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Abstract: The Bird-like Flapping-wing Air Vehicle (BFAV) is a robotic innovation that emulates the
flight patterns of birds. In comparison to fixed-wing and rotary-wing air vehicles, the BFAV offers
superior attributes such as stealth, enhanced maneuverability, strong adaptability, and low noise,
which render the BFAV a promising prospect for numerous applications. Consequently, it represents
a crucial direction of research in the field of air vehicles for the foreseeable future. However, the
flapping-wing vehicle is a nonlinear and unsteady system, posing significant challenges for BFAV to
achieve autonomous flying since it is difficult to analyze and characterize using traditional methods
and aerodynamics. Hence, flight control as a major key for flapping-wing air vehicles to achieve
autonomous flight garners considerable attention from scholars. This paper presents an exposition
of the flight principles of BFAV, followed by a comprehensive analysis of various significant factors
that impact bird flight. Subsequently, a review of the existing literature on flight control in BFAV is
conducted, and the flight control of BFAV is categorized into three distinct components: position
control, trajectory tracking control, and formation control. Additionally, the latest advancements in
control algorithms for each component are deliberated and analyzed. Ultimately, a projection on
forthcoming directions of research is presented.

Keywords: flight control; position control; trajectory tracking control; formation control

1. Introduction

Researchers have drawn inspiration from flying animals to create various flight sys-
tems, including fixed-wing, rotary-wing, and flapping-wing systems [1,2]. Therein, fixed-
wing systems lack flexibility and are incapable of hovering [3]. However, the efficiency of
rotor wing systems in generating lift during hovering flight is reduced at low Reynolds
numbers [4]. Flapping-wing vehicles, developed based on bionic principles [5,6], offer
advantages over fixed and rotary wings, including high energy utilization, low noise [7],
strong maneuverability, and stealth [8,9]. And flapping-wing vehicles possess the capa-
bility to scrutinize the underlying mechanisms of agile flight in actual avian and insect
species [10], as well as accomplish intricate and challenging objectives via clustering be-
haviors [11]. Consequently, flapping-wing air vehicles exhibit auspicious prospects and
substantial potential for employment in many domains. The civilian side can be utilized for
environmental assessment, remote sensing, security surveillance, border patrol, etc., as well
as for reconnaissance missions in physically difficult-to-reach and hazardous locations [12]
to carry out risky or dirty tasks like radiation detection, chemical spill cleanup, or working
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in areas with high electromagnetic intensity. The considerable dimensions of big BFAVs,
in contrast to flapping-wing air vehicles resembling insects, coupled with their large load
capacity, render them suitable for specialized missions. For instance, BFAVs outfitted
with miniature cameras and high-energy microbombs can function as covert and precise
weapons for targeted attacks [13].

Flapping-wing air vehicles have become a research hotspot [14,15] in recent years
due to the development of microelectronics, intelligent materials, precision machining,
and other high technologies, as well as the demand for progress in industrial technology
and education. This bionic technology has advanced significantly. Internationally, some
technology corporations and universities have conducted in-depth research on flapping-
wing air vehicles, producing physical prototypes that highly mimic birds in nature in
form and function and have successfully achieved autonomous flight. The main ones are
Nano Hummingbird [16] (Figure 1a) from the American AeroVironment Corporation, Robo
Raven [17] (Figure 1b) from the University of Maryland, the bionic silver gull “SmartBird”
(Figure 1c) and the bionic rainbird “BionicSwift” (Figure 1d) from the German Festo,
“USTBird” by He Wei’s team at the University of Science and Technology Beijing [18–21]
(Figure 1e), the bionic phoenix “HIT-Hawk” and “HIT-Phoenix” (Figure 1f) [22] by Xu
Wenfu’s team at Harbin Institute of Technology (Shenzhen), “Sky Hawk” (Figure 1g) by
Ang Haisong’s team at the Nanjing University of Aeronautics and Astronautics, “Big
Two-jointed Bird” (Figure 1h) by the team of Beihang University, and the “Dove” [23]
(Figure 1i) and “Cloudy Owl” [24] (Figure 1j) by the team of Song Bifeng from Northwestern
Polytechnical University.
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Figure 1. International BFAVs: (a) Nano Hummingbird; (b) Robo Raven; (c) SmartBird; (d) Bionic-
Swifts; (e) USTBird; (f) HIT-Phoenix; (g) Sky Hawk; (h) Two-jointed bird; (i) Dove; (j) Cloudy Owl.
These figures are taken from the internet.

