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Simple Summary: Multiplex digital spatial profiling is a newly emerging approach for investigating
multiple RNA transcripts and proteins simultaneously in the context of intact tissue. This review
describes the different spatial technologies for the study of breast cancer, providing examples of
their applicability in research and clinical settings to guide diagnosis and prognosis and to inform
treatment decisions.

Abstract: While RNA sequencing and multi-omic approaches have significantly advanced cancer
diagnosis and treatment, their limitation in preserving critical spatial information has been a notable
drawback. This spatial context is essential for understanding cellular interactions and tissue dynamics.
Multiplex digital spatial profiling (MDSP) technologies overcome this limitation by enabling the
simultaneous analysis of transcriptome and proteome data within the intact spatial architecture
of tissues. In breast cancer research, MDSP has emerged as a promising tool, revealing complex
biological questions related to disease evolution, identifying biomarkers, and discovering drug
targets. This review highlights the potential of MDSP to revolutionize clinical applications, ranging
from risk assessment and diagnostics to prognostics, patient monitoring, and the customization of
treatment strategies, including clinical trial guidance. We discuss the major MDSP techniques, their
applications in breast cancer research, and their integration in clinical practice, addressing both their
potential and current limitations. Emphasizing the strategic use of MDSP in risk stratification for
women with benign breast disease, we also highlight its transformative potential in reshaping the
landscape of breast cancer research and treatment.

Keywords: spatial biology; breast cancer; single-cell analysis; spatial transcriptomics; spatial
proteomics

1. Introduction

Breast cancer now surpasses lung cancer as the most frequently diagnosed cancer
worldwide, with 2.3 million individuals diagnosed in 2020 and projections suggesting an
increase to 3.19 million by 2040 [1–3]. In the United States, it is estimated that 43,700 lives
were claimed from breast cancer in 2023 [3,4], highlighting the urgent need for innovative
diagnostic and treatment strategies. The rising incidence of breast cancer is partly due
to ongoing demographic shifts and lifestyle changes, including delayed childbirth, the
reduced frequency and duration of breastfeeding, unhealthy diets, and sedentary behavior,
alongside advancements in detection methods [5], emphasizing the need for continued
innovation in cancer care.

To reduce breast cancer mortality, identifying women at greatest risk is crucial. Risk
factors for breast cancer vary amongst women and can be categorized into modifiable and
non-modifiable factors. Non-modifiable factors include mutations in genes that confer
increased risk (such as BRCA1 and BRCA2), race/ethnicity, breast tissue density, history of
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benign breast disease, and hormonal milestones such as age at the first menstrual period
and age at menopause [5]. Modifiable factors include alcohol intake, smoking, dietary
habits, and exposure to harmful drugs and chemicals [5,6]. The evolving understanding
of how these diverse breast cancer risk factors interact has led to the development of
sophisticated multifactorial risk-assessment models that integrate molecular data, such
as gene expression profiles and genetic polymorphisms, and epidemiological data, such
as lifestyle and behavioral patterns. These models significantly enhance the precision of
individual breast cancer risk estimates, allowing for more targeted prevention strategies
and early interventions.

Despite advancements in risk-assessment models, a significant gap persists in our
ability to decipher the heterogeneity of breast cancer. Traditional diagnostic methods that
homogenize tissue samples can lose critical spatial information that is essential for under-
standing the microenvironment of cancer cells—a key determinant in cancer progression
and the response to treatment. By preserving this spatial context, multiplexed digital
spatial profiling (MDSP) captures the heterogeneity within a tumor, revealing how different
regions of the same tumor may respond differently to treatments. This precision not only
improves our understanding of breast cancer initiation and progression but is also critical
in personalizing the treatment of breast cancer patients. MDSP allows for a highly multi-
plexed, quantitative, and spatially resolved profiling of proteins and RNAs within a tissue
sample, providing efficiency in extracting rich data from a single biopsy and minimizing
the need for multiple invasive procedures, which reduces patient discomfort and healthcare
costs. The data obtained from a single MDSP analysis can guide treatment decisions more
effectively than multiple traditional tests, making it a valuable tool in both diagnosis and
treatment planning. Its applicability is not restricted to malignant conditions; it can also
offer insights into benign breast diseases for better risk stratification. By comparing the
molecular profiles of benign and malignant tissues, MDSP can help identify potential early
markers of malignant transformation, enabling the discovery of more effective prevention
strategies. Furthermore, MDSP may be employed in developing personalized prevention
strategies by correlating individual risk-factor profiles with specific molecular signatures.
At present, MDSP is primarily used in the research setting; however, these methods are in-
creasingly being applied in studies stemming from clinical trial data and, in some instances,
are the method of choice to test exploratory endpoints in clinical trials. Such investigations
represent the foundational studies that are building a body of evidence for its application
to clinical practice.

