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Abstract: Over the past few decades, wearable exoskeletons of various forms have been developed to
assist human activities or for rehabilitation of movement disorders. However, sustainable exoskele-
tons with efficient energy harvesting devices still have not been fully explored. In this paper, we
propose the design of a lightweight wearable Bowden-cable-actuated soft exoskeleton robot with en-
ergy harvesting capability. Unlike previous wearable exoskeletons, the presented exoskeleton uses an
electromagnetic generator to both harvest biomechanical energy and to output mechanical torque by
controlling an operation mode relay switch based on a human’s gait. Moreover, the energy-harvesting
module also acts as a knee impact absorber for the human, where the effective damping level can be
modulated in a controlled manner. The harvested energy is regulated and stored in super capacitors
for powering wireless sensory devices when needed. The experimental results show an average of a
7.91% reduction in thigh muscle activity, with a maximum of 3.2 W of electric power being generated
during movement downstairs. The proposed design offers important prospects for the realization of
lightweight wearable exoskeletons with improved efficiency and long-term sustainability.

Keywords: bowden cable actuation; energy harvesting; electromagnetic generator; soft exoskeleton
robot; biomechanics

1. Introduction

Wearable exoskeletons are external supporting structures for assisting human activities.
Thus far, numerous exoskeletons have been developed and put to use in a variety of fields
with diverse functionalities. The lower extremity exoskeleton robot (BLEEX), designed by
the research group at the University of California, Berkeley, was able to assist infantrymen
for heavy load carrying [1]. The RoboKnee exoskeleton, designed by Pratt et al., could
provide assistive torque to the knee joint for enhancing strength and endurance during
human walking [2], where the user’s intent was determined through the knee joint angle
and ground reaction forces. A soft, wearable robotic device was developed by Park et al.
for active knee motions using flat pneumatic muscles [3]. Their elastomer muscles demon-
strated an initial contraction force of 38N and maximum contraction of 18 mm with 104
kPa of input pressure. Malcolm et al.’s exoskeleton was capable of assisting plantarflexion
and reducing the human metabolic cost by means of controlling the pneumatic actuation
time [4]. A metabolic cost reduction of 0.18 ± 0.06 W/kg or 6 ± 2% (standard error of the
mean) below the cost of walking without an exoskeleton was reported if actuation started
just before opposite leg heel contact. Mooney et al.’s autonomous exoskeleton provides
the ankle joint with positive torque as the foot pushes off the ground, with a metabolic
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cost reduction of approximately 35 W being observed in the experiment compared with
normal walking conditions without wearing the exoskeleton [5]. The powered ankle-foot
orthoses developed by Norris et al. both increased human walking speeds and reduced the
metabolic costs by providing augmented plantarflexion power [6]. In the study, eight out of
nine young adults increased their preferred walking speeds when the push-off power was
augmented (1.18 ± 0.16 to 1.25 ± 0.16 m/s, p = 0.03), while a similar but non-significant
trend in the preferred walking speed was observed for the older adults. Soft exoskeletons
have also been developed in recent years for better user comfort and wearing synergy in
light of the traditional rigid and stiff exoskeleton designs [7].

Most of the abovementioned exoskeletons, however, require external power sources
to operate. These powered exoskeletons may face energy problems for prolonged missions
where an energy resupply is unavailable, especially under heavy load conditions. The
bulky exoskeletons, such as HAL and BLEEX, have quite limited operation hours and could
simply turn into an impediment or burden to the wearer once their energy sources run
out. Technically, the duration of the exoskeleton could be made longer by adding more
energy resources(e.g., more fuel or larger batteries with higher capacities). The additional
weight added makes it impractical for the user to travel long distances carrying the heavy
exoskeleton. Therefore, alternative solutions are needed for the design of lightweight and
durable exoskeleton systems to deal with these energy issues [8,9].

One possible way to extend the operation times of exoskeletons is by extracting
energy from the environment [10]. Environmental energies such as wind, sunlight, and
temperature could be rich in overall quantity. However, they normally have a low energy
density and may not be available in all situations [11] (e.g., little solar energy available
during rainy days). These issues make it difficult to use environment energies for powering
exoskeletons sustainably and reliably. Another possibility is to extract energy from human
body heat using thermoelectric generators. In the study of Basset et al., a poly-SiGe-based
800 × 800 × 8000 µm µTEG was made to convert the temperature gradient formed between
the body heat (310 K) and an ambient temperature of 298 K. The power generated was
found to be 1.062 × 10−6 W for a single µTEG [12]. Other developments for various
thermoelectric devices have also been reported. Recently, an energy-harvesting device
using a thin layer of polydimethylsiloxane (PDMS) wrapped on the wrist was designed
and tested. It was able to produce more than 10 µW/cm2 of power at room temperature
when the human was walking at a normal speed [13]. While the energy produced with
this method is of only microwatts, the output is sufficient for low-power consumption
electronics, such as wireless electrocardiography. This approach, however, requires a large
area of thermoelectric coverage on a human’s body skin for additional power output,
causing significant discomfort when implemented.

The human body is a rich energy resource with the help of metabolism [14]. As a
human is under motion, a large amount of kinetic energy is created by the movements of
the limbs and body. Studies show that more than 100 W is consumed to move the lower
limbs when a person of normal weight is walking at regular speeds [15]. Currently, foot
strikes, body inertia, and vibration are the three major forms of human energy during
walking. There have been reports on embedded insoles designed inside shoes [16,17]
which harvest the foot–ground contact energy during walking [18]. The insoles are able
to generate 250 mW of electricity during normal walking, powering a load radio [19].
However, the insole mechanism interferes with the user’s normal walking gait to some
extent, especially when the insole’s output power is high [20]. The inertia energy associated
with the motion of the human body’s center of mass is another important source. Various
mechanisms (also known as “backpacks”) have been designed to convert the up and
down movement to rotation, which subsequently drives generators to produce electric
power [21]. These “backpacks”, however, are usually very bulky, adding extra burden
to the human body during walking, and the aperiodic, low-frequency, and time-varying
characteristics of inertia motion make energy harvesting rather difficult and less efficient for
“backpacks” [22]. Over the years, some unpowered exoskeletons have also been proposed
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with energy harvesting abilities. A passive lower limb exoskeleton with artificial tendons
was designed by Dijk et al. to reduce human joint load during walking [23], but the energy
expenditure during walking with the exoskeleton is higher than normal walking. The
unpowered knee exoskeleton designed by Xie et al. reduced the metabolic energy cost and
generated 5.3 W during natural human walking at 4.5 km/h [24]. However, the proposed
cable–pulley transmission system could not fully compensate for the angular variation
around the hip joint when walking. Donelan et al. developed a knee brace which harvests
the kinetic walking energy during deceleration of the lower limbs. The knee brace is able to
output almost 5 W of electricity in the generative braking mode and 7 W in the continuous
generation mode without adding too much extra burden to the user’s lower limbs [25].
However, the possible issue of knee brace misalignment was not considered in depth, as
ideal mounting of the knee brace was assumed. Recently, triboelectric generators (TEGs)
have attracted many researchers’ interest, where flexible structures have been designed
and fabricated using nanotechnology to harvest human energy during exercise [26,27]. The
designed TEGs, along with the biofuel cells (BFCs) by Lu et al., could provide sustainable
power to a microwatt-rated wristwatch with a liquid crystal display (LCD) for more than
30 min, even after the human user stops moving [28]. The prolonged power delivery in
this design, however, relies on the electroenzymatic reactions of sweat metabolites, which
severely limits its generalized applications.