Some of the most representative studies are the bionic rainbird “BionicSwift” from
the German Festo and “Cloudy Owl” from Northwestern Polytechnical University. Festo’s
bionic swift, “BionicSwift”, has a body length of 44.5 cm, a wingspan of 68 cm, and a weight
of only 42 g. The bionic air vehicle is quick and flexible and can make tight maneuvers
and flying loops. Additionally, actual flight tests have shown that five BionicSwifts may
maneuver in unison and autonomously in the designated airspace while engaging with
the radio-based indoor GPS. To push the boundaries of endurance, load capacity, and
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environmental adaptability, Prof. Song Bifeng’s team has been designing more bionic and
effective flapping-wing air vehicles. The team’s “Cloudy Owl” flapping-wing air vehicle
achieved a new world record in 2022 by successfully flying an autonomous course for
154 min and making a soft landing.

Flight control, as an integral part of the research on flapping-wing air vehicles, is the
basis for the realization of autonomous flight, trajectory orchestration, and other capabilities
of the air vehicle. A highly bird-like flapping-wing air vehicle not only needs to mimic
the shape and flight mode of a bird but also needs to be more capable of accomplishing
complex flight maneuvers such as turning, diving, and flipping like a bird. In consideration
of the fact that the flapping-wing air vehicle is a nonlinear and unsteady system, it is
susceptible to factors such as environmental disturbances. Moreover, the mass and size of
the flapping-wing system greatly limit energy, sensors, and airborne processing, leading to
a sharp decline in performance. Hence, it is imperative to use well-defined flight control
algorithms to improve the stability of the system. The key way to obtain fine vehicle control
and make the flapping-wing air vehicle fly more nimbly, steadily, and safely is through
effective and precise algorithms. Therefore, excellent flight control algorithms are crucial to
flapping-wing air vehicles’ flight performance and application prospects. Based on this
background, this paper investigates the flight control algorithm of BFAV with nonlinearity,
parameter coupling, and uncertainty and summarizes the research progress of the BFAV
flight control algorithm so far.

The structure of this essay is as follows (Figure 2). The first part introduces the
principles of bird flight. The second part demonstrates the latest development of the BFAV’s
flight control algorithm from three perspectives: position control (including attitude control
and height control), trajectory tracking control, and formation control, and the third part
summarizes the progress of the BFAV and offers a prediction for the future of its research.
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2. Mechanism of Bird Flight

The remarkable flying capabilities of insects and birds in their natural habitats have
been extensively studied [25]. In an effort to create a vehicle with similar flight abilities and
effective endurance, researchers have endeavored to replicate the flight principles of birds.

The wing, which is the most vital component of avian flight, is a complex structure
consisting of primary and secondary flight feathers, covering feathers, and down feathers
that span the entire wing. This intricate structure can be divided into two distinct parts,
namely the inner and outer wings [26], as depicted in Figure 3a. When flying, birds
periodically flutter their wings in a certain rhythm to provide the lift and thrust needed
for flight [27]. A typical macroscopic flutter of a bird’s wings consists of waving, twisting,
sweeping, and folding [28], as shown in Figure 3b. Among them, waving motion is the
most fundamental type of flapping, and other motions play distinct roles by superimposing
waving [29]. And for the BFAV, it is mainly based on the Anti-Karman vortex street
principle to obtain propulsion in order to achieve effective endurance flight performance
and maximum propulsion efficiency [27]. The wake vortex generated by fluttering the
wing forms the Anti-Karman vortex street, which causes the flow field in the wake of the
wing to form thrust. At a particular forward flight speed, the wing shape will be similar to
that of a fixed wing so as to create enough quasi-constant aerodynamic lift.
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SINICA Technologica.

