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Simple Summary: In recent years, artificial intelligence has been used increasingly in medical practice.
Technological progress has made it possible to digitize the slides of histological preparations, allowing the
use of image processing and AI technologies in surgical pathology. This potentially reduces variability and
improves the uniformity of some histological evaluations, such as cellularity assessment in bone marrow
biopsies, which is traditionally performed visually by expert human observers, resulting in inter-observer
and intra-observer variability. In this work, we developed an accurate AI-based tool for the automated
quantification of cellularity in BMB histology and compared its performances with cellularity estimates
from five expert hematopathologists. Our results showed the robustness of our model across users and
two different scanners for digitized image generation.

Abstract: The cellularity assessment in bone marrow biopsies (BMBs) for the diagnosis of Philadelphia
chromosome (Ph)-negative myeloproliferative neoplasms (MPNs) is a key diagnostic feature and is
usually performed by the human eyes through an optical microscope with consequent inter-observer
and intra-observer variability. Thus, the use of an automated tool may reduce variability, improving
the uniformity of the evaluation. The aim of this work is to develop an accurate AI-based tool for
the automated quantification of cellularity in BMB histology. A total of 55 BMB histological slides,
diagnosed as Ph- MPN between January 2018 and June 2023 from the archives of the Pathology Unit of
University “Luigi Vanvitelli” in Naples (Italy), were scanned on Ventana DP200 or Epredia P1000 and
exported as whole-slide images (WSIs). Fifteen BMBs were randomly selected to obtain a training set
of AI-based tools. An expert pathologist and a trained resident performed annotations of hematopoietic
tissue and adipose tissue, and annotations were exported as .tiff images and .png labels with two colors
(black for hematopoietic tissue and yellow for adipose tissue). Subsequently, we developed a semantic
segmentation model for hematopoietic tissue and adipose tissue. The remaining 40 BMBs were used for
model verification. The performance of our model was compared with an evaluation of the cellularity
of five expert hematopathologists and three trainees; we obtained an optimal concordance between our
model and the expert pathologists’ evaluation, with poorer concordance for trainees. There were no
significant differences in cellularity assessments between two different scanners.

Keywords: digital pathology; artificial intelligence; cellularity; myeloproliferative neoplasms; bone
marrow biopsy
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1. Introduction

Artificial intelligence (AI) is increasingly being used in clinical practice and transla-
tional medical research. Various AI systems have been employed to improve the diagnosis
and treatment of diseases such as diabetes [1] and cancer [2]. In surgical pathology, AI
technologies have been facilitated by the ability to digitize slides. The first guideline for
the production of whole-slide image (WSI) systems for clinical practice [3] was developed
in 2016 by the Food and Drug Administration (FDA), who set out technical standards
that ensured the production of acceptable images (varying color intensity, different cut-
ting thickness) even in the presence of uneven tissue or tissue from different laboratories.
Additionally, the WSI quality obtained from an approved scanner was required to have
appropriate focus quality, color reproducibility, and spatial resolution to accurately reflect
the quality of the original histology slides. Several commercial WSI and digital pathology
systems have been approved by the FDA for diagnostic use and have received CE marks
for in vitro diagnosis [4]. Digitized slides that meet these standards can be used to evaluate
specific histological features such as the number of mitoses [5], biomarkers in breast tumor
settings [6], or histological activity in ulcerative colitis [7]. Recently, an AI-supported
diagnostic tool for prostate cancer based on digitized pathology slides (Paige Prostate)
was approved by the FDA [8]. Despite these regulatory processes, variability in scanner
performance has been shown to influence AI-based assessments [9,10].