To harvest the kinetic energy of the human body, devices using other harvesting
methods have also been explored and developed. Berdy et al. designed a magnetic
levitation vibration energy harvester and studied its power output for participants with
different body parameters (e.g., height) [29]. The reported power output was 71 µW
(at 3 mph) and 342 µW (at 6 mph) when the human participants were running on a treadmill
with the harvesting device. Additionally, to minimize the effects of damping, Berdy et al.
studied the effect of the angle of attachment and damping reduction techniques using
low-friction materials and a guide rail system, which improved power output by over
50% when compared with the suboptimal design. Magno et al. evaluated and integrated
a highly efficient kinetic harvester circuit to power autonomous wearable devices. The
designed Kinetron Micro Generator System 26.4 (MSG) was able to harvest up to 280 µJ
from a single human movement and up to 1.1 J per day using a passive rectifier [30]. Their
results were extremely promising for small wearable kinetic harvesting and demonstrated
the instrumental application of this new generation of kinetic energy harvester in the design
of many self-sustainable wearable devices. To collect the low-level kinetic energy present
in all moving systems, Gljuscic et al. addressed the intrinsic problem of piezoelectric
kinetic energy harvesting devices for wearable medical sensors [31]. In their study, complex
numerical models comprising modal, harmonic, and transient analysis were created, and an
optimized harvester geometry with an excitation mechanism was proposed to overcome the
random nature of excitations generated by human motions. Specialized electrical circuitry
was also designed and tested for efficient power management of their piezoelectric energy
harvesting system.

Energy harvesting using non-traditional media has also been reported. Jia et al.
designed a human kinetic energy harvesting device based on liquid metal magnetohy-
drodynamics [32]. Krupekin et al. used reverse electrowetting as a new approach to
high-power energy harvesting, which increased the output power density to as high as
103 W/m2 [33]. Other studies involved energy harvesting using electrostatic generators.
Such harvesters are inherently electrostatic capacitive energy converters, which can oper-
ate as vibration-to-electricity converters [34]. The major advantage of such an approach
is the small size of the electrostatic generators, which is particularly useful for portable
microelectromechanical systems when placed on the human body during walking [35].
Their efficiency, however, is usually low and requires a so-called “pre-charging” process to
initiate energy conversion [36,37].

This paper proposes a flexible Bowdencable-actuated lower limb knee exoskeleton
with the capability of both assisting human movements and harvesting negative work
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during the gait cycle. Instead of using separate devices for power assistance and energy
harvesting, the exoskeleton uses a single electromagnetic unit which is controlled by an
operation mode relay switch based on the user’s gait cycle. During lower limb acceleration
or movement upstairs, the electromagnetic unit outputs power to the knee joint for assis-
tance while it scavenges biomechanical energy during deceleration or movement down
stairs. As the electromagnetic unit harvests the negative work, it also acts as a knee impact
absorber. Unlike conventional mechanical dampers, the effective electrical damping of the
impact absorber during the energy harvesting process can be adjusted and regulated by the
microcontroller based on the user’s specific needs during operation. The harvested energy
is regulated and stored in super capacitors for powering wireless electronics when needed.
The experimental results show an average of a 7.91% reduction in thigh muscle activity,
with a maximum of 3.2 W of electric power being generated during movement down stairs.
The proposed design offers important prospects for the realization of lightweight wearable
exoskeletons with improved efficiency and long-term sustainability.

The rest of the paper is organized as follows. Section 2 describes the knee exoskeleton
design and energy flow of the system. Section 3 is about the modeling and simulation of the
human-exoskeleton dynamics, the Bowdencable transmission system, power generation,
and controllable knee joint damping. The mode switching criteria and associated circuit
design for the harvesting, regulation, storage, and discharge of energy are presented in
Section 4. The experimental results are provided in Section 5 with the analysis of EMG
muscle activity and discussion on the harvested power, followed by our conclusions in
Section 6.

2. Knee Exoskeleton Design and Energy Flow Analysis
2.1. Structural Design of the Knee Exoskeleton

The system-level design of the flexible Bowdencable-actuated knee joint exoskeleton
robot (with the human subject wearing it) is illustrated in Figure 1 below. The structural
model was designed and rendered using Solidworks software (Dassault Systemes Solid-
Works Corp., Waltham, MA, USA). To simplify the design, the human subject wears the
knee exoskeleton on one of the lower limbs only. Structurally, the exoskeleton consists of
three parts: the waist bracket, the lower-limb-mounted part, and the Bowden transmission
cable. Other components such as the electromagnetic unit (generator or motor), the energy
harvest module, the controller box, and the batteries are mounted on different locations
around the waist bracket.

As the human subject walks around, the waist bracket with all these components
has a tendency to fall down due to gravity, causing a significant amount of pressure and
squeezing on the pelvis of the human subject. To address this issue of wearable discomfort,
back straps with adjustable lengths were introduced in our design so that most of the
weight of the waist bracket assembly was carried by the shoulder of the human subject
instead of the pelvis. Moreover, the adjustable back straps are useful for human subjects
with different body sizes when they wear the waist bracket. The lower-limb-mounted
part comprises the thigh bracket, the grooved pulley, the knee joint shaft with the angular
sensor, and the shank bracket. The knee joint shaft is attached to the thigh bracket, while the
grooved pulley is fixed to the shank bracket using bolts. Bearings are installed between the
knee joint and grooved pulley to minimize the rotational friction. The transmission cable
wraps around the groove of the pulleys, where the cable terminals are embedded or fixed
to the outer edge of the pulleys. With proper adjustment of the thigh and shank bracket,
the rotational axis of the human subject’s knee joint can be made coaxial with the knee joint
shaft and grooved pulley of the exoskeleton so the knee motion of the human subject can
be transmitted to the exoskeleton. During human subject movement, the relative distance
and angle between the exoskeleton knee brace and the electromagnetic unit (generator
or motor) on the waist bracket changes continuously. To reliably transmit the motion
between the exoskeleton knee joint and the electromagnetic unit, a flexible Bowden cable
transmission system is used to compensate for the hip angle variations during walking.
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The outer sheath of the Bowden cable is constrained on both ends, and the inner steel cable
moves inside the outer sheath, which transmits the motion between the pulleys of the knee
and the electromagnetic unit. Here, the radii of the both pulleys are the same, and only the
gear box of the electromagnetic unit contributes to the motion amplification between the
knee and the generator. Additional sensors, including the EMG sensor and foot switch,
are mounted on the thigh and foot, respectively. The major dimensions of the exoskeleton
units in Figure 1 are listed in Table 1 below.
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Figure 1. System-level design of the flexible knee joint exoskeleton with the human subject showing.
The exoskeleton consists of the waist bracket part, the lower-limb-mounted part (thigh bracket and
shank bracket), and the Bowden cable transmission.

