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Abstract: An increasing demand for model explainability has accompanied the widespread adoption
of transformers in various fields of applications. In this paper, we conduct a survey of the existing
literature on the explainability of transformers. We provide a taxonomy of methods based on the
combination of transformer components that are leveraged to arrive at the explanation. For each
method, we describe its mechanism and survey its applications. We find out that attention-based
methods, both alone and in conjunction with activation-based and gradient-based methods, are
the most employed ones. A growing attention is also devoted to the deployment of visualization
techniques to help the explanation process.

Keywords: explainability; transformers; visual transformers; natural language processing;
interpretability; deep learning

1. Introduction

Transformers are deep neural networks that exploit the self-attention mechanism
to capture relationships between different portions of a text and have rapidly attracted
interest in machine learning. Their applications span several domains [1], including natural
language processing, Computer Vision [2], Audio and Speech signals [3], and Signal
Processing [4]. Their popularity is making transformers become one of the most used deep
learning architectures.

At the same time, the inherently opaque behavior of deep learning techniques has
posed the problem of their explainability. Explainability (and other close terms such as
interpretability [5,6]) concerns the attempt to overcome the inherent opacity of black-box
models such as deep learning networks, but also ensemble methods such as those based on
bagging (random forests) or boosting (e.g., AdaBoost or XGBoost). In general terms, we
can define explainability as the capability to offer a detailed understanding of a machine
learning (ML) model and its outputs. Such a need is present for all ML tasks, i.e., supervised
tasks [7] such as classification, unsupervised tasks [8], and reinforcement learning [9]. The
term XAI (Explainable Artificial Intelligence) has now come to describe this whole area of
work. According to [10], that term was coined by Lent et al. [11] in 2004.

The need for explainability is strong for several reasons. This is not necessarily the
case for all ML applications, as noted in [10]. Low-risk systems (where the consequences
on human beings are minor) and well-studied high-trust systems (where we may dispense
with explanations) are two examples where explainability is not an issue. Instead, Rudin
herself focused on high-stakes decisions, where the use of ML models may have significant
consequences on human lives, and mentioned healthcare and justice as two major fields
where significant efforts have to be spent to achieve a transparent look at ML models’
outputs. In some cases, there are also legal requirements to enforce explainability [12].

Though the topic of the explainability of more established deep learning architecture
has been widely addressed, the relative youth of transformer architecture has generated
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a more recent stream of studies on the explainability of transformers, whose number
has, however, rapidly grown in parallel with the diffusion of the architecture itself. The
establishment of a significant body of knowledge about the explainability of transformers
suggests the need to organize it so as to identify the most relevant approaches, facilitate the
approach of newcomers to the field, and highlight research gaps. Unfortunately, the few
literature surveys (reviewed in Section 3) pre-date the explosion of interest for the topic
and so do not account for the vast majority of the literature now existing.

We aim to fill that gap by proposing a survey of the current literature on the explain-
ability of transformers by adopting a systematic approach based on a major scientific
literature database (Scopus) and covering the whole production since the inception of the
research efforts on this topic.

Our contributions are the following:

• We provide a taxonomy of explainability methods for transformers that relies on the
transformer component that the method leverages;

• We describe each method and survey their applications;
• We identify the most favored methods;
• We identify the research gaps and provide some directions for future research.

This paper is organized as follows: We first describe the architecture of transformers
in Section 2. Our literature review in Section 3 focuses on previous literature surveys on
the same topic as ours. The literature proposing or applying explainability techniques for
transformers is examined in Section 5, based on the dataset whose composition is reported
in Section 4.

2. Transformers

Before dealing with the literature on the explainability of transformers in the next
sections, we provide some background information about the architecture of transformers
and their fields of application in this section.

The transformer architecture, introduced in [13], is a deep learning architecture, orig-
inally intended for sequences of text. Its structure is shown in Figure 1. It is composed
of two different sections: an encoder and a decoder. The encoder part is responsible for
compressing all the information derived from the input into a vector that is used by the
decoder to build the next elements (e.g., the next pieces of text) in the sequence. The input
to both sections is the embedding representation of each element of the sequence, combined
with some form of positional encoding to represent the position of the element with respect
to the whole sequence. The typical length of the embedding vector is 512. In most imple-
mentations, just as in the original paper, the positional encoding is carried out through a
set of sine and cosine functions, whose frequency is modulated by the progressive index
of the embedding vector element [14]. Each element of the embedding vector is added to
the positional encoding vector. The specific procedure used to carry out embedding is not
critical as long as it is the same for all the elements of the sequence.

Both the encoder and the decoder are composed of stacked layers of the same kind:
a multi-head attention layer followed by some feed-forward linear layer. In the decoder
modules, there is one more multi-head attention layer between the other two, which is
used to map the input vector over all the sequences that make the output. There are also
residual connections around each block, used to stabilize training. Each layer is the input
to the next one.

