 160 million adults will become DR sufferers [21].
Clinically, the confirmation of DR is primarily on the basis of the abnormal appearance
of retinal vessels [22,23] (see Figure 1). There are two central disease stages. The first
is non-proliferative diabetic retinopathy (NPDR), which is characterized by progressive
retinal microvascular lesions. Then, it progresses to the proliferative diabetic retinopathy
(PDR) stage, which is characterized by neovascularization [24,25]. NPDR involves retinal
changes such as hemorrhages, microaneurysms and hard exudates, with the patients
usually being asymptomatic. As NPDR progresses and retinal ischemia occurs, leading to
neovascularization of the retina, it advances to PDR, and patients may experience severe
visual impairment [24,25]. Additionally, diabetic macular oedema (DMO) refers to the
thickening of the posterior pole of the retina and can occur at any stage [25]. Due to
the late onset of clinical symptoms, early histological changes are challenging to detect
during clinical examinations, and, once detected, irreversible vision loss often occurs.
Beyond vision impairment, the degree of retinal damage in diabetic sufferers is significantly
related to future risks of cerebrovascular accidents, myocardial infarction and mortality [26].
Therefore, for patients with DR, earlier intervention and timely diagnosis and treatments
are necessary for patients with DR to reduce the potential risk of vision loss [27]. Controlling
hyperglycemia is the most crucial preventive measure [28].
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Figure 1. Classification of DR by severity and the major clinicopathological features associated with
different stages. In no retinopathy, the retina shows no microvascular abnormalities. Hyperglycemia
damages the normal retina, resulting in mild NPDR, characterized by microaneurysms. In moderate
NPDR, microaneurysms and other microvascular abnormalities are observed. Severe NPDR is basi-
cally characterized by one or a combination of the following: (1) more than 20 retinal hemorrhages;
(2) venous beading; (3) retinal microvascular abnormalities but not meeting the criteria for PDR. The
progression to the PDR stage is marked by the appearance of NVD or NVE, along with preretinal or
vitreous hemorrhage. Microvasculopathy is the main characteristic of the NPDR stage, while neovas-
cularization is the main characteristic of the PDR stage. As the condition worsens, patients experience
visual loss. Abbreviations: neovascularization of optic disc, NVD; neovascularization of elsewhere,
NVE; non-proliferative diabetic retinopathy, NPDR; proliferative diabetic retinopathy, PDR.

The risk factors that primarily contribute to the occurrence and progression of DR in-
clude hyperglycemia, hypertension, hyperlipidemia, diabetes duration and so on. Among
these factors, hyperglycemia is the critical factor that can trigger all the related abnormali-
ties. Although there are currently many medical treatment options targeted toward DR,
they are only applicable to the terminal stage of the disease and often come with severe ad-
verse reactions [29], posing a significant economic burden on patients and the global public
healthcare system. The improper control and management of DR can lead to late-stage



Nutrients 2024, 16, 1393 3 of 20

DR [30], which may result in blindness and increase the burden of DR disease [31]. Studies
have shown that maintaining normal blood glucose levels can effectively delay the occur-
rence and progression of DR [32]. A high-sucrose diet and the resultant hyperglycemia
exacerbate the occurrence and progression of DR, leading to vision impairment in patients.

2. Risk Factors for the Occurrence and Development of DR

The primary connected factor is blood glucose levels [33]. An HSD significantly
elevates blood glucose levels [34].

2.1. Hyperglycemia

Hyperglycemia significantly affects DR [35] and is the dominating pathogeny of DR
progression [36,37]. Glycated hemoglobin A1c (HbA1c) is a marker applied to measure
blood glucose control [38], and its blood level represents the average blood glucose concen-
tration over the past 120 days [39]. Strictly controlling HbA1c levels below 7% can lower
the risk of DR occurrence and development [22]. Every 1% reduction in HbA1c reduces
the risk of retinopathy and blindness by 40% and 15%, respectively [40]. It is a remarkable
fact that earlier blood glucose control is better because long-term exposure to high blood
glucose conditions can cause irreversible retinal damage even after blood glucose control is
regained [41].