The wing is an integral part of a flapping-wing air vehicle. The different forms of
wing bending during flapping make the wings flexible and contribute significantly to
the aerodynamic efficiency of flapping motion [11]. Furthermore, additional research has
demonstrated that the folding action of the wings can improve their efficiency to produce
lift and reduce energy loss [30]. Under inertial and aerodynamic loads, different flutter area
distributions generate varying degrees of torsional deformation in their various spreading
profiles. This twist modifies the magnitude of flapping lift by altering the size of the
leading-edge vortex and the direction of the differential pressure forces on the upper and
lower surfaces of the wing [29]. To achieve wing deformation and subsequently control the
forces interacting with the air, the BFAV uses a flexible wing.

The aerial flight environment is complex and variable nonetheless, as it incorporates
unstable flows from a variety of origins, such as wind gusts and turbulence that may be
suffered during flight [31]. When confronted with wind gusts, birds are enabled to rapidly
adjust their wing heights and rotate around their shoulders to make their wings rise with
the gusts in order to minimize the impact of the gusts. This preflex mechanism suppresses
the gust pulse through inertial effects and reduces the movement of the bird’s torso and
head [32]. Atmospheric flows are usually turbulent. Thus, stabilizing turbulence is critical
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for flying animals. In the face of turbulence, birds have complex coping strategies. This
includes making both active and passive adjustments to the kinematics of wing beats and
also adapting by adjusting the shape and angle of the wings. Additionally, birds are able
to sense and utilize the approximately stationary flow structure in turbulence to reduce
the influence of turbulence and improve flight efficiency. By investigating the issue of how
feathers stick together to form a deformed wing, Matloff et al. discovered that when a bird
moves its skeleton to alter the shape of the wing plane, the flight feathers on the wings are
redistributed as a way to be robust to turbulence [33]. Designing a hinged wing by using
the shoulder joint as a hinged suspension system can be applied to small-scale vehicles
with proper adaptations. Implementing a similar preflex mechanism in a flapping-wing air
vehicle can also help mitigate the effects of gusts and turbulence without increasing the
computational burden [32]. In addition, the tail of birds also plays an important role in their
flight. Through the coordination of their wings and tails, birds perform various maneuvers
of aerial flight, such as spins, dives, and flips. Most studies of the aerodynamic properties
of an air vehicle’s wing and tail are currently conducted using CFD simulations [34–36]. It
was found that the overall efficiency and average thrust of each wing increased by 17% and
126%, respectively, when compared to a single flapping-wing air vehicle with proper tail
position and a setting angle [35]. A suitable tail section can extend the vehicle’s range in
addition to enhancing flight maneuverability, which is advantageous for missions involving
long flight durations. In the flight control of BFAVs, the configuration of the tail section
of the flapping-wing air vehicle can provide many benefits, including static stability and
easier control methods [36]. Moreover, the tailed vehicle’s tail is essential for maintaining
its attitude [37]. Flight maneuvers such as roll, and pitch are possible due to the exact
deflection of the tail control surface utilized by the controller in conjunction with wing
flapping. The synergy between the wing and the tail accomplishes the agility of the BFAV.

In conclusion, the geometry of avian wings and their deformation, the arrangement of
feathers, and the synergistic cooperation between wings and tail are critical determinants of
avian flight. The predominant mechanism of flight control is achieved through the flapping
of wings and tail in unison, as no appropriate material has been identified for the distributed
control of the wings of a flapping-wing air vehicle, precluding the autonomous arrangement
of feathers akin to that of birds. Despite the potential benefits of this mechanism, its
practical application is still fraught with numerous challenges. One such challenge is the
intricate interplay between the non-constant wing wake flow and the wake, which often
eludes explicit modeling [36]. This complex wake aerodynamics can significantly affect
the stability of the flapping-wing air vehicle. Consequently, researchers have devoted
considerable effort to investigating flight control algorithms, as reliable flight control is
a crucial determinant of mission success. The study of flight control algorithms not only
helps to improve the flight performance of BFAVs but can also contribute to the better
development of the field. In the next section, we will highlight the flight control algorithms
of recent years.