Each multi-head attention block has to learn an attention-aware vector for each element
of the sequence, based on the self-attention mechanism proposed in [15], which is in turn
derived from the attention mechanism introduced in [16]. The attention-aware version of a
vector in the sequence can be seen as the combination between the original vector and a
weighted sum over all the vectors in the sequence, where the weights of the vectors are
learned during training. Furthermore, the elements of the sequence are not the same in all
the layers, but each of them learns a representation of them, also based on the representation
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used in the previous layer. The result of this stacked computation is a non-linear function
of all the elements of the sequence combined.

Formally, we define the input of each head of each layer l of a transformer architecture
as a sequence hl−1 of vectors such that hl−1

i ∈ Rd is the i-th vector in input, and we define
the output as a sequence hl of the same dimensions. Each vector hl is computed by using a
softmax function:

Al
i,j = softmax

Q
(

hl−1
i

)
· K
(

hl−1
i

)T

√
d

 ∈ R (1)

hl
i = W l

O ·

∑
j

Al
i,jV
(

hl−1
j

)
+ hl−1

i

 (2)

where Al is the attention matrix of the layer l; W l
O is the weights matrix learned by the

feed-forward layer in output; and Q, K, and V are transformations defined as

Q(h) = WQ · h, V(h) = WV · h, K(h) = WK · h, WQ, WV , WK ∈ Rd×d (3)

with WQ, WV , WK being weight matrices learned by the linear modules associated with the
query, values, and keys branches, respectively. In each of the previous definitions, the bias
term is dropped to simplify the notation. Furthermore, in the multi-head modules, all the
head outputs are concatenated.

Since its introduction, the transformer has undergone many different experiments on
variations of its attention mechanism and its architecture. One of the most influential variations
of the transformer architecture is the transformer decoder presented in [17], where the encoder
part of the transformer is completely dropped, leaving the decoder as the only component
of the architecture. In this variation, both the input and the output are considered as part of
the same sequence, with the model trained to just complete the sequence, given the first part
that corresponds to the original input. Following the work conducted in [17], Radford et al.
presented in [18] GPT-1, a decoder-only transformer trained using a self-supervised approach
on a wide variety of texts, which was the first in a series of experiments whose last incarnation
(at the current date) is GPT-4, presented by OpenAI in [19].

A different path of experiments began with the work presented in [20], where a
different way was proposed to train an encoder-only transformer architecture. Indeed, they
trained the model, randomly masking tokens of the input sequence and leaving it to the
model to learn the correct missing tokens. Such an approach was called BERT (Bidirectional
Encoder Representations from Transformers). Many different works have been derived
from BERT, modifying some aspects to improve performances, such as RoBERTa, presented
in [21], and DistilBERT, presented in [22].

A relevant branch of experiments focused on the choice of attention weights to be
computed during training. Instead of computing the attention between all the combinations
of input tokens, the attention may be computed over just a portion of the input sequence.
Several proposals have been put forward, among which we can mention the following ones:
Sparse Attention as presented in [23], Linearized Attention proposed in [24], and Low-rank
self-attention suggested in [25].

Finally, though the architecture of transformers has initially been thought to process
text, its application to non-text input is growing. Several experiments have considered
the possibility of training multi-modal models, capable of understanding different types
of input (e.g., text and images at the same time) and generating different types of output.
It is worth mentioning VisualBERT described in [26], DALL-E by OpenAI, and Flamingo
introduced in [27], which are all trained on both text and images. Furthermore, according to
the Google Gemini Team in [28], this type of model has made it possible to achieve human
expert performance on many different tasks.
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Figure 1. Transformer architecture as shown in [29] (the image is available at https://www.ncbi.nlm.
nih.gov/books/NBK597474/figure/ch6.Fig3/?report=objectonly (accessed on 1 March 2024) and is
licensed under the terms of the Creative Commons Attribution 4.0 International License).

3. Survey Literature

Since our aim is to provide a survey of the explainability techniques proposed for
transformers, the rest of this paper is devoted to describing those techniques and reviewing
the literature proposing them. In this section, we instead focus our attention on the survey
literature, i.e., on those papers that have proposed a survey of explainability techniques in
the past.