2.2. Hypertension

Hypertension is defined as a blood pressure reading of 130/80 mmHg or higher [42].
Hypertension stands as an independent risk factor for the onset of retinopathy in individu-
als diagnosed with type 2 diabetes mellitus [43]. Strictly controlling the pressure of blood
can reduce the risk of DR and vision loss [44], especially when maintaining HbA1c levels
around 7% simultaneously [45].

2.3. Hyperlipidemia

Hyperlipidemia refers to an elevation in circulating levels of low-density lipoprotein
cholesterol (LDL-C) and very-low-density lipoprotein cholesterol (VLDL-C), accompa-
nied by decreased levels of high-density lipoprotein cholesterol (HDL-C), which holds
protective attributes [46]. Lipid-lowering agents, including statins, employed to manage
hypercholesterolemia, demonstrate a reduction in the risk of DR incidence [47,48]. Intensi-
fying blood glucose control in combination with treating hyperlipidemia can slow down
the progression of DR [49].

2.4. Duration of Diabetes Mellitus

The earlier the patients have diabetes, the greater the risk of DR [50]. This phenomenon
arises from the prolonged duration of diabetes, signifying a persistent impact of hyper-
glycemia on the body, and, consequently, an enduring assault on the retina. Research
indicates that, with a diabetic duration exceeding 30 years, the prevalence of retinopathy
can soar to 63% [51].

2.5. Other Risk Factors

In addition to the aforementioned primary factors, ethnic origin, pregnancy and
puberty are also additional risk factors for DR. Individuals of South Asian or African
descent exhibit a higher prevalence of diabetic DR compared to Caucasians [52]. Pregnancy,
particularly during mid-term gestation, exerts detrimental effects on retinal vasculature due
to fluctuations in estrogen levels and increased blood volume [53]. Suboptimal glycemic
control during puberty correlates closely with the progression of diabetic retinopathy [54],
underscoring the significance of blood glucose levels in its advancement.
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3. Pathophysiology of DR

DR primarily involves retinal microangiopathy, with histological alterations occurring
before the emergence of various obvious clinical symptoms. Persistent hyperglycemia as-
sumes a pivotal role in the pathological advancement of DR by instigating and maintaining
various other factors that collectively influence the development of DR.

DR encompasses a classification system comprising two fundamental clinical stages:
NPDR and PDR. NPDR signifies the initial phase of DR, whereas PDR confers an escalated
propensity toward vision loss relative to individuals with NPDR [55]. The primary pathol-
ogy of DR involves microvascular changes in the retinal capillaries, comprising pericytes,
basement membranes and endothelial cells. Pericytes possess contractile properties, main-
taining capillary tone, controlling capillary diameter, regulating blood flow in the capillaries
and preserving their stability [56]. Endothelial cells form tight junctions, creating an internal
barrier to prevent substances from leaking out of the blood vessels [57]. During the initial
phases of DR progression, elevated blood glucose levels instigate pericyte death, resulting
in capillary acellular areas and the development of localized or diffuse microaneurysms due
to capillary rarefaction [58]. High blood glucose damages endothelial cells, compromising
the integrity of the internal barrier and causing vascular leakage [59]. Increased thickness of
the basement membrane induces luminal constriction within the vasculature and vascular
stiffness, thereby promoting vascular rigidity and impeding the binding efficacy of growth
factors. The loss of these two cell types leads to capillary leakage and occlusion, resulting in
non-perfused areas. As the disease progresses, arteriolar involvement occurs, and dilated
retinal arterioles accelerate the clinical manifestation of diabetic retinopathy, including
edema and hemorrhage [60]. The non-perfused areas further expand, causing capillary
dilation and venous beading formation, which are known as intraretinal microvascular
abnormalities [40]. NPDR is characterized by various manifestations, including small
dilations of blood vessels in the microvascular network, blood leakage, irregularities in
the veins of the retinal vasculature, a reduction in function capillaries and intraretinal
microvascular abnormalities [61]. Notably, retinal arteriolar dilatation potentially serves as
an early subclinical marker of microvascular dysfunction [22].