In this review, we explore a range of MDSP platforms, each providing a distinct
contribution to advancing breast cancer research. NanoString GeoMx stands out for its
high-precision spatial profiling, while 10× Genomics’ Visium provides in-depth transcrip-
tomic analysis. Imaging Mass Cytometry, Akoya PhenoCycler, and PhenoImager Fusion
provide detailed molecular imaging and advanced phenotyping. These platforms col-
lectively illuminate the complex molecular landscape of breast tumors. These insights
have proven useful in identifying disease subtypes, refining prognostic predictions, and
tailoring therapeutic strategies. Integration of MDSP with other diagnostic modalities,
such as anatomic or functional imaging, can enhance both its sensitivity and specificity. By
overlaying molecular and spatial data with clinical imaging, clinicians can obtain a more
precise understanding of tumor heterogeneity, as has been accomplished in other clinical
areas [7], leading to more personalized and effective treatment strategies. Additionally, the
combination of MDSP with different omic approaches, such as genomics and metabolomics,
can deepen our understanding of both the molecular drivers of breast cancer and identify
novel therapeutic targets. Overall, MDSP represents a promising approach to enhancing
our understanding of breast cancer, from risk prediction to therapeutic intervention. This
review aims to elucidate the potential and promise of MDSP, providing a comprehensive
view of its current applications and future perspectives in improving breast cancer care.



Cancers 2024, 16, 1615 3 of 18

2. The Importance of the Tumor Microenvironment in Breast Cancer Research

Understanding the tumor microenvironment (TME) is critical for driving advance-
ments in cancer research and treatment development. The TME is a complex and dynamic
system that includes not only neoplastic cells but also supporting cells like fibroblasts,
endothelial cells, adipocytes, and immune cells, as well as non-cellular components, includ-
ing the extracellular matrix (ECM) and soluble factors such as chemokines, cytokines and
growth factors [8]. The complex interplay between these components influences tumori-
genesis, metastasis, and treatment responses in breast cancer. As the stromal components
of the TME are tightly linked to metastatic processes, the structural properties of the TME
are also linked to clinical outcomes, including chemoresistance and recurrence [9,10]. The
advent of spatially-resolved high-plex molecular profiling technologies has revolutionized
the way we characterize the breast cancer TME by allowing simultaneous protein and
RNA profiling whilst maintaining the spatial context of these molecules, providing a more
detailed and holistic view of the TME [11].

Key processes in cancer progression, such as the recruitment of metabolic resources,
immune evasion, and epithelial-to-mesenchymal transition, occur within the TME, driven
by the interactions of tumor, immune, and stromal cells through spatial networks [12]. Deci-
phering these spatial networks is critical, and MDSP technologies provide this information
by quantifying and preserving the location of relevant markers. The value of spatial explo-
ration in cancer biology—which is at the core of the innovation of MDSP technologies—is
also reinforced by the understanding that a cell’s function and state are influenced by its
spatial context and interactions with neighboring cells [13]. In fact, abnormal spatial orga-
nization of tissues is a histopathological feature that pathologists rely on to make clinical
diagnoses [14]. Furthermore, a cell’s proximity to other cells and non-cellular structures
informs its phenotype and state, and it determines which signals the cell receives, whether
from cell–cell interactions or soluble signals exchanged between neighboring cells [15].
Thus, the ability of MDSP to map these interactions at the transcriptomic and proteomic
levels within the tissue context offers new insights into the biological processes and patho-
logical markers of the TME in breast cancer. Next, we describe the specific technologies
that enable spatial profiling and their applications in breast cancer research.

3. MDSP Technologies
3.1. NanoString GeoMx in Breast Cancer Research

NanoString GeoMx represents a significant advancement in the spatial analysis of
mRNA and proteins in tissue samples, addressing limitations of traditional in situ hy-
bridization and immunohistochemistry, which typically analyze only one to four genes
or markers at a time. NanoString GeoMx facilitates the high-throughput quantification of
proteins and immune cells in both stromal and intraepithelial compartments in breast and
other cancers, illustrating its broad utility in oncological research [16].

The GeoMx workflow involves tissue preparation and staining, imaging, region
of interest (ROI) selection, the photocleaving of oligos and oligo collection, and digital
quantification (Figure 1). The process begins with the incubation of formalin-fixed paraffin-
embedded (FFPE) tissue sections with oligo-conjugated antibodies (for spatial proteomics)
or oligo-conjugated RNA probes (for spatial transcriptomics), followed by imaging to
select ROIs. The instrument contains two digital micromirror devices that then direct UV
light to cleave oligos from the antibodies or RNA within the boundaries of the ROI. The
released oligos are then collected using a microcapillary and transferred to a well plate for
sequencing or digital counting with the nCounter system [17].

In recent studies, GeoMx has provided insightful findings in breast cancer research.
Schlam et al. (2021) used it to profile the TME of primary and metastatic HER2+ breast
cancer [18], discovering differences in immune cell infiltration and the expression of im-
mune activation markers, with primary tumors showing enhanced immune cell infiltration
within the stromal compartment compared with metastatic disease. Similarly, Omilian et al.
(2021) examined immune infiltration differences between African American/Black and
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European American/White females in estrogen receptor (ER)-positive and ER-negative
breast cancer, revealing demographic-specific disparities [19]. Moreover, Morrow et al.’s
investigation into IL6/JAK/STAT3 signaling in triple-negative breast cancer (TNBC) linked
high expression of STAT3 in tumor-associated stroma with adverse clinical outcomes, re-
duced CD4+ T-cell infiltration, and increased tumor budding. GeoMx spatial profiling
demonstrated differential gene expression in high-STAT3 tumors, shedding light on TNBC
heterogeneity and the intricate dynamics of the TME [20].
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Figure 1. Schematic of NanoString GeoMx spatial transcriptomic and proteomic workflow.
(a) Illustration of an oligo-conjugated antibody for protein detection or oligo-conjugated RNA probe
bound to the target transcript. (b) The process begins with the conjugated probes being incubated
with the tissue section, followed by imaging of the fluorescent markers for tissue location and se-
lection of ROIs. Micromirror devices cleave the oligos within the boundaries of the ROI, and a
microcapillary collects the cleaved oligos for nCounter or NGS readouts. Created with Biorender.com.