Myeloproliferative neoplasms (MPNs) are a heterogeneous group of bone marrow
disorders characterized by the abnormal proliferation of one or more myeloid cell lines,
and include conditions like polycythemia vera (PV), essential thrombocythemia (ET), and
primary myelofibrosis (PM) [11]. These diseases, collectively referred to as Philadelphia
chromosome-negative (Ph-) MPNs, often require a complex diagnostic process involving
clinical, laboratory, genetic, and histological data. In particular, the assessment of cellularity
in bone marrow biopsies (BMBs) is a key diagnostic feature in MPNs [11]. However, the
manual nature of the assessments, typically conducted through an optical microscope,
results in significant inter-observer and intra-observer discrepancies [12–15]. Human-
based cellularity assessments are further confounded by the presence of inflammation,
necrosis, fibrosis, and specimen artifacts [16]. Consequently, concordance for MPN diag-
noses, even between expert pathologists, ranges from 53%, based only on morphology,
to 88% when paired with clinical and mutational data [17], and is poorly reproducible
and dependent on pathologist experience [18,19]. Automated assessments of cellularity,
like other computational pathology tools [20], would be advantageous not only due to
providing objective assessments, but also due to improving laboratory workflow, reducing
pathologist assessment time, and enhancing the training and skill development of young
pathologists [21,22].

Prior work has explored automated assessment of BMBs in heterogenous patient
groups. Nielsen et al. [23] developed a segmentation system for BMB components, classify-
ing them as yellow bone marrow (YBM) and red bone marrow (RBM), and then calculating
cellularity in specific areas of interest in BMBs from eight subjects. Van Eekelen et al. [24]
developed a segmentation system for different cell lines present in the bone marrow (ery-
thropoiesis, myelopoiesis, megakaryocytes, lipocytes, trabecular bone, and erythrocytes),
estimating the variation in cellularity in BMBs with age. Both studies achieved an optimal
degree of agreement with a human-based evaluation of cellularity, proving that hematopoi-
etic tissue can be quickly and easily distinguished from adipose tissue and digital image
processing can provide an accurate and objective measurement of the examined region.
However, they did not address the utility of such tools in a clinical scenario across multiple
users with different levels of expertise or across different scanners for digitized image gen-
eration. The aim of this work was to develop and train an AI-based tool for the automated
quantification of cellularity in patients with Ph- MPNs, validate it against multiple expert
histopathologist assessments, and use it to evaluate the performance of pathology trainees.
In addition, model usability was appraised by users and model performance was compared
between digitized slides from two different scanners.
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2. Materials and Methods
2.1. Cases Selection and Digital Images Scanning

We obtained bone marrow biopsy (BMB) histological slides diagnosed as Ph-MPN
between January 2018 and June 2023 from the archives of the Pathology Unit of University
“Luigi Vanvitelli” in Naples (Italy). The inclusion criteria were the following: age of
the patient ≥ 18 years; biopsy frustule length ≥ 1 cm; availability of clinical data (age
and histological and clinical diagnosis), and histological diagnosis of Ph-MPN. We chose
BMBs with diagnoses of Ph-MPN for their significant variations in bone marrow cellularity.
Conditions such as PV and pre-fibrotic PM typically present with increased cellularity,
whereas other forms, such as fibrotic PM, can exhibit reduced cellularity [11].

A total of 86 BMBs were initially retrieved from archives and reviewed by an expe-
rienced hematopathologist (AR). Of these, 55 cases met the inclusion criteria and were
included in the study. A histological slide stained with hematoxylin and eosin was scanned
for each case with a Ventana DP200 Slide Scanner (Roche Diagnostics S.p.A., Monza, Italy)
and exported as a whole-slide image (WSI). Subsequently, scanned slides were randomly
divided into a training set, including 15 BMBs, and a validation set, including 40 BMBs.