Extensive death of retinal microvascular cells leads to retinal hypoxia, triggering the
upregulation of growth factors [62]. Various growth factors act synergistically, resulting
in the formation of neovascularization [63], marking the transition to the proliferative
stage of DR. Neovascularization continues to grow and forms fibrous tissue membranes.
Subsequently, these fibrous tissues adhere to the vitreous. Contraction of the vitreous
can cause hemorrhage, and the contracted fibrous tissue leads to retinal traction and
detachment, ultimately resulting in vision loss [64].

Additionally, during the initial phases of the ailment, there is an associated impair-
ment of both retinal ganglion and glial cells [65]. Neurologic and glial dysfunction occur
concurrently with vascular abnormalities and generally precede obvious microvascular
damage [66].

4. Molecular Mechanisms of HSD-Induced Development of DR

Sugar (sucrose) includes fructose and glucose [67]. An HSD can result in elevated
levels of glucose in the bloodstream. Elevated blood glucose levels are pivotal in the
pathogenesis of vascular complications associated with diabetes. DR represents the pre-
dominant complication of the microvasculature. Extensive research has demonstrated
that hyperglycemia, especially long-term sustained high blood glucose levels, serves as a
central factor in the occurrence and progression of DR, inducing a variety of biochemical
abnormalities [68,69] (Figure 2).
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Figure 2. Hyperglycemia induces biochemical changes in DR. A high-sucrose diet leads to increased
blood glucose levels, resulting in hyperglycemia. Prolonged and sustained high blood glucose
levels contribute to retinal microvasculopathy through multiple pathways, including oxidative stress,
inflammation, AGEs, VEGF, PKC and the polyol pathway. Significant apoptotic events within the
retinal capillary cells instigate retinal hypoxia and subsequent neovascularization. The proliferation
of abundant neovascularization engenders the development of fibrous tissue covering, leading to
tractional retinal detachment. Ultimately, this culminates in vision loss. Abbreviations: advanced
glycation end products, AGEs; receptor for advanced glycation end products, RAGE; vascular
endothelial growth factor, VEGF; vascular endothelial growth factor receptor, VEGFR; protein kinase
C, PKC; diacylglycerol, DAG; aldose reductase, AR; tumor necrosis factor-α, TNF-α; macrophage
inflammatory protein-1α, MIP-α; interleukin-6, IL-6; interleukin-8, IL-8.

4.1. Oxidative Stress

Under optimal physiological circumstances, the body maintains a meticulous oxidative–
reductive equilibrium. However, disruption ensues when there is a disproportionate
interplay between the generation and elimination of free radicals, thereby perturbing this
dynamic equilibrium and instigating an upsurge in free radical production [70]. Conse-
quently, oxidative stress manifests itself [71]. Given the retina’s unique characteristics,
characterized by protracted light exposure, heightened oxygen consumption and reliance
on glucose oxidation, it becomes highly susceptible to oxidative stress [72]. The confluence
of hyperglycemia precipitates the accrual of reactive oxygen species (ROS) within the retina,
thereby subjecting retinal and capillary cells to oxidative stress [59,73,74]. Subsequently,
diverse molecular mechanisms are initiated to cause oxidative stress on retinal well-being,
including the activation of the protein kinase C (PKC) pathway, formation of advanced
glycation end products (AGEs), initiation of the polyol pathway and facilitation of the
hexosamine pathway [75], as well as the induction of inflammatory cascades [71,76,77].