While GeoMx enables the use of a custom-defined set of biomarkers that includes
approximately 18,000 transcripts and 100 validated protein targets, highlighting its capacity
for broad molecular profiling, the CosMx spatial molecular imager complements this infor-
mation by offering RNA and protein expression analysis at the single-cell and subcellular
levels, with a focus on 1000 RNAs and 100 proteins [21]. This complementary suite of
technologies, with GeoMx’s broad-scale spatial profiling and CosMx’s detailed single-cell
analysis, provides a comprehensive toolkit for unraveling the complexities of the TME in
breast cancer, from the macroscopic landscape down to the minutiae of cellular interactions.
CosMx uses an automated microfluidic imaging system that gathers expression data from
cyclical in situ hybridization chemistry [22]. RNA or antibodies are linked to a target
binding domain or site-specific linker, respectively, with an in situ hybridization probe
(containing a readout domain), a photocleavable linker, and a fluorescent reporter. After
traditional target retrieval via permeabilization and fixation, reporter sets are added to the
tissue, and the slide is assembled in a flow cell and CosMx machine. Following binding
to the complementary sequence the fluorescent reporters are UV-cleaved and washed,
enabling the next set of reporters to be added [23]. The readout domain on the in situ
hybridization probe enables readout directly from the tissue without the need for the
nCounter system. As such, CosMx is considered an image-based spatial transcriptomic ap-
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proach, in contrast to GeoMx, which collects barcoded RNA and processes it for sequencing
(sequencing-based approach) [24].

3.2. 10× Genomics’ Visium in Breast Cancer Research

Visium spatial gene expression by 10× Genomics provides a molecular profiling
method to map the entire transcriptome within the tissue context. This technology enables
the measurement of gene expression from a tissue sample and identifies where this activity
occurs, revealing the complex interplay between cells in their native environment. The
Visium process starts with tissue sectioning (using either freshly frozen or FFPE samples)
and can involve either H&E staining for morphological insights or immunofluorescence
for protein co-detection. Following imaging, the coverslip is removed to proceed with
barcoding and library construction on glass slides coated with mRNA capture probes.
For frozen samples, mRNA is released, captured by adjacent probes, and converted into
barcoded cDNA for sequencing. In contrast, FFPE samples undergo probe hybridization to
target genes, with ligated probes binding to capture probes after permeabilization. The se-
quencing libraries generated for both sample types create a spatially resolved transcriptome
map (Figure 2) [25].
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Figure 2. Workflow of 10× Genomics’ Visium for spatial transcriptomics. FFPE tissue or freshly
frozen tissue are prepared on glass slides coated with mRNA capture probes. The slides are either
stained with H&E or immunofluorescent markers and imaged. Following removal of the coverslip
and tissue permeabilization, mRNA binds to probes for cDNA sequencing in frozen samples, or
hybridized probes ligate to capture probes in FFPE samples for DNA sequencing. The resultant
spatial transcriptome map overlays the reads onto tissue images. Created with Biorender.com.

In contrast with NanoString GeoMx/CosMx, described above, Visium captures the
entire coding transcriptome through a non-targeted approach, whereas the NanoString
platforms employ panel-based approaches for targeted RNA capture. Visium’s specificity
for polyadenylated RNA also differs from the capability of GeoMx/CosMx to capture
specific RNA species with a custom-designed probe [26]. The strengths and weaknesses
as well as assay variations between GeoMx and Visium have been objectively assessed
specifically in breast cancer tissue by Wang et al. (2023) [27].

Recent studies highlight how Visium can complement histopathology to unravel the
tumor microenvironment, advance biomarker discovery, and identify novel therapeutic
targets [28]. For instance, Liu et al. (2023) profiled metastatic axillary lymph nodes paired to
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primary breast tumors to characterize early dissemination events, uncovering key metabolic
changes during lymph node metastasis [29]. By combining spatial transcriptomics with
single-cell RNA sequencing, they linked a metabolic switch between glycolysis to OX-
PHOS to early-disseminating breast cancer cells, noting these cells’ location at the tumor’s
leading edge. Similarly, Bassiouni et al. (2023) explored spatial transcriptomic profiles of
African American and Caucasian patients with TNBC, uncovering transcriptional substruc-
tures contributing to intratumoral heterogeneity and racial disparities in tumor hypoxia
and immune infiltration [30]. Additionally, Foster et al. (2022) identified distinct cancer-
associated fibroblast (CAF) clusters within mouse tumors, identifying mechanoresponsive,
steady-state-like, and immunomodulatory subgroups based on spatial gene-expression
profiles [31]. They found that these subtypes are located in spatially distinct regions of the
tumor and that their distribution is disrupted by immune checkpoint inhibition. A reduc-
tion in steady-state-like superclusters and an increase in immunomodulatory superclusters
were observed following treatment, suggesting the potential for CAF-targeting therapies to
alter tumor growth by modulating the balance among these CAF subtypes.