2.2. Production of the Training Set

An expert pathologist (AR), assisted by a trained resident (GDA), annotated hematopoi-
etic and adipose tissues on the 15 BMBs selected for the training set using QuPath v 4.3
software [25]. Then, annotations were exported as .tiff images (resolution 256 × 256,
20× magnification) and .png labels (Figure 1) with three main colors (black for hematopoi-
etic tissue; yellow for adipose tissue; and white for regions that must be ignored during the
training, such as bone tissue, red blood cells, artifacts, etc.). A specific script for Qupath [26]
was used to export the annotation, providing 2617 images and 2617 labels that constituted
our training set.
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A semantic segmentation model for hematopoietic tissue and adipose tissue was
developed using a fully convolutional network (FCN) based on InceptionV3 architecture,
utilized up to the “mixed7” layer. This architecture was enhanced with a series of convolu-
tional and deconvolutional layers, concluding with a 1 × 1 convolution for pixel-by-pixel
classification using softmax activation. The model featured a total of nine main custom
layers post-inception and was trained over 25 epochs using the Adam optimizer with
categorical cross-entropy as the loss function.

2.3. Model Testing

Firstly, the cellularity of the 40 BMBs selected for the validation set was evaluated
by 5 expert pathologists (RF, ADA, ADC, LP, LS) and 3 young pathologists (Resident1
Resident2, Resident3) using an optical microscope, as is routinely performed in clinical
practice. Subsequently, two scripts for model application and tissue segmentation were
developed. The first script was developed using the FAST library for Python [27] and
segmented the WSI image into 256 × 256 patches at 20× magnification. It applied the model
to each patch, identifying adipose and hematopoietic tissues; extracted the corresponding
labels; and reconstructed the slide with the segmentation results overlaid on the tissue (see
Figure 2). The second script calculated the cellularity as the ratio of the area segmented as
hematopoietic tissue to the total area of both hematopoietic and adipose tissues.

Cancers 2024, 16, x FOR PEER REVIEW 5 of 15 
 

 

 
Figure 2. Workflow of segmentation process: WSI (A), segmentation result (B), WSI with overlaid 
segmentation image (C). Green indicates hematopoietic tissue and blue indicates adipose tissue. 

The agreement between the hematopathologists and the model, as well as between 
the residents and the model, was evaluated using Lin’s concordance correlation coeffi-
cient. Furthermore, agreement between the hematopathologist and the model was also 
evaluated using the Bland–Altman plot. 

Six months later, the expert pathologist who annotated the training images (A.R.-
user1), one of the expert pathologists who was compared with the model (R.F.-user2), and 
a resident (Resident2-user3) were trained to use the proposed model on a set of 20 cases 
from the BMB series. Subsequently, we asked these three users to rate the model on a scale 
from 1 to 5 (1: insufficient–5: optimal) in terms of usability (learning difficulties and au-
tonomy in using the model), rapidity, and accuracy of evaluations. Finally, in order to test 
the performance of our model with different scanners, we randomly selected 5 BMBs from 
the validation set and rescanned them using a different scanner (Epredia P1000) (Epredia, 
Portsmouth, NH, USA). We then compared the performance of our model with the WSIs 
obtained from both the Ventana DP200 and the Epredia P1000 in terms of segmentation 
(assessed visually) and cellularity. 

2.4. Statistical Analysis 
To verify the effectiveness of our tool, we compared the performance of our model 

with the cellularity assessment performed by 5 pathologists (R.F.; A. D’antonio; A. De Chi-
ara, L.S., and L.P.) with at least ten years of experience in the field of hematopathology. 
We asked them to express a single percentage value of cellularity in each BMB. Firstly, we 
measured the agreement between hematopathologists in pairs in order to test for interob-
server variability in the assessment of cellularity; then, we measured the agreement be-
tween our model and each pathologist. 

Furthermore, in order to show the poor reproducibility of evaluations of cellularity 
in BMBs, we asked medical residents (Resident 1, Resident 2, and Resident 3) to express 
their cellularity assessments on the same cases submitted to the expert pathologists, and 
we compared their evaluation with the performance of our model. 