Table 1. Major dimensions of the flexible Bowdencable-actuated knee exoskeleton robot.

Exoskeleton Unit Dimension 1 Unit

Waist bracket 100 (L) × 10 (W) × 0.1 (H) cm
Thigh bracket 30 ± 5 (L) × 7.5 (W) × 1.5 (H) cm
Shank bracket 25 ± 5 (L) × 7.5 (W) × 1.5 (H) cm

Adjustable back strap 80 ± 20 (L) × 2.5 (W) cm
Electromagnetic unit 10 (L) × 4.5 (D) cm

Transmission cable (inner cord) 900 (L) × 2 (D) mm
Bowden cable (outer sheath) 600 (L) × 5 (D) mm

Controller box 15 (L) × 10 (W) × 6 (H) cm
Energy harvest module 9 (L) × 9 (W) × 1.5 (H) cm

EMG sensor 60 (L) × 30 (W) × 4 (H) mm
Grooved pulley 1 (H) × 8 (D) cm

Knee joint angle sensor 30 (L) × 15 (W) × 3 (H) mm
Foot switch 20 (L) × 10 (W) × 5 (H) mm

1 L: length; H: height; W: width; D: diameter.

During the walking cycle, knee joint flexion and extension occur alternatively and
periodically. As the lower limbs accelerate and decelerate, the leg muscles are conducting
positive and negative work in the associated gait phases [38,39]. Depending on the specific
need, the single electromagnetic unit is designed to function as either an electric motor or
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a generator. When torque assistance is needed, the electromagnetic unit acts as a motor
and outputs mechanical power to the exoskeleton knee joint. When resistance torque
or damping is required, the electromagnetic unit switches to the mode of a generator,
harvesting the biomechanical energy of the human knee joint. The energy harvest module
controls the operational mode switch, which involves data collection and processing of
multi-source signals, including the thigh muscle EMG, foot–ground contact switch, and
joint angle. Moreover, the harvest module also regulates the degree of energy harvesting
such that variable joint damping can be achieved for knee joint impact absorption or for
rehabilitation purposes [40,41].

With proper switching of operational modes and careful regulation of energy harvest-
ing, the electromagnetic unit absorbs energy when the muscles consume metabolic energy
to perform negative work and outputs torque when the muscles use metabolic energy to
perform positive work. As a result, the Bowdencable-actuated exoskeleton with energy
harvesting design will reduce muscle activities during the human subject’s walking, and
the harvested electric energy, stored in super capacitors or batteries, could be further used
to power various electronics, such as a wireless electrocardiographic sensors.

2.2. Energy Flow of the Limb-Exoskeleton System and Efficiency

As the human subject wears the Bowdencable-actuated knee exoskeleton and walks
around, energies of various forms exist in the entire human-exoskeleton system. The
associated energy flow is presented in Figure 2 below. Here, all energy terms are represented
by the symbol “E”, while the transmission efficiency factors are represented by the symbol
“η” and the coefficient for energy loss is represented by the symbol “ξ”. The subscripts for
the above three parameters indicate the associated energy flow involved.
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Let us assume that the total human metabolic energy generated by the biological
activity is EM, which consists of three major parts: the energy required for maintaining
the basic biological functions (EBF), the dissipated body heat energy (EBH), and the kinetic
energy for lower limb walking (EW). The associated energy efficiency is denoted as ηB,
shown in the human biological activity block in Figure 2.

Under the actions of the lower limb muscles, the knee joint performs extension and
flexion alternately. As a result, positive and negative work is generated. The leg swing
during the negative work cycle drives the grooved pulley mounted on the knee bracket
of the exoskeleton, which pulls the inner cord of the Bowden transmission cable. The
transmitted tension of the Bowden cable’s inner cord then drives the grooved pulley
attached to the gear box shaft, which further makes the generator rotate at amplified
angular speeds. In this process of energy harvesting, however, a certain amount of energy
is lost [42]. First, for the knee joint motion transmission, any misalignment between the
human subject’s knee axis of rotation and the exoskeleton could lead to a loss of energy
(EJ) being transmitted. This is unavoidable due to the movement of clothing between the
human subject and the exoskeleton bracket. Next, energy loss (EBC) caused by backlashes,
friction, and nonlinear elasticity exists in the Bowden cable transmission [43,44]. Thus, the
rotation of the exoskeleton knee joint could never be fully transmitted to the gear box [45].
Finally, the backlashes and friction in the gearbox contribute to additional energy loss (EGB).
For the positive work cycle, the electromagnetic motor outputs energy to the lower limbs
of the human subject, where similar energy loss is involved. Here, ηH and ηA represent the
energy efficiency of the harvest and assistance modes, respectively.

The electromagnetic generator converts the mechanical energy to electricity, where
the generator output energy (EGM) is produced with an efficiency of ηGM. Typically, the
armature resistance, rated as RPM/voltage, and frictions inside the gear reducer of the
generator are the crucial specifications for the design. For improved generator efficiency,
low armature resistance and gearbox frictions are desired, which reduce the energy losses
involved. Moreover, a sufficient output voltage at a relatively lower RPMis required for
the generator to output useful power during human movements. The output electricity of
the generator, however, needs to be regulated and stored properly [46]. In this paper, the
collected electricity is regulated using a Metal-Oxide-Semiconductor Field-Effect Transistor
(MOSFET) for knee damping modulation and stored in a super capacitor (ESC). In this
process, an additional amount of electric energy is dissipated, which includes the generator
armature heating (EA), the rectifier diode loss (ER), and the energy loss in the MOSFET chip
(EDM) during damping modulation. The net energy efficiency for the storage of harvested
electricity is denoted as ηS.

From the above analysis, the energy harvesting module of the exoskeleton helps collect
a certain amount of energy during the negative work cycle of the human subject’s walking.
Therefore, the lower limb walking energy (EW) is reduced, which subsequently reduces the
overall metabolic energy (EM).