3. Flight Control

The control algorithm of BFAV has been a popular subject of study in the academic
realm. The flight control algorithm can be categorized into three primary components:
position control, trajectory tracking control, and formation control. Position control is the
fundamental element of the control system, encompassing attitude and height control,
which guarantee the air vehicle’s maintenance of the correct attitude and height during
flight. Trajectory tracking control directs the air vehicle to follow a predetermined trajectory
and can be utilized for various tasks such as cruise and search. Eventually, the implementa-
tion of formation control will allow for collaborative flight among multiple BFAVs, thereby
enabling the execution of mission assignments, cluster searches, and other related activities.
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3.1. Position Control
3.1.1. Attitude Control

Attitude control is essential for achieving precise orientation and tracking flight for
all types of air vehicles [38]. The adjustment of pitch, yaw, and roll attitudes is an integral
aspect of attitude control. With the goal of achieving the flapping wing microair vehicle’s
(FWMAV) pitch control, Wang et al. have proposed a dynamic linearization approach based
on a model-free adaptive control scheme [39]. This approach incorporates an anti-saturation
compensator to prevent input saturation, thereby enhancing the efficacy of the model-
free adaptive control scheme for pitch control in comparison to conventional methods.
Furthermore, Wang et al. have implemented the bionic wing-tail contact mechanism for
pitch control through a comprehensive investigation of the biological excitation mechanism.
They have established a precise tail control model for the air vehicle and designed a
frequency-dependent tail controller [40] that can effectively achieve pitch stability by
utilizing the flapping-induced flow. Birds rely on this mechanism for attitude control.
Fully referencing it in a flapping-wing air vehicle facilitates the design of the controller
and further enhances the bionic level of the flapping-wing air vehicle. Jiao et al. [37]
incorporated an X-shaped flap downstream of the main flap for the roll, pitch, and yaw
control surfaces on the tail, as well as the tail rotor, as illustrated in Figure 4. The “Northern
Hawk” unsteady aerodynamic model was utilized, which accounts for unsteady effects and
wing-tail interactions. The pitch torque is produced by the coordinated motion of the two
tail control surfaces; the roll torque is generated by the different polarities of the deflection;
and a bi-directional controllable tail rotor assembly is installed to actively generate the yaw
torque.
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The bionic flapping-wing vehicle is widely recognized as a nonlinear and unsteady
system [41], characterized by nonlinear, time-varying, and highly coupled features that
pose significant challenges for attitude control. Prior research has mentioned conventional
attitude control issues for stiff bodies in three dimensions, as documented in [42,43],
which highlight structural vibrations and external disturbances as typical problems arising
from the use of flexible components. Despite the numerous control schemes proposed
by researchers to mitigate these issues, each method has its limitations. Consequently,
contemporary attitude control predominantly employs a hybrid control strategy, which
leverages the advantages and limitations of individual control techniques to supplement
each other. This approach is exemplified by sliding mode control (SMC). Bluman et al.
demonstrated that SMC effectively mitigates the uncertainty of the flapping-wing air
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vehicle’s model and external disturbances that microair vehicles may encounter [44]. Due
to the requirement of knowledge pertaining to the matching requirements for the system’s
uncertainty terms and logical switching utilizing switching functions to maintain the
system in sliding mode, jitter remains an inevitable consequence of SMC. Hence, Hang
Li et al. have proposed the integration of adaptive control [38] with SMC to address
its inherent limitations. Adaptive control is utilized to address the limitations of SMC,
while SMC exhibits notable resilience to sinusoidal disturbance airflow and promotes the
stability of flapping-wing air vehicle attitude control. Additionally, SMC compensates for
the inadequate responsiveness of adaptive control in the presence of rapidly changing
parameters. Furthermore, Qian et al. introduced a novel hybrid attitude control approach
based on quaternion, which comprehensively accounts for the underdriven and induced
aerodynamic effects in the development of a flapping-wing flight controller, marking a
significant advancement in this field [45]. The successful execution of stable hovering
and forward flight by the flapping-wing air vehicle has provided a theoretical foundation
for addressing the issue of three-dimensional attitude control with underactuation in the
yaw axis.