To measure agreement between the hematopathologists, between the hemato-
pathologists and the model, and between the residents and the model, we chose to use 
Lin’s concordance correlation coefficient (CCC) [28], which considers both the correlation 
of the assessments (Pearson correlation) and the average and variance of the measure-
ments:  𝐶𝐶𝐶: ଶ௣ఙೣఙ೤ఙమೣାఙ೤మା൫ఓೣାఓ೤൯మ  

p: Pearson correlation coefficient 𝜎௫ଶ; 𝜎௬ଶ: variance of measurement 

Figure 2. Workflow of segmentation process: WSI (A), segmentation result (B), WSI with overlaid
segmentation image (C). Green indicates hematopoietic tissue and blue indicates adipose tissue.

Cellularity =
Segmented area of hematopoietic tissue

Segmented area of hematopoietic tissue + Segmented area of adipose tissue
× 100%

The agreement between the hematopathologists and the model, as well as between
the residents and the model, was evaluated using Lin’s concordance correlation coefficient.
Furthermore, agreement between the hematopathologist and the model was also evaluated
using the Bland–Altman plot.

Six months later, the expert pathologist who annotated the training images (A.R.-
user1), one of the expert pathologists who was compared with the model (R.F.-user2), and a
resident (Resident2-user3) were trained to use the proposed model on a set of 20 cases from
the BMB series. Subsequently, we asked these three users to rate the model on a scale from
1 to 5 (1: insufficient–5: optimal) in terms of usability (learning difficulties and autonomy
in using the model), rapidity, and accuracy of evaluations. Finally, in order to test the
performance of our model with different scanners, we randomly selected 5 BMBs from
the validation set and rescanned them using a different scanner (Epredia P1000) (Epredia,
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Portsmouth, NH, USA). We then compared the performance of our model with the WSIs
obtained from both the Ventana DP200 and the Epredia P1000 in terms of segmentation
(assessed visually) and cellularity.

2.4. Statistical Analysis

To verify the effectiveness of our tool, we compared the performance of our model
with the cellularity assessment performed by 5 pathologists (R.F.; A. D’antonio; A. De
Chiara, L.S., and L.P.) with at least ten years of experience in the field of hematopathology.
We asked them to express a single percentage value of cellularity in each BMB. Firstly,
we measured the agreement between hematopathologists in pairs in order to test for
interobserver variability in the assessment of cellularity; then, we measured the agreement
between our model and each pathologist.

Furthermore, in order to show the poor reproducibility of evaluations of cellularity
in BMBs, we asked medical residents (Resident 1, Resident 2, and Resident 3) to express
their cellularity assessments on the same cases submitted to the expert pathologists, and
we compared their evaluation with the performance of our model.

To measure agreement between the hematopathologists, between the hematopathol-
ogists and the model, and between the residents and the model, we chose to use Lin’s
concordance correlation coefficient (CCC) [28], which considers both the correlation of the
assessments (Pearson correlation) and the average and variance of the measurements:

CCC :
2pσxσy

σ2
x + σ2

y +
(
µx + µy

)2

p: Pearson correlation coefficient
σ2

x ; σ2
y : variance of measurement

µx; µy: average of measurement
In this way, the agreement between pathologists’ model measurements was evaluated

in terms of the evaluated percentages, penalizing both systematic and random differences.
According to Altman’s definition [29], we considered optimal agreement to be charac-

terized by a CCC greater than 0.8 and substantial agreement by a CCC between 0.6 and
0.8. Subsequently, in order to further evaluate the agreement between our model and the
pathologists, we performed another statistical test using Bland–Altman plots.

Bland–Altman plots compare the averages of measurements, provide graphical rep-
resentations of the agreement between the system of measurement, and identify any
systematic trends [30]. In detail, agreement ranges were determined by calculating the
averages and standard deviations of differences between measurements provided by the
AI system and the pathologist. Then, we calculated the upper limit of agreement (ULA)
and the lower agreement limit (LAL) according to the following formulas:

ULA = d + 1.96 × Sd

LAL = d − 1.96 × Sd

d: average between measurement difference;
Sd: standard deviation of measurement difference.
The calculation was based on the assumption of a normal distribution of the dif-

ferences between measurements, covering 95% of the expected differences between the
measurements of the model and the measurements of the pathologists.