El-Zini and Awad claimed to provide the first survey of explainability issues in trans-
formers [30]. Though their survey encompassed explainability for the larger class of deep
learning models for natural language processing, they devoted a section to transformers.
They analyzed three aspects: (1) visualization mechanisms, (2) the explainability of at-
tention mechanisms, and (3) the explainability of BERT. As for visualization mechanisms,
they analyzed papers (five in total) proposing interactive tools to help understand the

https://www.ncbi.nlm.nih.gov/books/NBK597474/figure/ch6.Fig3/?report=objectonly
https://www.ncbi.nlm.nih.gov/books/NBK597474/figure/ch6.Fig3/?report=objectonly
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inner workings of transformers. Two of those papers dealt specifically with BERT and one
with GPT-2. The explainability of attention mechanisms was explored by examining eight
papers, the majority of which (six out of eight) maintained that attention mechanisms are
not inherently explainable. Finally, they analyzed six papers that scrutinize BERT. The
grand total was largely lower than the number of papers we found through our literature
search, due to the explosion of papers in 2023, which has made many previous surveys
largely incomplete.

A more restricted field of analysis was opted for by Kashefi et al., who analyzed
the explainability of vision (or visual) transformers, i.e., transformers designed for image
understanding rather than NLP [31]. They introduced a taxonomy of models (from which
we started to propose our more comprehensive one), built around five classes:

• Common-attribution methods;
• Attention-based methods;
• Pruning-based methods;
• Inherently explainable methods;
• Non-classification tasks.

As can be seen, their taxonomy relies on a mixture of criteria, making the taxonomy
non-homogeneous, since they employed the type of task carried out by the transformer
alongside the component leveraged by the explainability method. The number of papers
examined (falling in at least one of the previous classes) was 35.

A more limited focus was taken by Vijayakumar, who considered explainability at-
tained through the feed-forward layer (that follows the attention layer in the transformer
architecture, as shown in Figure 1) just in the context of NLP [32]. Their limited focus leads
to a very small number of papers surveyed, precisely just seven.

Beyond the survey of explainability methods, Brasoveanu and Andonie proposed
instead a survey of papers dealing with the visualization of transformer operations [33].
Though they did not explicitly address explainability, visualization is tightly related to
explainability since visualizing the operations of the neural network helps understand
the role and relevance of the different contributions to the final outcome. They made a
distinction between focused and holistic visualizers, where the former center on a single
component of the machine, e.g., attention, while the latter examine the behavior of the
transformer as a whole. Though they claimed to have examined 50 papers, they decided
to restrict their attention to papers proposing NLP applications. Their final selection was
made of 12 papers on focused visualizers and 6 papers on holistic visualizers. Again, the
latest flurry of papers on the explainability of transformers urges the analysis of a wider
body of literature.

Vision Transformers were, again, the focus of the survey conducted in [34]. The survey
focused on post hoc XAI methods and proposed a classification of the taxonomies adopted
for XAI methods. The authors distinguished between methods originally thought for CNNs
(Convolutional Neural Networks) and methods specifically developed for Vision Trans-
formers. The number of papers surveyed was 9 for the former category and 14 for the latter.
Though the panorama was somewhat restricted, the survey differs significantly from the
others in its effort to evaluate XAI methods on a common ground, employing the ImageNet
Large-Scale Visual Recognition Challenge dataset [35] and adopting several metrics to carry
out the evaluation using five criteria: faithfulness, complexity, randomization, robustness,
and localization.

After examining the body of literature represented by surveys, we can conclude that
ours differs from those that appeared so far in one or more of the following aspects:

• Time coverage;
• Extension, as for the number of papers analyzed;
• Extension, as for the type of application analyzed.

As for time coverage, all papers stopped their coverage at (or earlier than) 2022,
missing the explosion of the literature in 2023, which we instead covered in full. The
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number of papers under analysis lay below 10 in [30,32] and stopped at 35 even in the most
comprehensive survey [31], while we analyzed 95. The type of application is limited to
NLP applications in [32] and to visual transformers in [31,33,34], while we considered all
application domains.

4. Dataset

We extracted the literature of interest by querying the well-known Scopus database.
The query used the terms explainability AND transformers. We obtained 279 papers (the
database was accessed for the last time on 16 February 2024). We proceeded to clean
that dataset using a systematic approach following the PRISMA guidelines [36,37]. The
selection flowchart is shown in Figure 2. We removed first the items that represented whole
conferences rather than individual papers. We then examined the abstracts to select just
those papers actually dealing with explainability techniques applied to the deep learning
architecture named transformer. Finally, after examining the full text of those papers, we
removed another group of papers for two major reasons: they either did not deal with
transformers, though they mention the architecture in the abstract, or they did not propose
or analyze XAI techniques.

Records identified on Scopus
(n=279)

Records screened
(n=279)

Records excluded
(n=18)

Abstracts/Titles assessed
for eligibility

(n=261)

Abstracts/Titles excluded
(n=77)

Full-text articles assessed
for eligibility

(n=184)

Full-text articles excluded
with reasons

(n=89)

Studies included in
qualitative synthesis

(n=95)

Figure 2. Systematic selection flowchart.

We can first examine the evolution of the papers satisfying the search criteria over
time in Figure 3. The figure for 2024 up to the last time of access to Scopus is projected to
the end of the year to make it comparable with the other years. The explosion of papers
in the last two years is well visible and is a major reason to have an up-to-date survey of
the subject.