4.2. Inflammation

Hyperglycemia disrupts the balance between pro-inflammatory and anti-inflammatory
responses maintained by microglia, leading to a state of inflammation [78]. This inflamma-
tory state increases vascular permeability and can activate leukocytes, leading to capillary
blockages and local retinal ischemia [79]. Elevated concentrations of pro-inflammatory
cytokines and chemokines, encompassing various inflammatory mediators, have been
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detected in ocular samples from DR patients [80], and upregulated pro-inflammatory cy-
tokines may directly or indirectly induce angiogenesis [81,82]. Research has shown that
high-glucose-induced inflammation in DR can be alleviated by either activating [83–85] or
inhibiting [86] specific signaling pathways.

4.3. Advanced Glycation End Products (AGEs)

Persistent hyperglycemia triggers the initiation of non-enzymatic glycation in macro-
molecules, encompassing proteins, consequently leading to an increase in AGEs [71]. AGEs
can increase the levels of cell adhesion molecules within retinal endothelial cells, resulting
in capillary occlusion [87]. They may also induce apoptosis of retinal pericytes through
oxidative stress mechanisms [88]. The deposition of AGE adducts within the retinal mi-
crovascular basement membrane can cause functional impairments, such as perturbation
of endothelial junctions and heightened vascular permeability [89], leading to endothelial
damage and extravasation of intravascular substances. Additionally, AGEs can cause
neuronal abnormalities [87].

4.4. Vascular Endothelial Growth Factor (VEGF)

In DR, progressive loss of capillaries leads to retinal hypoxia, inducing the expression
of vascular endothelial growth factor (VEGF) [90]. In the context of DR, the progressive
decline of capillary density culminates in retinal hypoxia, prompting the upregulation of
VEGF. Subsequently, a robust neovascular response is triggered, particularly during the
advanced stages of DR [91], characterized by excessive neovascularization [92]. VEGF
activates PKC, orchestrating the dismantling of tight junctions, perturbation of the blood–
retinal barrier (BRB) and increased permeability of capillaries [93,94].

4.5. Protein Kinase C (PKC)

Hyperglycemia causes the buildup of diacylglycerol (DAG), activating various PKC
isoforms in the retina [95,96]. PKC promotes the generation of reactive oxygen species
(ROS), leading to amplified vascular permeability, upregulation of VEGF expression [97],
modifications in blood flow and alterations in enzyme activity [98]. These intricate pro-
cesses contribute to retinal cell apoptosis, the emergence of capillaries devoid of cellular
components and the disturbance of the functionality of the BRB [99].

4.6. Polyol Pathway

Hyperglycemia triggers the polyol pathway activation across diverse cellular popula-
tions, leading to excessive aldose reductase activity [75]. Consequently, retinal endothelial
cells, pericyte cells and other retinal cell types endure detrimental effects mediated by
oxidative stress [100], increased cellular osmotic pressure and AGEs formation [101]. It can
also lead to abnormalities in neuroglia and neurons [102].

It is important to note that hyperglycemia does not singularly cause retinal damage in
DR through only one of the aforementioned pathways. Instead, these pathways interact
and influence each other, collectively contributing to vision loss in DR.

5. Dietary Modification Strategies

Currently, the main therapeutic approaches for DR include laser photocoagulation,
intravitreal administration of pharmacological agents targeting VEGF, intravitreal injection
of corticosteroids and vitrectomy [19,24]. However, these approaches primarily target the
advanced phases of DR and can only partially alleviate the extent of visual decline; they
cannot reverse vision damage. Additionally, these treatments are associated with high
costs, multiple side effects and poor patient compliance. Therefore, early prevention is
the most effective, cost-effective and beneficial primary choice for delaying vision loss in
DR. Among the early prevention methods, dietary modification is one of the simplest and
easiest to adhere to.
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Since hyperglycemia has a significant implication in the pathogenesis and advance-
ment of DR, dietary modification should focus on reducing sugar consumption. According
to guidelines established by The World Health Organization (WHO), limiting the consump-
tion of free sugars to less than 10% of the overall energy intake is recommended. Ideally, it
can be controlled below 5% when feasible. Although slight variations exist among different
countries and age groups, it is advised to minimize sugar consumption as much as possible.
It is imperative to acknowledge that free sugars do not encompass naturally occurring
sugars found in fresh fruits, vegetables and milk. Authentic free sugars exclusively in-
clude monosaccharides and disaccharides introduced through diverse food manufacturing
procedures, commonly recognized as added sugars. Naturally existing sugars in honey
and fruit juice also fall under the classification of free sugars [103]. The medical research
institute advocates for a maximum threshold of 25% of daily caloric consumption as the
recommended limit for added sugar intake [104].