2.5. Hardware and Software

The annotations and classifications of the training set were carried out using QuPath
software, version 4.3; the images and masks were exported using a specific script in Groovy
language. All segmentation models were developed using Python 3.10.12 on the Google Colab-
oratory platform with a pro profile for the use of additional RAM and GPUs provided by the
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platform (V100). The scripts for model verification, cellularity calculation, and statistical analysis
were developed in Python 3.10.12 using the Anaconda® distribution, with Jupyter Notebook
as the programming environment. All computer processing procedures were performed on
an Alienware Aurora® R11 hardware (Alienware, Dell Inc., Round Rock, TX, USA) with an
Intel(R) Core (TM) i5-10600KF CPU at 4.10 GHz, 64 GB of RAM, and an AMD Radeon RX 5700
XT graphics card with 8 GB of dedicated memory.

3. Results
3.1. Model Training

During the training process, our segmentation model showed a positive performance.
It began with an initial loss of function of 0.6258, but quickly converged, showing a
significant reduction in the loss of function with each subsequent epoch. In the 25th
epoch, the loss had decreased to an impressive value of 0.0348. Simultaneously, the
model’s accuracy consistently increased, reaching 98.61% in the 25th epoch. This progress
was also confirmed through visual verification with the pathologists’ annotations, which
demonstrated almost perfect correspondence (Figure 3). These results indicate not only the
model’s capability to effectively learn from the provided dataset, but also its stability, as
evidenced by the absence of any overt signs of overfitting (Figure 4).
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3.2. Model Validation

The interobserver agreement between pathologists through Lin’s concordance correla-
tion coefficient was optimal in eight out of ten cases and substantial in the remaining two
cases, as detailed in Table 1.

Table 1. Agreement between pathologists (B-F).

Couple of Pathologist Lin’s Concordance Correlation Coefficient Confidence
Interval

B-C 0.887 0.789, 0.938

B-D 0.967 0.941, 0.982

B-E 0.886 0.788, 0.944

B-F 0.899 0.813, 0.944

C-D 0.877 0.784, 0.925

C-E 0.951 0.906, 0.973

C-F 0.773 0.663, 0.860

D-E 0.878 0.794, 0.929

D-F 0.902 0.715, 0.952

E-F 0.784 0.648, 0.873

According to Altman [29], the agreement between the model and pathologist B was
optimal (CCC: 0.9400, IC: 0.8736, 0.9728). Similar results were obtained for the comparison
between the model and pathologists D and F, whose CCCs were 0.9291 (IC: 0.8560, 0.9680)
and 0.9170 (IC: 0.8813, 0.9672), respectively. Furthermore, the agreement between the model
and pathologist C was substantial (CCC: 0.7918; IC: 0.6529, 0.8774), as well as agreement
between the model and pathologist E (CCC: 0.7785; IC: 0.628, 0.8759). Finally, the agreement
between the model and the mean of the pathologists was optimal, with CCC 0.9170 (IC:
0.8399, 0.9622). The results are summarized in Table 2.

Table 2. Agreement between model (A), each pathologist (B-F), and the mean of pathologists (G).