3. Theoretical Modeling and Simulation
3.1. Dynamic Modeling of Human-Exoskeleton Motion

The dynamic modeling of the human-exoskeleton system is actually rather com-
plicated [47,48]. Strong nonlinearity and time-varying behaviors exist in the complex
phenomena [49,50], including foot–ground contact and interactions between the muscles of
the human subject, his or her clothing, and the exoskeleton brackets [51,52]. Thus, a com-
plete representation of the dynamic model of the human-exoskeleton system is impossible,
nor is it necessary. The theoretical formulations, however, do provide valuable insights into
the design, analysis, and optimization of the energy harvester system for the exoskeleton
robot. With the help of these theoretical derivations, it is much easier for the designer to
focus on the relevant parameters, and some of these theoretical equations could be further
converted to empirical equations to assist future designs. In this paper, the human body
and exoskeleton are approximated as rigid bodies (namely the links in Figure 3 below),
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and multi-rigid body dynamics is used to formulate the human-exoskeleton system [53].
As part of the upper portion of the human body (e.g., forearms, upper arms, and hands)
does not exhibit as much swinging compared with the lower limbs, the human-exoskeleton
model is simplified to a five-link human model with a two-link model for the exoskeleton.
The simplified system is created in the sagittal plane, as illustrated in Figure 3.
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Figure 3. Simplified (5 + 2)-link dynamic model for the human-exoskeleton system, with link
parameters and major contact parameters listed and shown in the sagittal plane. Note: the double
support phase is presented here, where both feet have ground contact. For the single-support phase,
only one foot has ground contact, while the other foot swings in the air.

As seen from Figure 3, the upper body of the human subject (including the head, torso,
and arms) is simplified as link 5 (L5) as a whole. The right shank and thigh are represented
by links 1 (L1) and 2 (L2), respectively, and the left shank and thigh are labeled as links
4 (L4) and 3 (L3), respectively. The exoskeleton thigh and shank brackets are represented by
links 6 (L6) and 7 (L7), respectively. To better illustrate each part (i.e., link), the shanks are
rendered in carneose colors, with the thighs in yellow, the upper body in purple, and the
exoskeleton in blue. The ground underneath is represented by hatched lines. Here, joints
1 and 5 are defined as the foot contact with the ground during the double support phase of
walking. Joints 2 and 4 represent the knee joints of both legs of the human body, while joint
6 represents the exoskeleton knee joint. Joint 3 is the hip joint, which connects the lower
limbs and the torso of the human subject.

Detailed physical parameters of the simplified human-exoskeleton model are also
listed in Figure 3. For the seven simplified links Lj (j = 1,2, . . . 7), mj represents the mass of
link j (i.e., each part of the human or exoskeleton), with dj being the distance between the
mass center and the associated joint, while θj represents the angle between link j and the
vertical line. The contact interaction between the human’s lower limbs and exoskeleton
bracket is modeled by the contact stiffness (kt and ks), contact damping (ct and cs), and
contact friction (ft and fs) for the thigh and shank, respectively.

Here, the Lagrangian method is used to formulate the general form of the dynamic
equations of the human-exoskeleton system as follows:

d
dt

(
∂L
∂

.
qj

)
− ∂L

∂qj
= Qj, j = 1, 2, . . . , N (1)

L = K − V (2)
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where L is the Lagrange function, which is equal to the difference between the kinetic
energy K and the potential energy V of the system, qj is the generalized coordinate which
corresponds to the joint angles of the lower limb and exoskeleton bracket, Qj is the general-
ized force or moment, j is the link number, and N is the total number of degrees of freedom
of the human exoskeleton system.

By substituting the model parameters in Figure 3 into Equations (1) and (2), the
dynamic equation in state space matrix form can be obtained:

M(θ)
..
θ + H(θ,

.
θ) + G(θ) = T(θ) (3)

where M(θ) is the mass and inertia matrix of the human-exoskeleton system, H
(

θ,
.
θ
)

is
the vector containing the centrifugal and Coriolis terms, G(θ) is the vector of gravity terms,
and T(θ) is the vector of generalized forces or moments applied on the system.

To show the interaction between the human subject and the knee exoskeleton explicitly,
the dynamic equation of the entire human-exoskeleton system could be reorganized as
Equation (4) for the human subject and Equation (5) for the knee exoskeleton, respectively:

MH(θH)
..
θH + HH(θH ,

.
θH) + GH(θH) = TH(θ) + REHFEH(θH , θE,

.
θH ,

.
θE, t) (4)

ME(θE)
..
θE + HE(θE,

.
θE) + GE(θE) = TE(θ) + RHEFHE(θH , θE,

.
θH ,

.
θE, t) (5)

where matrices M, H, G, and T follow similar definitions to those in Equation (3), with the
subscripts “H” and “E” specifying human and exoskeleton, respectively, R is the coordinate
rotational matrix, F is the contact force between the lower limb of the human subject and
the exoskeleton bracket, and the subscripts “HE” and “EH” refer to “human to exoskeleton”
and “exoskeleton to human”, respectively.

As the human subject is in motion with the knee exoskeleton, a complicated contact
phenomenon occurs in between the human skin, clothing, and exoskeleton bracket [54].
Normally, such contact interaction is highly nonlinear and time-varying, which could be
rather difficult to model accurately. Obviously, the contact interaction is dependent on
the model states of both the human subject and the exoskeleton as well as time, which is
indicated on the right-hand side in Equations (4) and (5). Moreover, the contact model is
related and sensitive to the clothing materials, human muscle elasticity, knee brace tension,
mounting misalignment of the exoskeleton, walking speed and acceleration, operation
time, and so on [55].

These factors could lead to energy loss from the human’s lower limb to the knee
exoskeleton joint. Typical forms of loss include reduced amplitude of the swing for the
knee exoskeleton joint and extra torque load to the human subject due to friction, as shown
in Figure 4 below. In Figure 4a, the simulated knee joint swing angle is about 56 deg (pk-pk)
and 52 deg (pk-pk) for the human subject and exoskeleton, respectively, where 7.14% of
the swing amplitude is lost. Figure 4b plots the extra torque applied to the human lower
limb. In the simulation, a gait frequency around 120 steps/min was used, which is close to
normal human walking [56]. The energy loss in the process of knee motion transmission
from the human subject to the exoskeleton contributes to the reduction in the net available
power, which could be harvested and generated (i.e., ξ J in Figure 2). This part of energy
loss (ξ J) could never be fully avoided and will be different from one trial to another, as the
contact condition varies every time the knee exoskeleton is mounted on the human subject.
Moreover, the energy loss (ξ J) also varies with respect to time during the walking process
of the human subject wearing the exoskeleton.
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3.2. Transmission Characterization of the Bowden Cable Actuation System

The knee exoskeleton designed in this paper used a pair of Bowden cables to transmit
the rotational motion of the knee joint pulley to the gear box pulley. This would help ensure
reliable and continuous motion transmission from the knee joint to the gear box despite the
varying relative position and orientation between the knee and gear box during motion.
The Bowden cable transmission system, however, does have its limitations [57]. Due to
friction between the inner cord (tendon) and outer sheath of the Bowden cable, the input
and output tensions are different. Moreover, the input and output displacements of the
inner cord (tendon) are different [58]. The schematic of the Bowden cable transmission
system is illustrated in Figure 5.
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Assuming Coulomb friction inside the outer sheath of the Bowden cable and neglecting
the inertia of the inner tendon, the input-output relationship of the inner cord’s tension can
be described by the following equations [59]:

Tout = Tin exp
(
−µsgn

( .
s
)
φ(L)

)
(6)

φ(L) =
∫ L

0
κ(λ)dλ (7)

where Tin and Tout are the tensions of the inner cord of the Bowden cable at the input and
output ends, respectively, µ is the frictional coefficient between the inner cord and the outer
sheath, sgn

( .
s
)

gives the pulling direction of the inner cord, L is the length of the tendon,
κ(λ) is the curvature, and φ(L) is the total bending angle of the Bowden cable.