5.1. Fruits and Vegetables

Fruits and vegetables hold significant importance as sources of a diverse array of
nutrients and dietary fibers [105]. Research indicates that increasing the consumption of
fruits and vegetables can effectively diminish the likelihood of developing DR [106,107] and
provide protective effects against DR [108]. Fruits and leafy green vegetables contribute to
delaying DR progression and mitigating visual impairment [23]. To promote better blood
glucose control and mitigate inflammation in sufferers, it is recommended to consume fruits
and vegetables that abound in flavonoids, such as leafy greens, fruits and berries [109,110].
These can protect against the demise of retinal ganglion cells (RGCs) triggered by oxidative
stress [111].

5.2. Fish

Polyunsaturated fatty acids (PUFAs) can protect the vision of patients with DR [112],
and reduce the severity of the DR condition [113]. The retina contains a significant con-
centration of long-chain ω-3 polyunsaturated fatty acids (LCω3PUFAs) that showcase
notable anti-inflammatory and antiangiogenic properties. A daily intake of at least 500 mg
of dietary LCω3PUFAs can decrease the likelihood of visual impairment in patients of
DR [114–118]. Fish, an excellent source of omega-3 polyunsaturated fatty acids, can reduce
the formation of pathological blood vessels [119,120]. Increasing fish consumption can
slow down the progression of DR [121,122], thereby reducing the probability of developing
severe manifestations of the condition [123].

5.3. Vitamins
5.3.1. Vitamin A

The administration of vitamin A has been observed to exhibit protective properties
against retinal damage induced by hyperglycemia and contribute to the delay in retinal
neovascularization formation [124]. Serum levels of vitamin A are correlated with DR [125],
emphasizing its potential relevance in assessing the condition.

5.3.2. Vitamin B

Vitamin B3 is characterized by its existence in two distinct forms, namely niacin and
niacinamide, each exhibiting unique molecular structures and biological functions. Niaci-
namide can reduce oxidative deoxyribonucleic acid (DNA) damage, promote DNA repair
and alleviate retinal neurodegeneration in diabetic patients [126]. However, high-dose
niacin may increase the risk of insulin resistance [127]. Substantial dietary consumption
of vitamin B6 has effectively reduced the likelihood of developing DR [128]. Diminished
levels of vitamin B12 in the serum have been correlated with an augmented susceptibility
to DR [129], with some indications suggesting its potential role as a distinct risk factor
contributing to the suffering condition [130].
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Additionally, vitamins B1, B7 and B9 have also exhibited significant therapeutic poten-
tial in addressing retinal lesions associated with diabetes, underscoring their significant
role in managing these pathological conditions [131,132].

5.3.3. Vitamin D

Vitamin D has properties such as lowering blood glucose, antioxidation, anti-inflammation,
antiangiogenesis and neuroprotection [133–136]. There is a compelling correlation between
serum vitamin D levels and the occurrence or seriousness of DR [137–145]. A prospective
study found that maintaining adequate optimal levels of vitamin D in the bloodstream can
prevent the deleterious impact of diabetes on the intricately interconnected microvascula-
ture, including DR [146]. The association between serum levels of 25-hydroxyvitamin D
and DR was supported by pertinent studies [147–149]. When the concentration of serum 25-
hydroxyvitamin D falls below the threshold of 15.57 ng/mL, the risk of visual impairment
doubles in DR patients [150]. 1,25-dihydroxyvitamin D3 may serve as a potential protective
role in retina by regulating inflammatory responses [151], and possesses inhibitory prowess
against the activity of retinal VEGF and transforming growth factor [152]. Fatty fish and
fish oil, notably salmon and sardines, are designated as prominent dietary reservoirs of
vitamin D [133].