Not all the papers introduced methodological innovations. Some papers introducing
new XAI methods did so with no specific reference to transformers, though their methods
could be applied to transformers. On the other hand, the vast majority of papers dealing
with XAI for transformers analyzed the application of existing techniques, maybe with
minor variants. We reported the innovative papers in Figure 4. Again, we projected the
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data for 2024, though the statistical reliability of such a projection is quite low since just a
few innovative papers have appeared in 2024 so far. Though not explosive, the increase in
2023 is anyway visible here as well. The interest in the subject is growing.

2019 2020 2021 2022 2023 2024

0

50

100

150

Observations
Projection

Figure 3. Number of papers over time.
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Figure 4. Number of papers introducing new methods by year of publication.

The distribution of papers proposing innovative methods by country in Figure 5 shows
some leadership by China and the U.S.A., but with European countries (Italy, Germany,
and the UK) as good runner-ups.

If we consider the domain of application by type of input data in Figure 6, we can
surely observe the large predominance of textual data and images. Though the leading
role of the former type is well expected, since transformers have been initially proposed
for NLP applications, image applications are now on par, marking the recent extension of
transformers to visual data.
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Figure 6. Number of papers introducing new methods by type of input.

5. Methodologies for Explainability

In Section 3, we described the survey literature. That body of literature proposed a
panorama of the existing explainability techniques. In this section, we go on to describe
the literature proposing new explainability techniques for transformers. In doing so, we
propose a classification of those techniques according to the architecture components they
employ to explain the transformer’s output. Our classification modifies that introduced
in [31], which included mixed criteria. Our classification employs the following classes and
their combinations:

• Activation;
• Attention;
• Gradient;
• Perturbation.
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Hereafter, for each class, we include the original formulation of the technique, though
it was not expressly devised for transformers but later applied to them with some modifica-
tions, and describe the main papers that have adopted it.

5.1. Activation-Based Methods

One of the main ideas to identify the contribution of each input feature to the output
is to use the activation of the neurons, going through the network back to the input.
Developing this idea, Bach et al. presented in [38] the Layer-wise Relevance Propagation
(LRP). This technique is based on the assumption that the activation of a neuron signals
its relevance for the output. Also, the relationship between different layers is represented
by the relevance of a neuron in a layer being a linear combination of the relevances of the
neurons in the previous layer. This relationship allows us to track neuron relevances from
the output back to the input. Furthermore, the basic method assumes that the network uses
ReLU activations in all layers.

Using ai as the dummy variable describing the activation of neuron i, wi,j as the weight
in the layer from the input i to the output j, and Rl

i as the relevance of the neuron i in the
layer l, we consider the following relation to hold, which allows us to compute the relevance
of any neuron in a layer based on the relevances of all neurons in the subsequent layer:

Rl−1
i = ∑

j

ai · wi,j

∑
k

ak · wk,j
· Rl

j (4)

We can apply this backtracking relationship starting from the output layer and going
through the network back to the input layer, hence identifying the relevance of each
input feature.

Even though the LRP method was developed to be applied to CNNs for images
(which explains the assumption of ReLU activation), it has been explored and modified to
be applied to other types of NNs. Ding et al. applied LRP for machine translation tasks in
attention-based encoder–decoder RNNs [39]. Unlike the original method, they computed
the relevance score for input vectors instead of single features. So, the relevance score
for an embedding vector corresponds to the sum of the relevance scores of its features.
Furthermore, they proposed to ignore the non-linear activation functions during LRP
computations, based on the assumption that the choice of non-linear functions is irrelevant
for LRP [38].

The application of LRP to transformers requires three more issues to cope with: differ-
ent activation functions, skip connections, and matrix multiplications. Indeed, comparing a
CNN architecture with that defined in Equations (1)–(3) allowed us to spot many differ-
ences; first of all, the multiplication Q ·V and the term · · ·+ hl−1

i used to implement the
skip connections. Following the implementation of [39], Voita et al. presented Partial-LRP
to identify the most relevant heads in a transformer-based model and prune the least
relevant ones [40]. In applying LRP to their models, they considered a value Ru←v as the
relevance of neuron u for neuron v, which can be defined as

Ru←v = ∑
z∈OUT(u)

wu→z · Rz←v (5)

where OUT(u) is the set of nodes directly connected to u in the next layer, and wu→v is the
weight ratio that measures the contribution of u to v, defined as

wu→v =



Wu,v · u
∑

u′∈IN(v)
Wu′ ,v · u′

if v = ∑
u′∈IN(v)

Wu′ ,v · u′

u

∑
u′∈IN(v)

u′
if v = ∏

u′∈IN(v)
u′

(6)
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where Wu,v is the weight learned between neurons u and v, and IN(u) is the set of nodes
directly connected to u in the previous layer.