Additionally, the input-output relationship of the tendon displacement can be modeled as

Sout = Sin + δ(s) (8)

δ(s) =
(∫ s

0

T(λ)
EA

dλ

)
(9)

where Sin and Sout are the displacements of the input and output ends of the inner cord,
respectively, δ(s) is the elongation of the inner cord, E is the Young’s modulus of the tendon;
and A is its cross-sectional area.

As can be seen from Equations (6)–(9), the output tension is reduced compared with
the input tension due to the friction forces and bending angles of the Bowden cables, and
the transmitted displacement is also reduced due to elongation of the inner cord of the
Bowden cable. The reduction in both the tendon tension and displacement leads to a loss
of energy (i.e., the product of tendon tension and displacement) being transmitted through
the Bowden cable system. The energy efficiency of the Bowden cable system is illustrated
in Figure 6 below. Here, a typical hip joint signal is used to simulate the time-varying
relative angle between the thigh and upper body during walking, as shown in Figure 6a.
For different values of the friction coefficient µ, the associated efficiency curves for tension
transmission are plotted in Figure 6b. With the increase in the friction coefficient, the
transmission efficiency decreased. Hence, for improved transmission efficiency, a special
layer of low-friction material (e.g., teflon) and lubrication is needed to reduce the friction
coefficient between the inner tendon and outer sheath.
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3.3. Power Generation by the Knee Exoskeleton

The knee exoskeleton proposed in this paper could operate in both power assistance
mode and energy harvesting mode. In power assistance mode, the electromagnetic unit
operates as an electric motor. It outputs torque to the gear box, which amplifies the output
torque to pull the inner cord of the Bowden cable. The tension further drives the exoskeleton
knee joint, which provides torque assistance to the lower limb of the human subject. In
energy harvesting mode, the kinetic energy of the human subject’s lower limb drives the
exoskeleton knee joint, which ultimately drives the generator through the transmission
chain in the opposite manner. Since the focus of this paper is the design and testing
of biomechanical energy harvesting, the analysis here mainly deals with the electricity
generation process shown in Figure 5 above.

Force balance on the gear box pulley and knee pulley requires the following:(
Teg − Tf g

)
Rgp = Jgp

..
θgp + τgb (10)(

Tf k − Tek

)
Rkp = Jkp

..
θkp − τkh (11)

where Teg and Tf g represent the inner cord tension applied to the gear box pulley for
the knee extensor and flexor, respectively, Tek and Tf k represent the inner cord tension
applied to the exoskeleton knee pulley, Jgp and Jkp are the moments of inertia for the
pulleys attached to gear box and exoskeleton knee joint, respectively, Rgp and Rkp are the
associated pulley radii, θgp and θkp are associated angular displacements, and τgb and τkh
are the torque of the gear box shaft and human knee joint, respectively.

By applying Equation (6), the relationship between the differential tensions on the
gear box pulley and knee pulley can be written as(

Tf g − Teg

)
=
(

Tf k − Tek

)
exp(−µφ(L)) (12)

Additional transmission loss exists inside the gear box, which leads to Equation (13):

ηgb

((
Teg − Tf g

)
Rgp − Jgp

..
θgp

) .
θgp = τg

.
θg (13)

where ηgb is the transmission efficiency of gear box and τg and θg are the torque and rotation
angle of the output shaft of the gear box (or the input shaft of the generator), respectively.

By combining Equations (10)–(13), the transmitted torque on the generator can be
obtained as follows:

τg = ηgb

((
τkh − Jkp

..
θkp

)
exp(−µφ(L))− Jgp

..
θgp

)(
Rgp

.
θgp

)
/
(

Rkp
.
θg

)
(14)

Equation (14) establishes the relationship between the original input torque τkh from
the human subject to the final output torque τg applied on the generator.

Moreover, the resistive torque of the generator can also be modeled as

τg = Jg
..
θg + cg

.
θg (15)

where Jg and cg are the moment of inertia and equivalent damping coefficient of the
generator, respectively.

The electric voltage Eg produced by the generator during walking can be calculated
as follows:

Eg = Kg
.
θg (16)

where Kg is the back electromotive force constant of the generator.
The total electric power, however, depends on the magnitude of the electric current

going through the armature coil of the generator. When the generator connects to an open
circuit, no electric power is generated in theory due to the zero armature current. Normally,
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the output terminals of the generator could connect to a load resistor, which disspiates
the generated power in the form of heat. In this paper, the generator connects to a super
capacitor, which stores the generated electric energy. The calculated total electric power PgR
and PgC are described by Equations (17) and (18) below for the resistor load and capacitor
load, respectively:

PgR = E2
g/(Ra + RL) = K2

g
.
θ

2
g/(Ra + RL) (17)

PgC = Eg
(
Eg − USC

)
/Ra = Kg

.
θg

(
Kg

.
θg − USC

)
/Ra (18)

USC =

(∫ t

0
i(τ)dτ

)
/CSC (19)

where Ra is the internal resistance of the generator amarture coil, RL is the load resistance,
USC is the instantaneous voltage of the super capacitor, CSC is the capacitance of the super
capacitor, and i(τ) is the charging current for the super capacitor.

Since a certain amount of the generated electric power is wasted on the resistive
heating of the generator armature, the final output electric power PgR−out and PgC−out are

PgR−out =
(
Eg/(Ra + RL)

)2RL = K2
g

.
θ

2
gRL/(Ra + RL)

2 (20)

PgC−out = USC
(
Eg − USC

)
/Ra = USC

(
Kg

.
θg − USC

)
/Ra (21)

Equations (20) and (21) can be used as empirical equations for the design and opti-
mization of the energy storage system of the generator. The simulated result in Figure 7
indicates that the output power of a given generator is a function of the angular velocity
of the exoskeleton knee joint and the external load, which could be a resistor or capacitor.
Figure 7a shows that the maximum output power for the resistance load was produced
when the load resistance RL equaled or matched the internal resistance of the generator ar-
mature Ra. Moreover, the output power stayed constant with respect to time as long as the
generator voltage Eg stayed unchanged. The results in Figure 7b show that the maximum
output power stayed the same despite different super capacitors being used. However,
the maximum output power only happened when the voltage of the super capacitor USC
reached Eg/2. At the beginning of the charging process, the output power was low, even
though the charging current was high, due to the very low voltage of the super capacitor.
In the later process of charging, the output power also went down, even though the voltage
of the super capacitor was high, due to the reduced charging current.
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3.4. Impact Absorption Using Controlled Damping