3.1.2. Height Control

The stable and precise control of flight altitude is a crucial aspect of flapping-wing air
vehicle flight control, as acknowledged in the literature [46]. Accurate altitude adjustment
significantly impacts flight performance. FWMAV has a limited carrying capacity due to
its small mass and size and has an urgent demand for sophisticated and miniaturized sen-
sors. In the past, research on flapping-wing air vehicles primarily concentrated on control
algorithms, owing to the constraints of scientific and technological advancements. Subse-
quently, with the rapid development of science and technology, researchers began to greatly
improve the flapping-wing structure and hardware system. Verboom et al. introduced
the initial dependable onboard state estimation and onboard control for the flapping wing
microair vehicle (FWMAV) by utilizing a barometer to determine atmospheric pressure [47].
A PI height controller was designed based on a fixed reference pressure set in advance,
which enabled the vehicle to achieve successful hovering, albeit with a large hovering range
and low performance. Ryu and Kim et al. [48] employed the barometer for height control
and developed an FWMAV with dual main flaps and tail fins, utilizing a PID controller
with an optimized structure. The vehicle was able to sustain a near-optimal altitude for an
extended duration with minimal deviation owing to this design. However, the imprecise
nature of barometric measurements and their susceptibility to atmospheric conditions pose
significant limitations. Conversely, cameras do not accumulate errors, exhibit robustness
against external disturbances, and have versatile applicability. As a result, vision systems
have been leveraged to assist height regulation by controllers [46,49–51]. For instance,
He et al. introduced a model-based controller that utilizes an external vision system as
the height sensor and employs a PID control algorithm based on vision measurements to
facilitate the flapping-wing air vehicle’s height-holding control [51]. This approach exhibits
minimal errors and enables the flapping-wing vehicle to precisely track the desired altitude.

The PID control technique is a conventional method for controlling the height of
flapping-wing air vehicles in flight control studies, but its effectiveness is restricted when
applied to complex nonlinear systems and complex signal tracking. Consequently, re-
searchers have shifted their focus towards utilizing more advanced control algorithms,
such as the adaptable neural network algorithm. In this regard, AI-Mahasneh et al. devel-
oped an adaptive control system that employs a generalized regression neural network
(GRNN) as the height controller for FWMAVs [52]. Upon comparison with a conventional
PID controller, it was discovered that the control performance of the PID deteriorates
swiftly with alterations in the input, whereas the GRNN controller can readily adjust to
input changes. Furthermore, the performance of the GRNN-based controller enhances over
time as the neural network parameters approach the optimal parameters. This substantiates
the superiority of the GRNN controller over the classic PID controller. Additionally, Mou
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et al. conducted a study on the challenges associated with height control in the presence
of disturbances [53]. They proposed an active perturbation suppression controller to es-
timate and suppress both internal and external disturbances, which effectively mitigates
overshoot and enhances height control accuracy. In the same year, Qian et al. introduced a
novel hybrid neural network-based switching control strategy [54], incorporating a lateral
position error switching control strategy and an update strategy for the position controller.
Figure 5 displays the system’s block diagram and control task, with “FF mode” denoting the
forward flying mode, “FT mode” representing the fine-tuning mode, and “NN” signifying
the neural network. The experimental outcomes demonstrate that the proposed strategy
effectively stabilizes the flapping-wing air vehicle at the intended 3D location with high
dependability and efficacy.
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3.2. Trajectory Tracking Control

The utilization of trajectory tracking control in pre-planning and optimizing the flight
trajectory of BFAVs based on attitude and height control can enhance the stability and
accuracy of the air vehicle during flight. Consequently, trajectory tracking control assumes
a crucial role in the operation of flapping-wing air vehicles.