Chefer et al. in [41] proposed a variation of LRP where the issue of different activation
functions is settled just considering the ai · wi,j elements that turn out to be non-negative.
Their analysis of the two other issues shows that both operations could be seen as Relevance
Propagation through two different tensors instead of a single one. So, they expanded the
definition of relevance for both tensors u and v as

Rul−1

i = ∑
j

ui · vi,j

∑k uk · vk,j
· Rl

j

Rvl−1

i = ∑
j

vi · ui,j

∑k vk · uk,j
· Rl

j

(7)

Finally, they introduced normalization:

Rul−1

j = Rul−1

j ·

∣∣∣∑j Rul−1

j

∣∣∣∣∣∣∑j Rul−1

j

∣∣∣+ ∣∣∣∑j Rvl−1

k

∣∣∣ · ∑i Rl
i

∑j Rul−1

j

Rvl−1

k = Rvl−1

k ·

∣∣∣∑j Rvl−1

k

∣∣∣∣∣∣∑j Rul−1

j

∣∣∣+ ∣∣∣∑j Rvl−1

k

∣∣∣ · ∑i Rl
i

∑j Rvl−1

k

(8)

Even though this relevance score could be used to provide explanations for each
attention layer (as in standard LRP), they used it as a construction block for a different score
that computes both LRP and Attention Rollout, as described in more detail in Section 5.5.1.

In order to improve the distinction between the positive and negative relevance
of neurons, Nam et al. in [42] proposed a variation of LRP called Relative Attributing
Propagation (RAP), which uses normalization before the propagation of positive and
negative relevances in each layer separately.

Since the results of LRP are class-independent, many methods have tried to differ-
entiate the results of LRP to represent the classes. Gu et al. in [43] presented Contrastive
Layer-wise Relevance Propagation (CLRP), which is based on the idea of computing LRP
both for the class of interest and for the aggregation of the other classes, keeping only the
positive differences between the two classes of relevances obtained.

In image classification, one of the most interesting aspects of prediction is understand-
ing which image features were most influential in predicting the class. To estimate this type
of influence, Zhou et al. introduced the Class Activation Mapping (CAM) technique in [44].
CAM considers a CNN with a global average pool just before the last fully connected
layer (which could employ, e.g., a softmax function for classification and a ReLU activation
function for regression). Its application is quite limited, given the large number of architec-
tures other than CNN that have been proposed in the literature. The method consists of
estimating the score for each area of the input image by multiplying the activation of each
filter of the last convolutional layer (before the global average pool) and the weight learned
for the average of the filter with respect to the neuron representing the class in the output
layer. That multiplication outputs a matrix with the same size as the last convolutional
layer for each filter. Summing them provides us with a relevance matrix for a single output
class. The last step consists of visualizing this relevance matrix over the original input,
resizing (usually with some form of interpolation) the relevance matrix to the same size as
the original input image. Formally, given the last convolutional layer of a CNN architecture
with the activation matrix Vn×m×F, composed of F filters of size n×m, followed by a global
average pool and a vector representing the output classes connected by a weight matrix W,
we compute the relevance score Rx,y,c for a super pixel at position (x, y) for the class c as
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Rx,y,c = ∑
f

(
W f ,c ·Vx,y, f

)
(9)

A super pixel is a segment of the matrix after reshaping by applying the filters of the
architecture, basically corresponding to a patch of the input image.

A different idea was proposed by Ferrando et al. in [45], with a method called
ALTI (Aggregation of Layer-wise Token-to-Token Interactions). The method computes the
contribution of each component of a transformer block to the output of the block. Roughly
speaking, the idea is to compute the difference between the component Al

i,jV(hl−1
j ) from

Equation (2) and hl
i as the contribution of the j-th component to the i-th output. All the

matrices composed using these differences are then combined using the same rules of
Attention Rollout (explained in Section 5.2).

Focusing on the differences appearing in the output due to different inputs, Li et al.
in [46] proposed a method (subsequently) called Input Erasure that masks part of the input
with 0s to measure the contribution (the relevance) of this part to the same output (it could
be even just a single embedding dimension).

A simple approach was proposed by Kim et al. in [47] with a method called Concept
Activation Vectors (CAVs). They considered the activations of a layer for many input
samples, both for the target class and the non-target class (in a binary problem). Afterward,
they trained a linear model on the activations to distinguish between the target class and
the non-target class. The linear model weights were the relevance scores for the class with
respect to the features.

Muhammad and Yeasin in [48] proposed a method called Eigen-CAM, inspired by
CAM, that is based on Single Value Decomposition. They combined the weight matrices
from the first k convolutional layers, multiplying them by the input image matrix. The
saliency map consisted of the projection of the matrix just computed on the first eigenvector.