3.3. Imaging Mass Cytometry (IMC) in Breast Cancer Research

IMC combines the analytic precision of mass cytometry with spatial resolution to
provide high-resolution, multi-parametric imaging of cellular systems within tissues. Uti-
lizing a cytometry by time-of-flight (CyTOF) approach, IMC enables the simultaneous
analysis of multiple markers at the cellular level while preserving their spatial context
within tissue samples [32]. The method involves staining archival FFPE or freshly frozen
tissue samples with antibodies conjugated to unique metal ions. A pulsed laser linked
to a mass spectrometer ablates pre-defined ROIs, turning them into particle plumes for
CyTOF analysis, creating a detailed map of protein expression across the tissue landscape
(Figure 3).
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Figure 3. Workflow of IMC. Pre-processed FFPE or freshly frozen tissue are stained with a panel of
antibodies, each of which are tagged with a metal ion that serves as a reporter. A UV laser ablates the
tissue, generating plumes of isotopes that reach the connected mass cytometer. Ions are separated
based on the mass-to-charge ratio as they pass through the quadrupole; the mass cytometer uses
time-of-flight to identify the abundance of each metal reporter. Created with Biorender.com.

IMC has found many applications in oncology, notably in elucidating tumor biology
and defining tumor cell and tumor microenvironment interactions that are crucial for
understanding responses to immunotherapy [33–37]. In breast cancer research, IMC has
shed light on the spatial distribution of CD8+ T-cells and the extracellular domain of HER2,
providing insight into cytotoxic T-cell responses against HER2-positive breast cancer [38].
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Further, it has facilitated the identification of distinct CAF populations in the breast cancer
microenvironment that differentially influence tumor evolution. For instance, Cords et al.
(2023) used IMC to corroborate scRNA-seq findings at the protein level and to examine the
spatial distribution of CAFs, including their proximity to tumor borders and structures such
as vessels and different cell neighbors, thereby revealing distinct CAF phenotypes [39].

Advancements in three-dimensional (3D) IMC have furthered our understanding of
tissue structure and function, enabling a deeper understanding of cellular and microen-
vironmental heterogeneity and organization within breast cancer samples. Kuett et al.
(2022) [40] applied 3D IMC to human breast cancer samples, unveiling cellular arrange-
ments and microenvironmental complexities previously unappreciated in two-dimensional
analyses [27]. These findings emphasize the potential of IMC to offer novel diagnostic and
prognostic insights that enhance our understanding of breast cancer biology.

3.4. Akoya PhenoCycler and PhenoImager Fusion in Breast Cancer Research

Akoya’s PhenoCycler and PhenoImager Fusion transcend traditional immunohisto-
chemistry (IHC) by using multiplex immunohistochemistry (mIHC) and multiplex im-
munofluorescence (mIF) for the concurrent detection of multiple protein markers in a single
FFPE tissue section. The PhenoImager process involves deparaffinization, rehydration,
antigen retrieval and blocking of the tissue, followed by incubation with primary and
secondary antibodies. The secondary antibody, conjugated with horseradish peroxide,
reacts with a fluorophore-conjugated tyramide. These oxidation reactions generate inter-
mediates that bind near an epitope on the tissue through a covalent bond with tyrosine
residues [41,42]. After stripping the antibody complex, the fluorophore remains covalently
bound to or next to the epitope, allowing the process to be repeated for each marker. The
cycle is repeated for each marker of interest, and the resulting slides are scanned by spectral
imaging and analyzed using specialized software (e.g., InForm) that employs a reference
library containing emission spectrums of the individual fluorophores and an autofluores-
cence slide to differentiate the fluorescent signals and eliminate autofluorescence, ensuring
precise marker identification (Figure 4).
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mIF procedures. After a heat treatment for antigen retreival, the tissue is blocked and incubated with
the antibody of interest followed by incubation with a secondary antibody conjugated with HRP. The
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addition of the opal dye creates oxidized intermediates that covalently bind the tissue adjacent to the
epitope. The primary and secondary antibody complex is stripped, and the cycle is repeated for the
next marker of interest. The tissue is counterstained with DAPI for nuclei visualization. Created with
Biorender.com.

The PhenoCycler (previously CODEX) uses DNA-barcoded antibodies to detect over
40 biomarkers simultaneously. This system automates the labeling, imaging, and barcode-
removal process across tissue sections stained with a comprehensive antibody panel,
enabling multiplexed marker visualization (Figure 5) [41,43].
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panels linked to oligonucleotide barcodes. The PhenoCycler cycles through staining, imaging, and
barcode removal, enabling visualization of a comprehensive set of markers. Following antibody
incubation, fluorescent reporters bind to the complementary barcode on the antibody. Three reporters
are added at a time, and subsequent isothermic washes allow the addition of the following set of
reporters. Created with Biorender.com.