The control algorithm for trajectory tracking in a flapping-wing air vehicle necessitates
consideration of various factors involved in the flight itself, such as nonlinear modeling,
time-varying disturbances, and unidentified external uncertainties, which can potentially
impact the stability and precision of the control system. Research has shown that neu-
ral network techniques are proficient in managing nonlinear systems with exceptional
approximation [55,56]. He et al. developed a neural network controller with full-state
feedback and output feedback to mitigate the uncertainties associated with nonlinear
FWMAV [57]. The controller demonstrated effective trajectory tracking. The researchers
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conducted a simulation to compare the performance of four controllers: the PID controller,
the model-based controller, the output feedback neural network controller, and the full-
state feedback neural network controller. The comparative analysis reveals that the PID
controller exhibits considerable tracking error and inadequate performance in tracking the
desired trajectory, thereby rendering it unsuitable as a standalone controller for trajectory
tracking. The model-based controller, on the other hand, can accomplish trajectory tracking,
but it necessitates the acquisition of all system parameters. A comprehensive evaluation
indicates that full-state feedback neural network control yields the optimal tracking effect.
Nevertheless, the simulation outcomes for the diverse controllers do not accurately reflect
the optimal trajectory tracking outcome for this type of controller. For instance, Wissa et al.
have demonstrated the effectiveness of PID control through the design of an integrated
two degree-of-freedom controller [58], which enables robust trajectory tracking even in
the presence of external perturbations. Furthermore, they have developed a high-fidelity
nonlinear and time-periodic six degrees of freedom dynamics model of the FWMAV for
model-based control purposes, utilizing averaging techniques to propose a novel Lyapunov-
based closed-loop control approach [59]. Upon achieving dependable trajectory tracking
through the use of feasible control inputs, the controller exhibited resilient performance in
the face of external perturbations and parameter uncertainties. In light of this high-fidelity
model, a novel integral-command filter block backstepping controller was developed by
researchers [60]. This controller surpasses Lyapunov-based closed-loop control methods in
terms of its adaptability and performance when confronted with constant and time-varying
matching and mismatching disturbances. It can effectively track any desired reference
trajectory with practical control.

Model-based controllers [61] enable the simulation and analysis of the model, thereby
enhancing control accuracy. However, their implementation requires the development
of intricate models beforehand and a high level of modeling proficiency. Conversely,
model-free controllers do not require pre-modeling and are more flexible in unfamiliar
environments. Table 1 outlines the model-free control techniques typically employed in
trajectory tracking control, along with their advantages and disadvantages.

Furthermore, practical applications of FWMAVs are often impeded by challenges such
as input deadband [62] and input restrictions. To address the issue of input dead zones,
Tang et al. developed a dynamic surface controller based on a predefined performance
function and an adaptive neural network estimator [63]. This approach effectively mitigates
the tracking inaccuracy associated with dead zones and facilitates the control of position and
attitude trajectory tracking for flapping-wing air vehicles. The adaptive tracking controller
for the FWMAV system designed by Qian and Fang et al. ensures satisfactory control
performance even in the presence of various perturbations and input constraints [64].

Table 1. Advantages and disadvantages of common model-free control methods for trajectory
tracking.

Control Method Advantage Disadvantage

PID Control [57,65] Simple and easy to implement, fast response time,
and a wide range of applications

Dependent on precise adjustment of
parameters, sensitive to system modeling

errors, and not adaptive

Adaptive Control [18,66] Self-adjustable control parameters according to the
real-time status of the system

Adaptive factors are process independent
and require additional conditions

Neural Network Control [67]

Strong nonlinear approximation capability is
applicable to most nonlinear control problems and

can effectively deal with systems with incorrect
mathematical descriptions

A large amount of training data is
required, which is computationally

intensive and requires high hardware
requirements, and fewer samples will

lead to poor system performance
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Table 1. Cont.

Control Method Advantage Disadvantage

Iterative Learning Control [68] No need for system modeling and
parameter estimation

Requires large amounts of experimental
data and computational resources,
sometimes with slow convergence

and overfitting

Fuzzy Control [69]
No accurate physical model is required, it is easy

to design and apply, and the adjustment of
parameters can effectively handle nonlinearities

For inexperienced people, it is harder to
choose the right parameters

3.3. Formation Control

The completion of intricate missions often requires the use of multiple flapping-wing
air vehicles, as relying on a single vehicle can prove challenging. The advancement of
group intelligence has led to increased interest in the cluster formation technology of
these vehicles. Formation flying is a flight strategy that maximizes the utilization of
airflow and aerodynamic effects through the formation of multiple vehicles in flight with
predetermined positional alignments and attitudes. For instance, a rear vehicle may utilize
vortices generated by a front vehicle in the formation to reduce its own resistance and
energy consumption. Furthermore, interactions among the vehicles have the potential to
significantly decrease air resistance and enhance overall flight efficacy. Therefore, flapping-
wing air vehicles’ cluster formation transformation, by emulating the characteristics and
laws of bird clusters, can achieve optimal and balanced energy consumption and enhance
long-distance endurance, as evidenced by previous research [70].