Following the techniques described so far, many papers applied them in different
contexts, often employing several techniques at the same time to look for the best one.

For example, Mishra et al. in [49] compared different methods (LRP and perturbation
methods like LIME and SHAP, described in Section 5.4) to explain models for hate speech
detection. Instead of straightforwardly evaluating models, Thorn Jakobsen et al. in [50]
turned their attention to the datasets employed to evaluate explanability methods, propos-
ing new datasets and using LRP and Attention Rollout (see Section 5.2). Other authors
focused on LRP for several purposes. Yu and Xiang in [51] proposed a model for neural
network pruning, visualising relevances using LRP. Chan et al. proposed a new method to
perform early crop classification by exploiting LRP in [52].

CAM was instead the method chosen in [53] to explain remote sensing classification
performed through a transformer-based architecture.

The ALTI method was instead chosen and slightly modified in [54] by Fernando et al.,
who proposed a variant called ALTI-logit, where each component Al

i,jV(hl−1
j ) is multiplied

by the matrix just before the final softmax function in the network. They further proposed
Contrastive ALTI-logit, where the difference between two different tokens is measured at
the output, subtracting the results of ALTI-logit for the two tokens. They also compared
their methods with Contrastive Gradient Norm and Contrastive InputXGradient.

CAVs were instead applied by Madsen et al. in [55] on an EEG classification model.
A comparison for (multi-modal) transformers was carried out in [56], namely between

Optimal Transport, which considers activations of different input types, and Label Attri-
bution, which is a variation of TMME (see Section 5.5.4). An even wider comparison was
carried out by Hroub et al. in [57], where different models are employed for pneumonia
and COVID-19 existence prediction from X-rays. The set of methods included Grad-CAM,
Grad-CAM++, Eigen-Grad-CAM, and AblationCAM to produce saliency maps.

Another group of papers focused on visualization techniques. Alammar in [58]
presented a tool (Ecco) to provide different visualization techniques for transformers. Each
of them could be classified into one of the two classes: Gradient × Input or a function of
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activation (in this case, dimensionality reduction over responses is also performed). Van
Aken et al. in [59] presented VisBERT, a visualization tool for BERT-like architectures,
which is an activation-based method (they used the responses of each layer) followed by
dimensionality reduction techniques (t-SNE, PCA, and ICA) to project input tokens on a
2D plane.

Gao et al. in [60] proposed a new architecture for table explanation, supplying three
different methods of explanation: local explanation, global explanation, and structural
explanation. The local explanation consists of computing output embeddings of text
and extracting many subsequences, each of them being represented as the mean of the
embeddings that compose it minus the embeddings of the CLS token. Afterward, they
multiplied the matrix obtained by the weight matrix of the last layer just before applying
a sigmoid activation. The results were the relevance scores of the subsequences. The
global explanation consisted of computing the cosine similarity between the embeddings
of the CLS (cross-lingual summarization) token of each sample in the dataset and assigning
a relevance score to each of them accordingly. The structural explanation consisted of
building a graph from the dataset, computing the embeddings of nodes and multiplying
the embeddings by each other (CLS embeddings multiplied by its neighbors), and then
(after multiplying the normalized version again for the neighbors’ embeddings) aggregating
(by summing them) the scores of each neighbor and using the results as relevance scores.

5.2. Attention-Based Methods

Since the introduction of the attention mechanism in [16], attention weights have
been one of the go-to indicators to estimate explanations. In [61], Abnar et al. introduced
Attention Rollout and Attention Flow techniques. They share the same ground assumptions
but differ in the information flow mechanism through the neural network. The assumption
they share is that the attention in the last layer cannot be considered a proxy for explanation.
Considering instead the attention in the first layers, we can use it to measure the contri-
bution of each token to the result. They also underlined the importance of the residual
connection with respect to the information flow, so instead of using just attention weights,
they augmented the attention weights matrix with a layer l as

Al = 0.5 ·W l
att + 0.5 · I (10)

where W l
att is the average of all the attention weight matrices in all the heads of the layer l

of the transformer.
In the Attention Rollout technique, a chain of cumulative attention matrices is formed

by multiplying the attention matrix Al of the l-th layer by the attention matrices of the
subsequent layers:

Ãl =

{
Al if it is the last layer

Al Ãl−1 otherwise
(11)

The result of the multiplication can be easily shown as a heatmap of the relevance of
each token in the input with respect to each token in the output.

In the Attention Flow technique, the neural network is seen as a graph whose edges are
weighed by the attention weights Al of the pertaining layer. Considering the weights as
capacities, the input tokens as source nodes (one at a time), and the output tokens as sink
nodes (again one at a time), we can compute the max flow of the network and consider it
as the relevance score for the pair (source and sink).