Griguolo et al. (2022) used mIF to dissect the immune microenvironment in breast
cancer brain metastases, identifying subtype-dependent differences linked to overall sur-
vival [44]. The mIF approach enabled the authors to define the prognostic significance
of immune subpopulations such as intra-tumoral infiltrated CD8+ and CD163+ cells and
PD-1/PD-L1 spatial interactions, determined through spatial analysis. Such detailed
immune-cell quantification offers insights into correlations between immune infiltration
patterns and the overall survival and response to therapy [45], suggesting potential tar-
gets for immunotherapy. This characterization of the breast cancer microenvironment
highlights the distinct molecular pathways implicated in cancer progression and potential
immunotherapeutic strategies.

3.5. Other Notable Advanced Spatial Omics Technologies

Spatial profiling of proteins and mRNA can be achieved through imaging-based tech-
nologies or sequencing-based technologies, which have evolved since the early
1980’s [15,46]. So far, we have detailed the application and workflows of widely dis-
tributed MDSP technologies such as GeoMx and Visium, which, in 2020, were recognized
as methods of the year by Nature Methods [22]. However, other notable methods in the
milieu of spatial omics exist, as well as other emerging technologies, which are increasing

Biorender.com
Biorender.com
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the availability of MDSP. One example, multiplex error-robust fluorescence in situ hy-
bridization (MERFISH), can resolve up to 10,000 gene targets [47,48]. Other methods, such
as spatio-temporal enhanced resolution (Stereo-seq), have been developed for systemic
applications, such as for the study of gestation embryos to detect transcriptome changes
in mouse organogenesis [49]. In an effort to improve the mapping of gene expression at
the single-cell level, Rodiques et al. (2019) developed Slide-seq, an NGS-based approach,
which, in 2021, released its improved version, Slide-seqV2 [50,51]. Another innovative
approach, deterministic barcoding in tissue for spatial omic sequencing (DBiT-seq), uses
microfluidics to apply barcodes to the tissue [14,52].

4. Advantages and Limitations of MDSP Technologies

MDSP platforms like Akoya PhenoImager and PhenoCycler surpass traditional single-
stain IHC methods in capability and versatility. The PhenoImager excels in high-
multiplexing, allowing for multiple rounds of staining without disrupting the dye on
the target protein by utilizing a reliable stripping process between cycles, while the Pheno-
Cycler iteratively cycles through staining, imaging, and barcode removal for fluorescent
antibodies, overcoming spectral bleed-through limitations with photocleavable barcodes for
proteomic targets and spectral unmixing techniques [53]. IMC provides higher sensitivity
and lower background noise by employing metal tags instead of traditional fluorophores.
MDSP technologies are particularly advantageous in spatial transcriptomics, offering in-
sights into transcriptional patterns within the tissue architecture that bulk and single-cell
RNA sequencing cannot provide [54]. Furthermore, MDSP technologies like 10× Genomics’
Visium support exploratory analysis without the need for predefined targets, a significant
step forward from the limitations of IHC and in situ hybridization [55]. Their integrated
imaging and bioinformatics platforms allow for whole-slide or area-specific characteri-
zation, although this approach requires guidance from experienced pathologists for ROI
selection to ensure analytical accuracy [17].

However, these techniques have limitations with respect to sample handling, repro-
ducibility, quantification, and accuracy. Sample preparation can be a source of data vari-
ability, and the age of the FFPE blocks and sample fixation conditions should be considered
to avoid intra- and inter-tissue variability [56]. Other tissue requirements include avoiding
areas of necrosis and hemorrhage, limiting the tissue area for analysis [57]. The type of
spatial technology assay can also have different stress effects on the tissue throughout the
experiment; for example, the PhenoImager protocol exposes tissues to multiple heating
cycles for antigen retrieval, which can compromise tissue integrity, and the repeated cycles
under antigen-stripping conditions can potentially affect the integrity of some epitopes,
necessitating strategic planning in the staining sequence [53]. Another source of variability
that may influence the reproducibility of MDSP experiments is the lack of guidelines to
determine the minimum number of regions required to identify the main cell phenotypes,
as proposed by Bost et al. (2023), as well as size of the ROIs and the number of cells in each
ROI [57,58]. Addressing differences in data distribution, such as signal intensities between
samples, will require the development and broader utilization of standardized quality
control and normalization techniques [59]. With regards to accuracy, spatially resolved
transcriptomics depends on the availability of high RNA quality in the tissue specimen;
improved RNA recovery methods have been proposed to improve the robustness of the
methods [60]. Workflows for the analytical decomposition of cell type mixtures in methods
that do not provide single-cell resolution would benefit from computational models to
improve their sensitivity and resolution [61]. There are other method-specific limiting
factors: NanoString CosMx, which offers single-cell transcriptomic analysis, is constrained
by a predefined panel of probes, while IMC is not compatible with viewing stained tissue
sections to assess staining inconsistencies or artifacts. IMC also suffers from variations in
signal intensity, depending on the type of machine used and the time from staining [62].
Finally, resolution is a major distinguishing factor amongst MDSP platforms that strive
to achieve this at the single-cell level. For instance, the Visium platform uses a relatively
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large probe diameter of 55 µm, capturing the signal from multiple cells and diluting the
single-cell resolution analysis [54]. However, resolution continues to be improved, such as
in the latest development of Visium HD, which features 2 × 2 µm2 barcoded squares to
enable single-cell scale spatial resolution.