Lin’s Concordance Correlation
Coefficient (CCC)

Confidence
Interval

A-B 0.9400 0.8736 0.9728

A-C 0.7918 0.6529 0.8774

A-D 0.9291 0.8560 0.9680

A-E 0.7785 0.6288 0.8759

A-F 0.9386 0.8813 0.9672

A-G 0.9170 0.8399 0.9622

Similarly, the agreement between our model and the five expert pathologists, verified
using Bland–Altman’s plots, was also satisfactory overall. Indeed, in all comparisons, all
bias lines were near 0, while all observation were within the agreement ranges (Figures 5–9).
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Agreement between our model and the residents was not as satisfactory. In fact, in all
cases, the agreement was only substantial (Table 3): the agreement between the model and
Resident 1 was 0.659; the agreement between the model and Resident 2 was 0.721; and the
agreement between the model and Resident 3 was 0.615, while the agreement between the
model and the mean of the residents was 0.776.
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Table 3. Agreement between model, each resident, and mean of residents.

Lin’s Concordance Correlation
Coefficient (CCC)

Confidence
Interval

Model–Resident 1 0.659 0.508 0.771

Model–Resident 2 0.721 0.546 0.845

Model–Resident 3 0.615 0.432 0.755

Model–mean of
residents 0.664 0.513 0.776
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After approximately six months, two expert pathologists and a resident learned to use
the proposed algorithm. Upon applying the algorithm to a set of 20 cases from the BOMs
series, all three users agreed with the model’s automated assessments and decided to adopt
these evaluations as the definitive. This unanimous agreement on the model’s evaluation
effectively eliminated inter-observer variability.

Regarding the opinions of the users concerning usability, the rapidity of evaluation,
and the correctness of evaluation of our model, the results are summarized in Table 4.

Table 4. Opinion of the users about the model (1: completely insufficient; 2: acceptable; 3: sufficient;
4: good; 5: optimal).

Usability Rapidity Correctness

User1 2 5 5

User2 2 5 4

User3 3 4 5

Finally, evaluation of the performance of our model across different scanners provided
superimposable results both in terms of segmentation (Figure 10) and in terms of the
cellularity assessment performed by our model (Table 5).
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Table 5. Cellularity assessment performed by the model on Epredia WSI and on Ventana WSI.

Epredia WSI Ventana WSI

Slide 1 50.85% 50.15%

Slide 2 64.98% 65.05%

Slide 3 99.35% 97.47%

Slide 4 58.62% 59.14%

Slide 5 84.77% 86.26%

4. Discussion

Our study shows that the tool we developed quantifies the cellularity of BMBs equiv-
alently to experienced pathologists, and allows for the assessment of the performance of
trainee pathologists with good user acceptability. Regarding the technical aspects of our
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tool, we chose to develop a fully convolutional network (FCN) that classifies every single
pixel, thus allowing for precise differentiation between various types of tissues. Addition-
ally, the use of the InceptionV3 architecture up to the “mixed7” layer provides a robust
foundation for feature extraction, which has proven effective in processing histological
images, particularly in the hematological field [31]. Furthermore, to ensure maximal repro-
ducibility of our study, we trained our model using WSIs obtained from a slide scanner
system (Ventana DP 200) approved for in vitro diagnostic use [4].

Unfortunately, despite high concordance among experienced hematopathologists, our
results showed that inter-observer variability was evident, with a wide range in Lin’s coef-
ficient. This may in part be explained by the fact that hematopathologists typically express
assessments of bone marrow cellularity in increments of 5% (e.g., 10%, 15%, 20%, etc.), while
the AI system provides a precise numerical value to the second decimal place. Consequently,
the concordance between hematopathologists, as well as between hematopathologists and
the model, could be influenced by this specific procedure of evaluation performed by the
hematopathologist, which represents a more generalized and “rounded” assessment value.

Regarding the agreement between the AI-based tool and the human eye, our results
were optimal. The models demonstrated high concordance with the assessments of five
expert hematopathologists. Additionally, the concordance between the AI model and the
average assessments of the five hematopathologists was also optimal. Furthermore, eval-
uations using Bland–Altman analysis were substantially positive across all comparisons,
with a bias line near zero and most measurements falling within the limits of concordance.
In addition, the lower agreement observed between the model and the residents indicates
that, for unexperienced pathologists, cellularity assessment can be less reproducible.