When we come to the application of attention-based techniques, we can recognize
three streams: (1) the papers proposing the usage of attention weights; (2) the papers using
the Attention Rollout that we described above; and (3) the papers exploiting visualization
techniques for attention weights.

In the first group, we find Renz et al., who proposed two different models for
route planning in complex environments using the sum of attention weights as relevance
scores [62]. Feng et al. proposed a model for early stroke mortality prediction, using



Computers 2024, 13, 92 13 of 34

attention weights as relevance scores [63]. A more complex function of attention weights
was employed by Trisedya et al. to explain the output in knowledge graph alignment [64].
Applications in the medical field were considered by Graca et al., who proposed a frame-
work for Single Nucleotide Polymorphisms (SNPs) classification, using attention weights
to explain the classification [65]; by Kim et al., who used attention weights to score text in
input and explain decisions taken by a model dedicated to medical codes prediction [66];
and by Clauwaert et al., who focused on automatic genomics transcription, analyzing
the attention weights of the trained model to prove the specialization of each head with
respect to some input feature [67]. Sebbaq and El Faddouli proposed a new architecture to
perform a taxonomy-based classification of e-learning materials, using attention weights
for explainability [68]. In their model for sequential recommendation, Chen et al. also
relied on attention weights for explainability [69]. An aggregation of attention weights was
employed by Wantiez et al. to explain the results of their architecture for visual question
answering in autonomous driving [70]. The context considered by Ou et al. to use attention
weights was instead next-action prediction in reinforcement learning [71]. An aggregation
over all attention weights of all heads in all layers was employed by Schwenke et al. to
process time series data using symbolic abstraction [72,73]. Finally, Bacco et al. trained a
transformer to perform sentiment analysis, using a function of the attention weights to
select the input sentences in input that better justify the classification [74]. The same subject
was more extensively dealt with in [75]. Humphreys et al. proposed an architecture for pre-
dicting defects, using the sum of attention weights over all layers [76]. Attention weights
were employed for searching in a transformer-based model dedicated to multi-document
summarization in [77].

The following six papers used the Attention Rollout technique. Di Nardo et al. pro-
posed a transformer-based architecture for visual object-tracking tasks, using Attention
Rollout for explainability [78]. Cremer et al. tested an architecture on 3 datasets for drug
toxicity classification [79]. A variation of Attention Rollout was employed by Pasquadibis-
ceglie et al. to generate heatmaps in a framework for next-activity prediction in process
monitoring [80]. Attention Rollout was employed in conjunction with Grad-CAM (see
Section 5.3) by Neto et al. to detect metaplasia in upper gastrointestinal endoscopy [81].
Both Attention Rollout and LRP were tested by Thorn Jakobsen et al. on new datasets
in [50]. Finally, Komorowski et al. compared LIME, Attention Rollout, and LRP-Rollout
(see Section 5.5.1) for a model dedicated to COVID-19 detection from X-ray images [82].

A large group of papers have addressed the use of the visualization of attention
weights to help explain the outcome of transformers. Fiok et al. used both BertViz (a
visualization tool for attention weights) and TreeSHAP (a variation of SHAP for tree-based
models) [83]. Again, Tagarelli et al. employed BertViz after training a BERT-like model on
the Italian Civil Code [84]. Lal et al. proposed a tool to explain transformers’ decisions by
visualizing attention weights in many ways, including dimensionality reduction [85]. Dai
et al. adopted the visualization of the attention weights to explain a classification model to
infer personality traits based on the HEXACO model [86]. Gaiger et al. considered a general
transformer-based model [87]. Zeng et al. used the visualization of attention weights to
explain a new framework for DNA methylation sites prediction [88]. Textual dialogue
interaction was instead the application of interest in [89]. Ye et al. employed attention
weights visualization to classify eye diseases from medical records [90]. Neuroscience was
the domain of application considered in [91], where a new architecture for brain function
analysis was proposed, and [92], where a new architecture was proposed based on the
graph representation of neurons from fMRI images to predict cognitive features of the
brain. Sonth et al. trained a model for driver distraction identification [93]. Kohama et
al. proposed a new architecture for learning action recommendations in [94]. Wang et al.
proposed a new architecture for medical image segmentation, using visualizations of both
attention weights and gradient values to explain the output [95]. Kim et al. proposed an
architecture for water temperature prediction [96]. Monteiro et al. proposed an architecture
for a 1D binding pocket and the binding affinity of drug–target interaction pairs prediction
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in [97]. Finally, Yadav et al. compared different explanability methods (LIME, SHAP, and
Attention visualization) for hate speech detection models in [98].

A related research stream considered the use of transformers for images, i.e., visual
transformers. Ma et al. computed an indiscriminative score for each patch of an image as a
function of the attention weights in all the layers [99].