5.3.4. Vitamin E

Elevated blood glucose levels have been implicated as a pivotal contributor in the esca-
lation of oxidative stress, and vitamin E can prevent lipid peroxidation, improve oxidative
stress [153] and reduce the severity of diabetes-related complications [154]. Additionally,
vitamin E can significantly decrease retinal capillary basement membrane thickness, protect-
ing against retinal damage associated with DR caused by hyperglycemia-induced oxidative
stress [155,156].

5.4. Non-Vitamin-A Carotenoids

Carotenoids, which are indigenous antioxidants, exhibit both anti-inflammatory and
antioxidant qualities. They can reduce inflammation and oxidative stress caused by high
blood glucose. Their remarkable impact involves mitigating the inflammatory response and
oxidative burden arising from hyperglycemia, thereby slowing down the occurrence and
development of DR [157,158]. The main carotenoids include lutein, zeaxanthin, astaxanthin
and lycopene.

The macula, a region in the retina, showcases a profound abundance of lutein and
zeaxanthin [159]. These two nutrients, well recognized as the macular pigment, possess
antioxidant, anti-inflammatory, antiangiogenic, neuroprotective and blue-light-filtering
properties in the eyes [160–166]. They can significantly improve retinal vascular changes
caused by high blood glucose [167] and enhance macular function [168], thereby protecting
and alleviating DR [169–173]. Carotenoid dietary intake is significantly reduced in DR
patients [174]. Since the human body cannot synthesize carotenoids, it is recommended
that DR patients obtain them from food sources. Lutein predominantly resides within
verdant leafy vegetables such as broccoli, spinach and lettuce [175]. Zeaxanthin is mainly
found in corn and corn products [175], while astaxanthin is primarily found in seafood and
algae [176,177].

5.5. Flavonoids

Flavonoids are the preeminent polyphenols ubiquitously interspersed within our
nutritional diet and possess anti-inflammatory and antioxidant properties. They can
alleviate hyperglycemia, inhibit oxidative stress and inflammation processes [178], regulate
carbohydrate and fat metabolism [179] and slow down visual loss in DR [180,181].

Anthocyanins are a class of flavonoids and essential natural bioactive pigments [182].
They are mainly found in berries and cherries [183], such as wild blueberries, cranberries,
raspberry seeds and strawberries [184]. Cyanidin-3-O-glucoside (C3G) is an anthocyanin
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type with strong antioxidant and anti-inflammatory effects. It exhibits a therapeutic inter-
vention for ameliorating inflammation triggered by elevated glucose levels, along with
mitigating angiogenesis in DR [185]. Blueberry anthocyanins can enhance the integrity
of the BRB compromised by oxidative stress [186], adverse consequences inflicted by
oxidative stress and inflammation on retinal tissue homeostasis [187], and inhibit the pro-
gression of DR [188]. Blueberry anthocyanin extract protects the capillaries of the retina
from elevated-glucose-level-induced damage through antioxidant and anti-inflammatory
mechanisms [189].

Apart from its antioxidant properties that mitigate oxidative stress, the flavonoid
naringenin and its derivatives exhibit neurotrophic effects, reducing neuronal vascular
damage associated with DR [190]. Genistein, predominantly found in leguminous foods
such as broccoli and cilantro, manifests anti-inflammatory properties and suppresses
neovascularization in ocular tissues [191].