Significant avian species undergo extensive migration with the changing of the seasons.
Wild geese, for example, migrate in formations that take the shape of “V,” “I,” or “L.”
Among these formations, the “V” formation is deemed the most effective for achieving
group energy savings, a phenomenon known as the “Wild Geese Queue Effect” [71,72].
Numerical simulations conducted by Wee-Beng Tay et al. [73] further support the benefits of
V-formations in improving the range of flapping-wing systems. As a result, the majority of
studies on BFAV formation flight control focus on the “V” formation. Andersson et al. [74]
conducted a thorough investigation into the “V” formation of birds and determined that the
acute angle “V” formation is optimal for larger birds, with energy savings being primarily
realized by the followers. Conversely, the obtuse angle “V” formation is more suitable for
smaller birds, with energy savings being relatively consistent across all positions.

An optimal flight arrangement has the potential to mitigate the energy consumption
of the collective and enhance its range. Nevertheless, the alterations in airflow during the
flight are multifaceted, and the crux of formation flight lies in the ability to promptly adapt
to environmental changes. The realization of collaborative control of multiple air vehicles
is the prerequisite guarantee for the completion of excellent flight arrangements and the
realization of formation flight. In contrast to the flight control of a solitary flapping-wing air
vehicle, the management of formation flight necessitates not only the appropriate control
of each air vehicle but also the synchronized administration of multiple air vehicles to
avert collisions during formation alterations. The primary techniques for formation control
comprise the leader-follower method, the behavior-based method, the virtual structure
method, and the consistency method. The advantages and disadvantages of each of the
four control approaches are enumerated in Table 2 of this composition. The leader-follower
approach is primarily characterized by the leader’s adherence to a predetermined trajectory,
while the follower maintains a relative position by tracking the leader’s speed, yaw angle,
and altitude [75]. This approach has gained widespread adoption in formation control due
to its simple control structure and scalability [76]. Yuanpeng Wang has developed a bionic
flapping-wing formation flight control method based on the leader-follower approach to
attain straight-line flight, circular trajectory flight, and formation transformation within
a triangular formation. The method incorporates the formation’s uniformity in terms of
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speed, heading, and altitude. The approach employs behavior-based simulation to emulate
biological response behavior by defining fundamental control behaviors of the air vehicle
and integrating them to accomplish sophisticated behaviors of the formation, such as
following and cooperation [77]. The virtual structure approach posits that the formation is
a virtual rigid body, wherein each member is a fixed point within the said structure, and
the formation is sustained by maintaining a specific distance between each member and its
corresponding fixed point within the virtual rigid body [78]. Conversely, the consistency
technique governs the relative velocity and relative position of the formation’s members to
ensure uniformity in their motion and behavior. It has become a relatively active research
topic in this field due to its high reliability, good self-healing, and scalability.

Furthermore, communication and obstacle circumvention have emerged as primary
concerns in the realm of formation control. The existing literature has identified artificial
potential fields [79] and distributed model predictive control [80] as the predominant
approaches employed to address the obstacle avoidance issue. Wu et al. have effectively
addressed the obstacle avoidance issue by integrating the enhanced consistency algorithm
and particle swarm algorithm to circumvent static obstacles of diverse shapes and the model
predictive control concept with the particle swarm optimization algorithm to tackle complex
scenarios involving dynamic obstacles [81]. Communication interaction is realized through
formation communication, which is contingent upon the formation’s topology. There are
two types of topologies in most recent investigations, namely switching topology and fixed
topology. However, maintaining a fixed topology for the formation control problem poses
a challenge due to factors such as leader failure, constrained communication range, and
external interference. Consequently, the topology for the formation control problem is
predominantly switched [82]. Yin et al. assert that the information interaction within a
flapping-wing cluster is unidirectional, whereby the “follower” receives information from
the “leader,” and the “followers” in the rear row receive information from the “followers” in
the front row. The implementation of a V-shaped goose formation, as illustrated in Figure 6,
involved the alteration of the formation mid-flight to facilitate effective communication
and equitable energy distribution during formation flight [83].
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In general, formation flight of BFAVs has not received enough attention due to the
fact that the technology of flapping-wing vehicles is not as advanced as that of fixed-
wing and rotary-wing vehicles. While the control algorithms for formation flight have
been extensively researched and applied in the context of rotor-system air vehicles, the
utilization of such techniques on BFAV’s physical air vehicles has been comparatively
limited. Therefore, further research in this domain is warranted.