Despite the involvement of a higher number of observers in our study (five expert
pathologists and three residents), our results are consistent with the existing literature. In
their respective studies, Nielsen et al. [23] and van Eekelen et al. [24] developed automated
tools for assessing cellularity in BMBs, achieving optimal concordance with the human
observations. However, their tests were limited to single observer, whereas our model’s
performance was compared with that of five expert hematopathologists. Sarkis et al. [32]
also compared the performance of a model for BMB cellularity assessment with that of
four pathologists, obtaining a high level of concordance with all four. However, the
model developed by Sarkis et al. required semi-automated interaction, necessitating user
involvement for performing a white color balance, making three annotations (for the
tissue to be evaluated), and selecting the background and artifacts before analyzing the
entire BMB.

A strength of our work is that, following training and a lag time of 6 months, when we
asked three users to apply the model to 20 randomly selected BMBS, all concurred with the
assessments provided by the model and were willing to adopt the assessments as definitive.
This unanimous agreement to adopt the model removes the inter-observer variability of
human assessments.

Evaluation of the model’s usability (usability (learning difficulties and autonomy
in using the model) indicated that, while users found the rapidity and accuracy of the
model to be favorable, they were not satisfied with its general usability. These findings
align with those from previous studies evaluating pathologist-reviewed models. In Dy
et al.’s work [33], which assessed a tool for KI 67 evaluation in breast cancer, and Steiner
et al.’s study [34], which evaluated a tool for prostate biopsy assessments, users consistently
praised the models’ accuracy and supported their integration into clinical practice. How-
ever, neither study addressed the models’ usability or the learning curves associated with
their use. It is important to note that both studies developed user interfaces that allowed
pathologists to easily select cases for examination.

Since previous studies have demonstrated how the optical and computed properties
of WSIs are affected by technical differences in slide scanners, potentially influencing the
performance of AI-based tools [9], we found it necessary to evaluate our model’s perfor-
mance using WSIs obtained from different scanners. Duenweng et al. [10] demonstrated
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that the optical and computed properties of WSI from different scanners can affect AI-based
tools, particularly when applied to low-resolution images (i.e., low magnification). In our
study, we worked (for both training and validation of the model) on patches obtained at an
intermediate magnification (20×), which ensured that the performance of our model was
not adversely affected by the differing properties of the two scanners. Therefore, unlike
these previous data, where model performance was influenced by the scanner type, our
data confirm that the model’s performance was remarkably consistent, in terms of both the
method of segmentation and the cellularity assessment.

A major limitation of our model was usability by clinicians, particularly those with
little computer experience, and particularly when under time pressure. It would benefit
from a user-friendly interface that requires the pathologist to simply select the case to
be analyzed. Moreover, our model’s validation was conducted in a single center, which
may limit the generalizability of our findings. For real use in clinical practice, our model
should be tested in a multicenter study in order to test its reproducibility and its efficacy
on a larger number of cases under different conditions of use (hardware, network, clinical
routine, etc.). The sole assessment of cellularity is also limiting. The model’s utility could
be enhanced if other important features of Ph-MPNs could be added, such as individuation
of the proliferation of one or more cellular lines, evaluation of increasing numbers, and
morphological details of the megakaryocytes and of a shift in maturation and BM fibrosis.
However, automated assessment of these features is more complex than cellularity eval-
uation; therefore, future studies would require the development of more complex neural
networks capable of carrying out this type of evaluation.

5. Conclusions

In conclusion, our automated system for assessing cellularity in BMBs compared
favorably with the evaluations by five experienced pathologists using an optical microscope,
demonstrating optimal results and the ability to eliminate interobserver variability in the
evaluation of cellularity from BMBs of Ph-MPNs. The low variability, accuracy, and speed
of our model potentially make it a useful adjunct to expert histopathologist assessments,
reducing the time needed for quantitative assessments and acting as a learning resource for
pathology trainees.
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