During walking, the angular velocity of the human subject’s knee joint is transmitted
to the generator through the exoskeleton bracket, the Bowden cables, and the gear box.
The back electromotive force causes an induced current inside the generator armature coil,
generating a resistive generator torque τgDamping against the input torque τg. This resistive
torque could act as a knee impact absorber and damping [60] when the lower limb of
the human subject is performing negative work against gravity (e.g., going downstairs or
downhill) or during deceleration (e.g., the leg swing before a heel strike). The damping
torque due to the resistor and capacitor loads can be written as

τgRDamping = cgRDamping
.
θg = ηtrans jbc jgbcgRDamping

.
θk (22)

τgCDamping = cgCDamping
.
θg = ηtrans jbc jgbcgCDamping

.
θk (23)

where jbc and jgb are the transmission ratio of the Bowden cables and gear box, respectively,
ηtrans is the overall efficiency for displacement transmission, including all transmission
chains, and

.
θg and

.
θk are the angular velocities of the generator and knee joint, respectively.

The associated damping coefficients cgRDamping (for the resistor load) and cgCDamping
(for the capacitor load) are

cgRDamping = PgR/
.
θ

2
g = K2

g/(Ra + RL) (24)

cgCDamping = PgC/
.
θ

2
g =

(
K2

g − Kg

(
USC/

.
θg

))
/Ra (25)

From Equations (24) and (25), it can be seen that the damping coefficient cgRDamping for
the resistor load is a constant once the generator model and load resistor are determined.
The damping coefficient cgCDamping for the capacitor load, however, varies with the volt-

age level of the super capacitor USC, as well as the angular velocity of the knee joint
.
θk.

Equations (24) and (25) are useful for the design and analysis of knee impact absorption.
During the operation of the exoskeleton, it is important to modulate the damping of

the generator in a controlled manner for terrain-based impact absorption and need-based
rehabilitation. The load resistor itself is unable to store any harvested energy, and its
resistance value normally could not be adjusted in an automatic manner. The super capaci-
tor, on the other hand, could store the harvested energy for powering other components
(e.g., the electrocardiographic sensor), and its voltage level could be controlled in a more
flexible manner. The detailed effect of the super capacitor voltage USC on the damping is
illustrated in Figure 8 below.

From Figure 8, it can be seen that the damping coefficient cgCDamping with the capacitor

load increased with the angular velocity of the knee joint
.
θk. Moreover, it decreased as the

charged voltage USC of the super capacitor rose. Therefore, to maintain sufficient damping
for the knee joint, the voltage of the super capacitor should not be too high. In this paper,
a modulated damping scheme is proposed by controlling the on and off (i.e., duty cycle)
nature of the MOSFET switch and load switch, which regulate the flow of the electric
current i(τ) into the super capacitor and discharging current to the sensor electronics,
respectively. Based on the relationship in Equation (18), the voltage level USC of the super
capacitor could be then regulated, which subsequently controls the damping coefficient
cgCDamping as needed.
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Figure 8. Modulated damping of the exoskeleton generator for capacitance load by controlling USC.
Here, the generator armature resistance Ra = 6 Ω, back EMF Kg = 0.0442 V/(rad/s), and total
transmission ratio jbc jgb = 133. (a) Simulated damping coefficient cgCDamping with the capacitor load as

the angular velocity of knee joint
.
θk changes for different super capacitor voltages USC. (b) Simulated

damping coefficient cgCDamping with capacitor load as the super capacitor voltage USC changes for

different angular velocities
.
θk of the knee joint.

4. Circuit Design for Energy Harvesting
4.1. Mode Switching Criteria

For the knee exoskeleton to operate in the dual modes of energy harvesting or torque
assistance, the proper mode switching criteria need to be defined. Figure 9 below shows the
flow chart of the system. The microcontroller reads the multi-sensor information, including
the angular displacement of the exoskeleton knee joint, the EMG signal of thigh muscle
activity, and the voltage level of the super capacitor. The multiple sensor data are then
processed (in the pink block) to determined the operation state of the system.
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When the reading of the angular position of the exoskeleton knee joint decreased,
knee extension was performed by the human subject. If the EMG thigh muscle signals
indicated an active knee flexor, the knee flexor muscles were acting against the motion of
knee extension, and the lower limb of the human subject was performing negative work.
In this case, the control system switched to the energy harvesting mode (green blocks) to
collect the kinetic or potential energy of the lower limbs. If the EMG thigh muscle signals
indicated an active knee extensor, the knee extensor muscles were acting for the motion of
knee extension, and the lower limb of the human subject was performing positive work. In
this case, the control system switched to the torque assistance mode (red blocks) to help the
movements of the lower limbs. Similar mode-switching criteria were implemented for the
knee flexion motion.

During energy harvest mode, the electric current produced by the generator is further
regulated based on the damping behavior (purple block) of the generator. If there is
too much damping, the microcontroller decreases the duty cycle of the power output;
otherwise, the microcontroller increases the duty cycle to raise the damping level (purple
blocks). The specific damping level could be related to the terrain where the human
subject is walking while wearing the exoskeleton. For instance, when going down stairs,
the human subject might need more damping for the knee extension process as impact
absorption compared with level-ground walking. When the voltage of the super capacitor
exceeds some threshold value (yellow block), such as the wake-up voltage of the wireless
electrocardiographic (ECG) sensor, the system refreshes the ECG sensor and discharges the
electric energy stored in the super capacitor. The system loops and operates as the human
participant walks continuously.

4.2. Control Circuit with Power Assistance, Energy Storage, and Discharge

The control circuit schematic for the knee exoskeleton with dual mode operation is
shown in Figure 10 below. Based on the multi-sensor data (including the knee angle and
thigh muscle EMG), the operational mode controller sends the mode-switching signal
through the relay coil, which controls the relay switch for either the power or torque
assistance mode or energy harvesting mode.
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Figure 10. Electric circuit schematic with both the torque output cycle, energy harvesting cycle, and
discharge cycle for the Bowden cable-actuated knee exoskeleton.

During the torque assistance mode, the relay switch SR closes the torque output loop,
and the battery energy flows out. The servo controller sends motor control signals to the
amplifier and drives the electromagnetic unit (as an electric motor) to output torque at the
knee joint for the desired gait motions. The torque assistance mode is normally activated
when the muscles of the lower limbs of the human subject are performing positive work.

During energy harvesting mode, the relay switch SR closes the energy harvest loop,
and electricity is produced by the electromagnetic unit (as an electric generator). In this
mode, the external torque or power is fed in at the knee joint from the human subject.
The rectifier of the energy harvest loop ensures the unidirectional flow of electric current
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into the super capacitor, and the N-channel MOSFET modulates the duty cycle of the
charging current such that the charging process and damping can be controlled in a
regulated manner.