Despite these drawbacks, the benefits of MDSP technologies in revealing the com-
plexity of the tissue microenvironments, elucidating cellular interactions, and informing
targeted treatment strategies are considerable. The MDSP techniques discussed here, except
for IMC, are non-destructive in nature, meaning that the samples can be preserved for
long-term storage and utilized for further staining by H&E or IHC; slides can also be
stripped and re-probed to enable re-staining with a different antibody panel of interest, as
in the case of GeoMx [17]. These methodologies have shown particular promise in breast
cancer research, unlocking new avenues for personalized treatment strategies by revealing
intricate cell–cell dynamics.

Selecting the most appropriate MDSP method involves considering factors like cost,
research phase, and the specific research question. For example, IMC is ideal for interro-
gating small areas of interest in tissues where sensitivity is needed, whereas GeoMx or
Visium might be preferred for broader, high-throughput discovery phases. For targeted
investigations, IMC or PhenoCycler can focus on specific markers, such as immune-related
signatures. An overview of the advantages and limitations of each technology is presented
in Table 1, facilitating informed decisions in the context of research objectives.

Table 1. Summary of advantages and limitations of the MDSP technologies.

Method Advantages Limitations Spatial Resolution Compatible Sample
Types

GeoMx

Utilizes photocleavable oligos,
enabling flexibility in
target selection
High throughput for RNA and
protein analysis
User-defined regions for
focused studies

Lacks single-cell resolution
Limited to predefined
biomarker panels, restricting
spontaneous discovery

~10 µm
FFPE tissue block, fresh
frozen tissue,
tissue microarrays

CosMx

Enables single-cell and
subcellular resolution
Supports both RNA and protein
analysis on whole slides
Integrates seamlessly with
GeoMx data for
comprehensive profiling

Relies on pre-designed probe
panels, limiting
customization
Higher cost due to single-cell
resolution capabilities

Single-
cell/subcellular

FFPE, fresh frozen,
organoids,
cultured cells

Visium

Barcode technology facilitates
high-throughput analysis
without fluorescent reporters
Suitable for large-scale
spatial profiling

Microslide size (55 µm) may
blend signals from adjacent
cells, complicating
single-cell analysis

~55 µm

FFPE, fresh frozen
tissue, tissue
microarrays, PFA-fixed
frozen tissue

IMC

Higher sensitivity and specificity
with metal-ion labeling,
eliminating autofluorescence
Fixed antibody panel minimizes
tissue degradation
Ideal for detailed tissue
composition studies

Limited number of detectible
markers per slide (~40)
Lower throughput due to
extended imaging time and
destructive nature of
the method

1 µm
FFPE, fresh frozen
tissue, tissue
microarrays

PhenoCycler
and Phe-
noImager

High multiplexing capability
with biomarker co-expression
Customizable antibody panels
for tailored studies
Improved sample stability and
faster imaging times compared
with other cyclic methods
More affordable

Cyclic staining can lead to
tissue degradation over
multiple rounds
Possible issues with spectral
bleed-through despite
advances in
imaging techniques

~0.25 µm
FFPE, fresh frozen
tissue, tumor
microarrays
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5. MDSP Integration with Breast Cancer Diagnostic Modalities
5.1. Enhancing Individualized Breast Cancer Early Detection, Diagnosis and Risk Prediction

MDSP technologies can significantly advance breast cancer diagnostics by comple-
menting traditional screening methods and risk prediction models. Current models in-
corporate factors like hormonal, environmental, and genetic influences [5,63–65], yet the
integration of MDSP offers deeper molecular insights that transcend conventional clinical
metrics. This integration is poised to refine risk assessments and diagnostic precision.
Despite the significant contribution of mammographic screening to reducing breast cancer
mortality, its augmentation with multi-omics data—mirroring efforts in other medical fields
such as traumatic brain injury, where NanoString GeoMx and magnetic resonance imaging
(MRI) were combined [7,66]—remains relatively unexplored. However, the potential for
MDSP to enhance the sensitivity, specificity, and resolution of standard imaging techniques
like mammography and MRI is clear [67], providing a path to improved tumor detection
and monitoring, crucial in breast cancer management.

The distinction between cancerous and benign tissue, traditionally requiring ex-
pert pathologists, presents a notable diagnostic challenge [13,68]. The application of
MDSP in this context is highlighted in studies using NGS-based spatial transcriptomics,
such as the pioneering work by Ståhl et al. in 2016 and subsequent improvements by
Yoosuf et al. in 2020 [13,69]. They introduced a machine learning algorithm trained on
pathologist-annotated regions and spatial transcriptomic data, achieving high accuracy
in distinguishing non-malignant ductal carcinoma in situ and invasive ductal carcinoma
regions [13,14,69]. The model was able to make this distinction with high accuracy even in
regions not trained on. These approaches can be used to support pathologists in clinical
decision-making by enhancing the differentiation of ductal carcinoma in situ from invasive
ductal carcinoma in clinical biopsy samples.