5.6. Dietary Fiber

Dietary fiber manifests an inhibitory impact on the kinetics of monosaccharides and
fatty acid digestion and absorption, impeding their prompt assimilation, thereby reducing
calorie absorption [192]. The utilization of this therapeutic approach demonstrated a
reduction in the likelihood of DR [193] and has a protective effect against existing cases [108].
Investigations have elucidated that individuals with low-dietary-fiber intake have a higher
risk of vision-threatening DR [194].

5.7. Other Nutrients

Whole grains are rich in soluble and insoluble fiber, which can lower blood glucose
levels, ameliorate blood lipid levels and optimize gut microbiota [195]. The consistent
incorporation of cheese and whole wheat bread into the diet has been found to correlate
with a reduced likelihood of DR advancement [196]. Goji berries can increase the concen-
trations of lutein and zeaxanthin, ameliorating high-glucose-induced microstructure and
physiological damage in the retina [197]. Furthermore, it confers protective effects on the
retina [198]. Coconut water can lower blood sugar levels and mitigate DR damage [199].

6. Dietary Recommendations for DR Patients—The Mediterranean Diet (MedDiet)

The Mediterranean diet (MedDiet), renowned for its global recognition, originates
from the Mediterranean coast regions. This dietary pattern is distinguished by its emphasis
on the abundant consumption of plant-derived foods, including fruits, vegetables, legumes,
grains and nuts, preferably fresh and minimally processed. It also includes a significant
intake of olive oil as the foremost contributor of fat, desired consumption of dairy products
like cheese and yogurt, prudent consumption of fish and poultry and moderate alcohol
consumption [200–202] (Figure 3).

MedDiet is rich in low glycemic foods, vitamins, minerals, antioxidants, fiber, monoun-
saturated fatty acids (MUFAs), PUFAs and probiotics. Research has evidenced the ability of
this intervention to result in reduced levels of HbA1c, concentrations of postprandial blood
glucose, oxidative stress and inflammation, and improve lipid profiles and gut immune
function [201,203]. Numerous studies have demonstrated that adhering to MedDiet helps
to reduce the morbidity of DR and prevents vision loss [204–208].
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Figure 3. The distinguishing attributes of MedDiet. First, an adequate intake of a huge variety of plant-
based foods that are minimally processed, seasonally fresh and locally grown. This includes fruits,
vegetables, minimally refined grains, beans and nuts, as they provide a rich array of nutrients such
as vitamins, non-vitamin-A carotenoids, flavonoids and dietary fiber. Fresh fruits are incorporated
as a regular dessert option. Second, there is a moderate intake of local products derived from milk,
primarily yogurt, alongside fish and seafood, to obtain nutrients like LCω3PUFAs and astaxanthin.
Third, the consumption of red meat, including processed variants, is limited to once a week or
every two weeks, while allowing for moderate wine consumption with meals. MedDiet offers a
variety of nutrients that can help to lower blood glucose levels, reduce oxidative stress and mitigate
inflammation, thereby exerting a significant impact on retarding the occurrence and progression
of DR.

7. Other Lifestyle Recommendations

Hypertension is recognized as an additional contributing factor to the incidence of
DR, and reducing elevated blood pressure levels confers valuable preventive benefits
against DR [209]. The Dietary Approaches to Stop Hypertension (DASH) diet has been
linked to the management of hypertension and shares similarities with MedDiet. It also
possesses anti-inflammatory and antioxidant properties, which can improve blood glucose
control [210]. Calorie restriction and intermittent fasting have demonstrated potency in
reducing blood glucose levels in the blood circulation [211]. Maintaining a low-calorie
and low-sodium intake is also beneficial for DR [212]. Hyperglycemia, hypertension and
dyslipidemia represent a triad of modifiable primary risk factors for severe vision loss
in sufferers [213]. Achieving optimal glycemic control, blood pressure and lipid profiles
management can reduce diabetes-related vision impairment [214,215].