The discharge loop is activated by the load switches SL and SS for the load resistor RL
and the electrocardiographic sensor, respectively. When the super capacitor voltage reaches
the turn-on value of the electrocardiographic sensor (@ 3.3 V), the controller closes SS to
power on the electrocradiographic sensor. When the voltage of the super capacitor is too
high, the load resistor switch SL can be closed to discharge the super capacitor such that
the energy harvest loop can continue for the desired knee damping.

The associated hardware circuit board set-up for the energy harvesting and storage
module is shown in Figure 11 above. The module consists of the power regulation and
control unit (top left), the current sensing module (middle right), the relay switch control
block (lower left), and the terminal block (lower right). For the convenience of wiring and
demonstration purposes, the energy harvesting module was mounted on the waist bracket.
A graphic scale is presented in the top right corner of Figure 11 for the reader to quickly
estimate the size of each component. The detailed geometric dimensions and models of the
key components in the energy harvesting module are listed in Table 2 below.
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built based on the proposed design in Figure 1 in Section 2.1. To reduce the pressure and 
squeezingon the pelvis part of the human subject, the weight of the waist bracket was 
supported by the adjustable back straps over the shoulder. Moreover, lightweight mate-
rials were used for the components of the knee exoskeleton, including ABS, aluminum, 
and resin epoxy. The exoskeleton knee brackets were mounted to the thigh and shank of 
the human body using a Velcro brace so that the knee motion of the human subject 
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Figure 11. Hardware set-up of the energy harvesting and storage module with operation mode
control for the Bowdencable-actuated knee exoskeleton.

Table 2. Geometric dimensions of the major components in the energy harvesting module.

Component Dimensions 1 or Model Unit

Power regulation and control unit 50 (L) × 50 (W) × 25 (H) mm
Relay switch control unit 50 (L) × 20 (W) × 35 (H) mm
Current sensing module 30 (L) × 10 (W) × 20 (H) mm

Terminal block 15 (L) × 15 (W) × 15 (H) mm
Super capacitor (0.5 F) CHP5R5L-504R-TW -

N-MOSFET FQPF10N60C -
Rectifier diodes 1N4001 -

Relay switch JQC-3FF-SZ -
1 L: length; H: height; W: width; D: diameter.



Micromachines 2022, 13, 571 18 of 25

5. Experimental Validation
5.1. Experimental Set-Up

The experimental prototype of the Bowdencable-actuated knee exoskeleton with the
energy harvesting module is shown in Figure 12 below. The prototype device was built
based on the proposed design in Figure 1 in Section 2.1. To reduce the pressure and
squeezing on the pelvis part of the human subject, the weight of the waist bracket was
supported by the adjustable back straps over the shoulder. Moreover, lightweight materials
were used for the components of the knee exoskeleton, including ABS, aluminum, and
resin epoxy. The exoskeleton knee brackets were mounted to the thigh and shank of the
human body using a Velcro brace so that the knee motion of the human subject could be
transferred to the exoskeleton in a compliant manner.
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Figure 12. Side view of the prototype of the Bowdencable-actuated knee exoskeleton and the human
subject (in a standing position).

The electromagnetic unit used in this study was the XD-42GA775 generator and motor,
which has a back EMF constant Kg = 0.0442 V/(rad/s), internal armature resistance
Ra = 6 Ω, and rated rotational speed of 150 rpm. The total transmission ratio of the
Bowden cable-actuated system with the generator gear box was jbc jgb = 133. The details of
the major parameters of the prototype Bowdencable-actuated knee exoskeleton are listed
in Table 3 below.

Table 3. Major parameters of Bowdencable-actuated knee exoskeleton.

Parameter Symbol Value Unit

Weight of waist bracket assembly (without battery) Mwb 1150 g
Weight of knee bracket assembly Mkb 720 g

Radius of Bowden cable’s inner cord Ric 2 mm
Total length of Bowden cable Lbc 600 mm

Bending angle of Bowden cable ϕbc −10~110 deg
Pretension adjustment of Bowden cable ∆Lbc −6~0 mm

Gearbox backlash of generator ∆βgb ±2 deg
Armature resistance of generator Ra 6.2 Ω

Back EMF (electromotive force) of generator Kg 0.0442 V/(rad/s)
Gear ratio of generator jgb 133 -

Rated speed of generator n0 150 rpm
Materials - Al, ABS -

Super capacitor Csc 0.5 F
Sensitivity of current sensor λcs 185 mV/A
Voltage loss of diode rectifier ∆Udr 0.7 V
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5.2. Experimental Tests and Data Measurements

Six healthy human subjects participated in the experimental tests (age: 23 ± 1.6 years;
body mass: 61 ± 3.7 kg). All participants provided informed consent, and the test pro-
cedures were approved by the Southeast University Research Ethics Board (SEUREB).
During the experimental tests, an AD7606 data acquisition module was used to record
the voltage signals from various sensors. The acquisition module had a16-bit resolution
for analog-to-digital (A/D) conversion. A CJMCU-103 rotary potentiometer was used to
measure the knee angle position, and an ACS712-05B current sensor was used to measure
the generator current. The data acquisition card was configured to sample at 100 Hz for
logging the knee angular position, super capacitor voltage, and generator current. The
sampling rate for the EMG muscle activity was 1 kHz. Details of the experimental data are
shown in Figures 13–15 below.
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Figure 13. Plots of the measured exoskeleton knee angle and EMG thigh muscle activity with energy
harvesting control signals when the walking speed of the human subject was 1.2 km/h downstairs.
(a) Measured knee angular displacement and velocity of the Bowdencable-actuated knee exoskeleton
during movement down stairs. (b) Measured EMG signal of the thigh muscle activity and the
controlled energy harvest signal.
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Figure 14. Plots of the measured tracking performance of the exoskeleton knee angle when the
walking speed of the human subject was 1.2 km/h downstairs. (a) Measured and desired knee
angular displacement during movement down stairs. (b) Measured motor output or assistance torque
showing the mode switching operation of the exoskeleton system. The shaded regions in a light
green color correspond to the time intervals of the energy harvest mode, and the remaining regions
are for power assistance mode.
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Figure 15. Plots of the measured super capacitor voltage, charging current, and harvest power with
efficiency. (a) Time history of the measured 0.5F super capacitor voltage and the associated charging
current during energy harvesting. (b) Simulated and measured harvested power and efficiency (with
maximum and minimum shown) at different walking speeds downstairs. As the walking speed
increased, the harvested power also increased.

The time history of the measured knee angular displacement and velocity of the
Bowdencable-actuated robot is shown in Figure 13a as the human subject wore the ex-
oskeleton and walked downstairs. The range of the knee swing angle was around 55◦, and
the walking speed of the human was around 1.2 km/h (0.5-Hz gait frequency). Due to
the nonlinear and time-varying contact between the skin, clothing, and exoskeleton knee
bracket, the angular displacement had a certain amount of drift. Moreover, the amplitude
of each gait cycle could be different, as the human subject could never walk with a perfect
gait each time. Figure 13b plots the measured EMG thigh muscle activity and the associated
energy harvesting control signal. When negative work was detected (based on the mode
switching criteria in Figure 9), the energy harvesting signal became one, collecting the
kinetic and potential energy of the human subject. During the energy harvesting process,
the generated electricity inside the armature coil of the generator also created a damping
or resistive torque, which helped reduce the muscle activity of the human’s lower limb.
When positive work was detected, the energy harvesting control signal became zero, and
the exoskeleton switched to power assisting mode.