There is a close connection and interaction among these three primary controls, namely
position control, trajectory tracking control, and formation control. Position control is the
basis of trajectory tracking control and formation control, which are critical to the flight
stability of BFAV. Trajectory tracking control and formation control need the support
of position control to achieve more complex missions. Hence, these three controls are
interrelated in BFAV control research and can cooperate for optimal flying performance.
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Table 2. Advantages and disadvantages of the main control methods of formation flight.

Formation Flight Control Method Advantage Disadvantage

Leader-follower approach [84,85] Simple design, easy implementation, and
good tracking performance [76]

High dependence on the leader and poor
robustness [86]

Based on a behavioral approach [87]
Can adapt to changes in the environment

and flexibly adjust the formation to
handle multi-target missions

Difficult to model and less stable [86]

Virtual structure approach [78] High stability

High design and implementation
difficulty, high communication quality,

strong computing power, and low
reliability [88]

Consistent approach [81] Strong flexibility and robustness for large
formations and dense flights [89]

Requires high computational effort and is
highly influenced by the environment

4. Summary and Outlook

Bionics as an interdisciplinary discipline has garnered increasing attention in recent
years. Within this domain, research on flapping-wing air vehicles (BFAV) has emerged
as a hotpot of investigation. While some progress has been made in developing flight
control algorithms for BFAVs, achieving high precision and maneuverability in physical air
vehicles remains challenging due to the complexity of their models and the multitude of
factors that affect control. In light of these findings, this paper presents several perspectives
on the future research trajectory for BFAVs:

1. Control of flexible wing deformation. Due to the BFAV’s enormous wingspan, the
elastic deformation caused by the flexible wing during flutter will not only affect
its aerodynamic performance but also the stability of the system. He et al. created
a dynamic model of the flexible wing and applied the Lyapunov direct approach
to ensure the stability of the flexible wing system [90]. And the boundary control
scheme proposed by Lhachemi et al. ensured the consistent exponential stability of the
bending and torsional displacements of the flexible wing [91] and achieved vibration
control of the flexible wing. None of these plans, nevertheless, were integrated into
the flight control system of the BFAV. Therefore, knowing how to control the flexible
wing is an important step in enhancing the BFAV’s aerodynamic performance and
stability in order to lessen the impact of flexible wing deformation.

2. Reconfiguration of the controller. The traditional single-control algorithm can hardly
meet the flight control requirements of a flapping-wing air vehicle in different flight
modes, environmental situations, and missions under a nonlinear, non-constant
system. Therefore, the controller of the flapping-wing air vehicle can be modified
to extend the applicability and scenarios of BFAV. Aids based on different strategies,
such as switching strategy, adaptive strategy, etc., can be used to help the air vehicle
choose different controllers or numerous controllers in conjunction with one another
to improve the adaptability and scalability of flight control. This is a direction worth
exploring.

3. Multi-vehicle synergy and intelligent formation. Flapping-wing air vehicles are not as
mature as fixed-wing and rotary-wing air vehicles. Consequently, the accomplishment
of high-precision and highly maneuverable missions by a single physical flapping-
wing air vehicle is rare, and the instances of such vehicles performing multi-engine
synergy and intelligent formation are even scarcer. However, the efficacy and success
rate of a single air vehicle are limited when undertaking challenging tasks, such as
inspecting vast areas. The integration of intelligent information and multi-vehicle
coordination has the potential to enhance the scope of task execution and the reliability
of task fulfillment [92]. Consequently, a key research objective for the future is to
establish a formation of flapping-wing aerial vehicles that can perform operations
efficiently, akin to a flock of birds.
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The flight control techniques employed by BFAV are subject to ongoing enhancement
to effectively address diverse application scenarios and associated demands in the future.
This essay provides three promising avenues for research and exploration: flexible wing
deformation control, controller reconfiguration, multi-vehicle collaboration, and intelligent
formation.
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