Furthermore, engaging in appropriate physical exercises, such as aerobic activities,
strength training and yoga, can mitigate the likelihood of DR occurrence and progres-
sion [216,217].
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8. Conclusions

Diabetes manifests as the foremost prevailing metabolic disorder, with diabetic retinopathy
emerging as its predominant and consequential complication. Additionally, this ocular
condition serves as the primary contributor to avoidable vision loss among the working-age
cohort. The occurrence and advancement of DR are influenced by a variety of risk elements,
including hyperglycemia, hypertension, dyslipidemia and duration of diabetes. Notably,
hyperglycemia assumes a pivotal role as the primary driver behind the occurrence and
progression of DR. Therefore, it is crucial to gain a comprehensive understanding of the un-
derlying disease mechanisms through which HSDs intricately contribute to the occurrence
and progression of DR. Given the inconspicuous presentation of clinical indicators amidst
the nascent stages of microvascular and neuronal compromise in DR, it is challenging to
raise awareness among patients. However, once clinical symptoms manifest, vision loss
becomes inevitable. Existing treatment options can only partially alleviate the degree of
visual impairments but cannot reverse visual damage. Therefore, early intervention is of
utmost importance.

Among various early intervention methods, dietary intervention is the most cost-
effective, patient-friendly, least harmful and highly beneficial approach. We primarily
elucidate the complex pathogenesis of DR and the intricate biochemical mechanisms
by which a high-sugar diet leads to irreversible vision loss in DR. This aims to raise
awareness about the importance of daily dietary habits in the occurrence and advancement
of DR. Moreover, we underscore the pronounced impact of specific nutrients in delaying
the development of DR, providing dietary modification strategies for DR patients as
references. It is noteworthy that the application of a balanced low-sugar diet is the primary
factor in the prevention and therapy of hyperglycemia and its bad consequences, and
that patients with DR must integrate the use of necessary anti-hyperglycemic and lipid-
lowering medications, such as statins, alongside appropriate dietary adjustments and
suitable physical exercise. A singular dietary adjustment alone is unlikely to exert a
decisive impact on the progression of DR. Therefore, the adoption of a balanced low-
sugar diet complements pharmacological interventions, facilitating enhanced therapeutic
efficacy, alongside the indispensable inclusion of daily physical activity in routine life. We
recommend that DR patients minimize their daily sugar intake while controlling the three
major high-risk factors of glycemic, blood pressure and lipid levels to mitigate the potential
hazards of vision loss as much as possible.
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Abbreviation

Name Abbreviation
Diabetic Retinopathy DR
High-Sucrose Diets HSDs
Advanced Glycation End Products AGEs
International Diabetes Federation IDF
Vascular Endothelial Growth Factor VEGF
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Vascular Endothelial Growth Factor Receptor VEGFR
Proliferative Diabetic Retinopathy PDR
Non-Proliferative Diabetic Retinopathy NPDR
Diabetic Macular Oedema DMO
Neovascularization of Optic Disc NVD
Neovascularization of Elsewhere NVE
Glycated Hemoglobin A1c HbA1c
Low-Density Lipoprotein Cholesterol LDL-C
Very-Low-Density Lipoprotein Cholesterol VLDL-C
High-Density Lipoprotein Cholesterol HDL-C
Protein Kinase C PKC
Diacylglycerol DAG
Aldose Reductase AR
Tumor Necrosis Factor-α TNF-α
Macrophage Inflammatory Protein-1α MIP-1α
Interleukin-6 IL-6
Interleukin-8 IL-8
Receptor for Advanced Glycation End Products RAGE
Reactive Oxygen Species ROS
Blood–Retinal Barrier BRB
World Health Organization WHO
Retinal Ganglion Cells RGCs
Polyunsaturated Fatty Acids PUFAs
Long-chain ω-3 Polyunsaturated Fatty Acids LCω3PUFAs
Deoxyribonucleic Acid DNA
Cyanidin-3-O-Glucoside C3G
Mediterranean Diet MedDiet
Monounsaturated Fatty Acids MUFAs
Dietary Approaches to Stop Hypertension DASH
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