In the experimental test, a simple sinusoidal signal was used as the reference knee
angle trajectory with an elementary PI servo control for the power assisting cycle for
evaluation purposes. Figure 14a below shows the relationship between the desired knee
angle (in red) and the measured knee angle (in green). It can be seen that there was a certain
amount of discrepancy between the desired knee angle and the measured one, which could
be caused by possible backlashes in the Bowden cable transmission system, the gearbox
reducer, or complex nonlinear contact interaction between the human participant and the
exoskeleton brackets. Moreover, the imperfect trajectory tracking could also be related
to the servo controller’s design and parameter tuning, although this was not the focus
of the energy harvesting research in this paper. Despite the tracking error, the proposed
exoskeleton offered safe and soft interaction with the human participant without the risk
of instability or injuries. Figure 14b shows the output motor torque during operation,
where the purple curve is the simulated motor torque and the black curve is the measured
one. The shaded regions in light green correspond to the time intervals when the energy
harvesting mode was engaged. As can be seen from Figure 14b, the output motor torque
was a non-zero value during the torque assistance cycle and around zero during the energy
harvesting cycle. Note, however, that the motor still produced damping torque during the
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energy harvesting mode even though there was no electric power input, which is further
analyzed in following parts.

Figure 15a plots the time history of the super capacitor voltage and generator current
during energy harvesting. When the human subject performed knee extension, the thigh
muscles were performing negative work against gravity, which also brought an impact on
the knee joint of the human lower limb. The control system of the exoskeleton switched
to energy harvesting mode, and the generator output the electric current. As can be seen
from Figure 15, the current peak value was around 200 mA when the human subject was
walking at 1.2 km/h downstairs, and the super capacitor voltage rose only when the energy
harvesting module engaged. The harvested power and efficiency are shown in Figure 15b
at different walking speeds of the human subject going downstairs. As expected, the faster
the walking speeds, the higher the harvested power. Here, a maximum harvested power of
3.2 W was obtained at a walking speed of 3.6 km/h, which was close to the normal speed.
The harvester efficiency, however, did not simply increase with the walking speed as the
harvested power did. When the walking speed was too slow, stictions and discontinuous
movements in the transmission system were dominant, leading to low harvester efficiency.
When the walking speed was too high, more velocity and torque losses occurred in the
transmission process of the knee joint movement from the human body to the exoskeleton.
As a result, the efficiency of the harvester reached some optimal point when the walking
speed was around a certain value (around 2 km/h) in the experiment. Note that higher
walking speeds downstairs were not tested, as they were dangerous and may have caused
instability and injuries to the human participants during the test. The summarized data of
the harvested power and efficiency are listed in Table 4 below for both the simulated and
measured results at different walking speeds.

Table 4. Summary of the harvested power and efficiency at different walking speeds.

Walking Speed Harvested Power
Simulated and Measured

Harvester Efficiency
Simulated and Measured

1.2 km/h 0.80 W 0.30 W 3.07% 1.15%
1.8 km/h 2.15 W 1.25 W 3.67% 2.13%
2.4 km/h 2.81 W 1.97 W 2.71% 1.89%
3.0 km/h 3.60 W 2.45 W 2.21% 1.51%
3.6 km/h 4.48 W 3.23 W 1.91% 1.38%

5.3. Analysis of Knee Torque Damping and Muscle Activity

The damping torque produced by the generator in this paper was obtained using the
measured current in Figure 15a, where the torque constant Kt = 9.55 Kg = 0.4221 Nm/A
was applied, which is shown in Figure 16 below. In Figure 16a, the torque–displacement
loop is plotted, where only the gait phase with energy harvesting is shown. For the gait
cycles without energy harvesting, the damping torque was around zero (not shown for
clarity of the plot). In Figure 16b, the torque–velocity loop is plotted. As the angular velocity
data were quite noisy due to numerical differentiation, a scatter plot was used with the
fitted curve (in solid green), and the simulated damping torque curve was also plotted as a
comparison (in dashed red). From Figure 16b, it can be seen that the damping torque was
always zero when the angular velocity was below a certain value. This value corresponded
to the point where the output voltage of the generator could overcome the sum of the super
capacitor voltage (USC = 1 V here) and rectifier diode voltage loss (∆Udr = 0.7× 2 = 1.4 V).
There was also some amount of offset between the simulated damping torque curve and
the fitted experimental damping curve. This offset was mainly caused by friction in the
system, which lowered the damping effect of the generator.
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A comparison of the EMG thigh muscle activity with and without the energy harvest-
ing control is presented in Figure 17. The EMG signals here were rectified and low-pass
filtered for better presentation of the thigh muscle activities, as shown in Figure 17a. The
box plots of the EMG signals are plotted in Figure 17b, where a reduction of 7.91% for the
median EMG signal was observed when there was energy harvesting.
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Figure 17. Plot and comparison of the measured EMG thigh muscle activity without and with energy
harvesting when the walking speed of the human subject was 1.2 km/h downstairs. (a) Comparison
of the averaged EMG thigh muscle signal from the experiment in one gait cycle (rectified and low-
pass filtered). (b) Box plot of the averaged EMG thigh muscle activity from the experiment, where a
reduction of 7.91% was observed from the experimental tests.

6. Conclusions

In this paper, a flexible Bowdencable-actuated lower limb knee exoskeleton was devel-
oped with the capability of both assisting human movements and harvesting kinetic energy
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from the human body. The electromagnetic unit can operate as a generator and impact
absorber for the knee joint when the lower limb decelerates or goes downstairs. Unlike
conventional mechanical dampers, the effective electrical damping of the generator during
the energy harvesting process can be adjusted and regulated by the microcontroller based
on the user’s specific needs during operation. The harvested energy is regulated and stored
in super capacitors to power wireless electronics when needed. The experimental results
showed an average of a 7.91% reduction in thigh muscle activity, with a maximum of 3.2 W
of electric power being generated during movement down stairs. As a result, the proposed
energy harvester design in this paper offers better wearing synergy when compared with
previous designs (e.g., the bulky “backpacks” [21,22]). Furthermore, it combines the ad-
vantages of previous devices for both the soft and unpowered exoskeletons for energy
harvesting (e.g., [7,24,25]). However, friction in the Bowdencable transmission and gear box
as well as the internal resistance of the generator armature caused a significant amount of
loss during the energy harvesting process, which will be the focus of improvement in future
research. Even so, the proposed design offers important prospects for the realization of
lightweight wearable exoskeletons with improved efficiency and long-term sustainability.
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