The subtyping of breast cancer, traditionally based on classic IHC markers (ER, PR, and
HER2) and pathological variables (tumor size, tumor grade, and nodal involvement) [70],
is now enriched through insights from MDSP into tumor heterogeneity [71]. Carter et al.’s
2023 study using NanoString GeoMx in TNBC revealed that enrichment of CD40 and
HLA-DR in the intraepithelial compartment is associated with better outcomes [16], demon-
strating promise for this method in precision oncology. Similarly, the use of NanoString
GeoMx by Stewart et al. (2020) [72] identified HLA-DR as a marker of disease relapse in
TNBC, emphasizing the importance of distinguishing between intraepithelial and tumor
tissue compartments for accurate disease prognostication [72].

IMC has also been used to identify correlations between cell phenotypes, cell–cell
interactions, and patient prognosis in several subtypes of breast cancer. Ali et al. (2020)
quantified 37 proteins in 483 tumors from the METABRIC cohort [73], while Jackson
et al. (2020) demonstrated the superiority of single-cell pathology over traditional IHC in
analyzing tumor tissue of 352 patients for 35 clinically established targets, including ER,
PR, and HER2 [74]. Their findings revealed phenotypic clusters within specific regions
or lesions, with the distribution pattern linked to overall survival. Vascularization and
T-cell infiltration were associated with poorer outcomes, and regions with high T-cell and
macrophage infiltration were associated with better outcomes. Onkar et al. (2023) used mIF
to define how the spatial distribution of macrophage subsets and T-cells in invasive ductal
and lobular carcinoma was linked to patient outcome [75]. These advancements underscore
the potential of MDSP to enhance breast cancer diagnostics and risk stratification, paving
the way for more effective and personalized treatment strategies.

5.2. Developing Tailored Prevention and Treatment Strategies

The current landscape of prevention strategies for high-risk women remains subopti-
mal, often resorting to drastic and irreversible procedures such as prophylactic mastectomy.
Alternatively, women are recommended antiestrogen therapy, which has limited uptake
due to concerns over side effects and the uncertain impacts on mortality reduction [76].
This situation underscores the need for novel treatments, particularly for BRCA1/BRCA2-
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mutation carriers, who lack chemopreventive treatment options. The work by Caputo
et al. (2023) demonstrated the potential of spatial transcriptomics in this area [77]. Using
NanoString GeoMx, they characterized the breast tissue epithelia and microenvironment
in BRCA1/2-mutation carriers, revealing enhanced stromal-to-paracrine signaling and
increased integrin receptor expression in stromal cells compared with controls. These
insights pave the way for designing new prevention treatments for this high-risk group.

MDSP technologies can also play a crucial role in addressing challenges in breast
cancer treatment resistance, overtreatment, residual disease, and recurrence. For example,
McNamara and colleagues (2021) studied proteomic changes in HER2-positive breast
cancer using NanoString GeoMx [78]. They found that spatial proteomic changes observed
during HER2-targeted therapy could predict which tumors would achieve a pathological
complete response, suggesting the utility of MDSP for guiding treatment escalation or de-
escalation. Similarly, Lee et al. (2015) identified patterns of tumor-infiltrating lymphocytes
that predicted pathological complete-response and longer disease-free survival correlations
in TNBC patients receiving neoadjuvant chemotherapy, offering another biomarker set for
therapeutic guidance [79]. Moreover, the insights from IMC have the potential to inform and
refine treatment strategies for personalized treatment [80]. Wang et al. (2023) observed the
effect of multicellular spatial organization on the response to immune checkpoint therapies,
identifying spatial biomarkers as predictors of a therapeutic response [81]. Collectively,
these studies emphasize the potential of MDSP in facilitating adaptive therapy [81], moving
toward more individualized and effective cancer prevention and treatment paradigms.

MDSP technologies are also being used as a tool to identify patterns associated with
therapy resistance. Use of 10× Genomics’ Visium has shed light on the role of pharmaco-
genes in drug distribution and efficacy. In the case of chemotherapy, drug concentrations
vary across different regions of the tumor, and spatial transcriptomics has been shown to
have the capability to capture spatially distinct pharmacogenes associated with chemoresis-
tance [82]. Another study looking at biopsies during and post-neoadjuvant chemotherapy
treatment identified the enrichment of chemokines and interleukins associated with a poor
response to chemotherapy [83].

mIF-based assays are also showing promise in clinical trials and decision-making
processes. Sanchez et al. (2021) advocate for incorporating mIF alongside standard clin-
ical assays in clinical trials as their research identified pharmacodynamic biomarkers in
the immuno-oncology of early-stage breast cancer [84]. A meta-analysis comparing the
diagnostic accuracy of IHC, tumor mutation burden, gene expression profiling, and mIF
in predicting a therapeutic response to anti-PD-1/PD-L1 therapy found that mIF showed
superior AUC, positive predictive values, and positive likelihood ratios, suggesting an
improved performance by mIF compared with traditional methods [85]. Furthermore, mIF
is recommended for refining patient selection for immune checkpoint therapy, combining
the assessment of PD-L1 status with tumor-infiltrating lymphocyte density for enhanced
predictive value compared with standard IHC PD-L1 assays alone [86].

Thus, the incorporation of MDSP methodologies into clinical trials and treatment selec-
tion has the potential to advance personalized breast cancer care. MDSP facilitates patient
stratification through unique molecular signatures, enabling a more tailored approach to
treatment. It is particularly effective in distinguishing distinct molecular subtypes of breast
tumors, guiding the selection of targeted treatments and immunotherapies. Moreover,
MDSP can play a significant role in the real-time monitoring of treatment efficacy and
the early detection of resistance, such as changes in immune-cell populations, protein
expression, or the activation of alternative pathways. This allows for timely adjustments in
therapeutic strategies, enhancing treatment outcomes. Although the application of MDSP is
mostly still limited to laboratory research, its current inclusion in clinical trials for analysis
or post-trial studies to correlate molecular features to patient outcomes is outlined in Table 2
and in exemplar studies by Radosevic-Robin et al. (2021) and Li et al. (2019) [83,87].
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Table 2. Clinicaltrials.gov results from 9 February 2024.

NCT Number Title Status Sponsor/Collaborator MDSP Platform Application

NCT03979508

Abemaciclib in Treating
Patients With
Surgically Resectable,
Chemotherapy Resistant,
Triple-Negative
Breast Cancer

Recruiting Mayo Clinic

NanoString
GeoMx and
Imaging Mass
Cytometry

Evaluating the
effects of
abemaciclib on
tumor-infiltrating
immune cells

NCT04200768

FATLAS:
Comprehensive
Multi-level
Characterization of
Systemic and Mammary
Adiposity in Breast
Cancer Patients.
(FATLAS)

Recruiting
Universitaire
Ziekenhuizen KU
Leuven

10× Genomics

Measuring
upregulation or
downregulation
of pathways in
adiposity and
inflammation

NCT02977195 [88]

First in Human
Evaluation of Safety,
Pharmacokinetics, and
Clinical Activity of a
Monoclonal Antibody
Targeting Netrin 1 in
Patients With
Advanced/Metastatic
Solid Tumors (NP137)

Completed Centre Leon Berard 10× Genomics,
Visium

Confirming
epithelial-to-
mesenchymal
transition gene
expression
changes

6. Future Directions

The application of MDSP to the management of benign breast disease (BBD) could
be transformative for improving breast cancer risk prediction and designing personalized
prevention methods. BBD, a known risk factor for cancer, could benefit from the ability
of MDSP to identify subtle or spatially defined biomarkers that indicate the progression
risk and prevention-treatment response. Biomarkers such as alterations in immune cells,
extracellular matrix components, and protein expression, could help classify patients
into distinct risk categories, improving the accuracy of predicting breast cancer onset
and progression. Integrating MDSP with other diagnostic tools, including imaging and
genomics, opens avenues for customized interventions ranging from lifestyle alterations to
targeted therapies or preventive surgeries.

Implementing MDSP in clinical practice involves addressing key challenges to ensure
its successful integration into breast cancer care. The standardization and validation of
MDSP techniques are needed to avoid potential inaccuracies and to ensure consistent
results from research labs to hospitals. It will be critical to develop clear protocols for tissue
sample handling and MDSP analysis, with an emphasis on precision and reproducibility.
This consistency is a prerequisite for the medical community to trust and adopt MDSP-
driven insights and its integration into breast cancer care, bringing with it the promise of
enhanced diagnosis, prognosis, and treatment.

Implementing MDSP in clinical practice also demands specialized expertise and
training for healthcare professionals. Effective utilization of MDSP requires a deep under-
standing of the technology, its underlying principles, and the interpretation of its results.
This may necessitate the development of educational programs and resources for health-
care professionals involved in breast cancer care, ranging from oncologists to pathologists.
Moreover, the effective implementation of MDSP may require collaboration between multi-
disciplinary teams, such as oncologists, radiologists, pathologists, and bioinformaticians,
to ensure a comprehensive understanding of the data generated and its implications for
patient care.

Accessibility and cost considerations are also important factors to consider when
implementing MDSP in clinical practice. The infrastructure required to perform MDSP,
such as advanced imaging platforms and computational resources, may be beyond the
reach of some healthcare facilities, particularly in resource-limited settings. Furthermore,
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the cost of MDSP technologies and reagents could be a barrier to their widespread adoption.
As these technologies mature, the cost should decrease, becoming more broadly affordable,
as has been the case for next-generation sequencing, which has become less expensive
due to advancements in technology and market competition. The uptake of MDSP in
healthcare could therefore mirror the evolution of next-generation sequencing, where usage
in the clinical setting has increased as a function of decreasing cost [89]. To address these
challenges, efforts must be made to develop more affordable MDSP technologies, and
financial support may be necessary to facilitate the implementation of MDSP in healthcare
settings with limited resources.

7. Conclusions

MDSP represents a significant advancement in breast cancer research, offering un-
paralleled insights into the tumor microenvironment. This technology enhances our un-
derstanding of disease progression and treatment responses, leading to improved risk
prediction, diagnosis, and personalized treatment strategies. However, challenges in stan-
dardization, accessibility, and cost must be addressed for its broader clinical integration.
Future directions include extending MDSP’s application to BBD and focusing on multidis-
ciplinary collaboration and training for healthcare professionals. The integration of MDSP
into clinical practice holds great promise for advancing personalized medicine in breast
cancer care.
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