5.3. Gradient-Based Methods

Most of the training algorithms for neural networks are based on some form of gradient
backpropagation from the loss function to the input. Many explainability methods are based
on different functions of the gradient computed at different points in the neural network.

One of the first works using this approach was by Simonyan et al. in [100]. They
presented a method (subsequently) called saliency, which computes the gradient of Yc

with respect to the input x. Employing the gradient in the linear approximation of Yc

in a neighborhood of x via its Taylor series is analogous to interpreting the coefficients
in a linear regression model as a measure of feature importance. Furthermore, another
work presented by Springenberg et al. in [101] introduced a class of methods that included
Guided Backpropagation. This method consists of a forward pass through a CNN to reach
a selected layer and then, after zeroing all the features but one, a backward pass to the
input (filtering out all the non-positive pixels) to compute the relevance of the feature. After
those papers, Kindermans et al. in [102] proposed to scale the scores obtained with saliency
by multiplying them by the input in a method (subsequently) called InputXGradient.

Extending the work in [100], Yin and Neubig in [103] computed the gradient of the

difference for two different outputs with the same input (formally ∂(Yc−Yc′ )
∂x ) as the saliency

score, and they called it the Contrastive Gradient Norm. They also used the same gradient
to extend the work in [102], calling it the Contrastive InputXGradient.

To generalize the CAM technique, Selvaraju et al. introduced in [104] the Gradient-
weighted Class Activation Mapping (Grad-CAM) technique. The most important advan-
tage of Grad-CAM with respect to CAM is the compatibility of the method with any
CNN-based architecture. The method consists of backpropagating the output until the last
convolutional layer. The gradients we propagated back are averaged to obtain a vector with
a size equal to the number of filters. So, we use this vector just like the learned weights in
the CAM method, multiplying them by the activations of the filters in the last convolutional
layer. As the last step, we apply ReLU over the results of the linear combinations to filter
out negative scores. Formally, given the last convolutional layer of a CNN architecture with
the activation matrix Vn×m×F, composed by F filters of size n×m, and the final output for
a class c represented as Yc, we obtain:

Rx,y,c = ReLU

∑
f

 1
F∑

i,j

∂Yc

∂Vi,j, f

 ·Vx,y, f

 (12)

Grad-CAM++ presented in [105] is a variation of Grad-CAM. Unlike GRAD-CAM,
the ReLU is moved to the partial derivative, and different coefficients are used for each
combination of position, filter, and class. These coefficients are computed as a function of the
gradients backpropagated from the last layer of the network (before the activation function).

We can now see the papers employing one or more of the techniques described so
far. Grad-CAM alone was employed by Sobahi et al., who proposed a model to detect
COVID-19 by using cough sound recordings [106]; Thon et al., who proposed a model
to perform a 3-classes severity classification of COVID-19 from chest radiographs [107];
and Vaid et al., who trained a model for ECG 2D representation classification [108]. Wang
et al. proposed a transformer-based architecture for medical 3D image segmentation, using
Grad-CAM++ in [109].

More often we find Grad-CAM employed with other techniques in a comparative fash-
ion. Wollek et al. compared TMME and Grad-CAM for pneumothorax classification from
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chest radiographs [110]. Neto et al. employed Grad-CAM and Attention Rollout to explain
a model for metaplasia detection in upper gastrointestinal endoscopy [81]. Thakur et al.
compared LIME and Grad-CAM for plant disease identification from leaves images [111].
Kadir et al. compared Soundness Saliency and Grad-CAM for image classification [112].
Vareille et al. employed a host of methods (SHAP, Grad-CAM, Integrated Gradients, and
Occlusion) for multivariate time series analysis [113]. Hroub et al. compared different mod-
els for pneumonia and COVID-19 prediction from X-rays, using Grad-CAM, Grad-CAM++,
Eigen-Grad-CAM, and AblationCAM to produce saliency maps [57].

A wider selection, not including Grad-CAM, was employed in other papers. Cornia et
al. proposed a method to explain transformers’ decisions in visual captioning by applying
three different gradient-based methods (saliency, Guided Backpropagation, and Integrated
Gradients) [114]. Poulton et al. applied saliency, InputXGradient, Integrated Gradient,
Occlusion, and GradientSHAP to explain the decisions of transformers concerning the
automatic short-answer grading task [115].

Finally, visualization techniques were considered by Alammar, who presented a tool
(Ecco) to provide different visualization techniques for transformers [58]. Wang et al.
proposed a new architecture for medical image segmentation, using the visualization of
both attention weights and gradient values to explain the output [95].

As an example of the results that can be obtained with such methods, a visualization
dedicated to image classification can be seen in Figure 7. In this image, each pixel is colored
according to the score assigned by the different methods (most of them already explained in
this section) so as to compare them. This type of visualization, consisting just of a heatmap
over the input image, is usually called a saliency map.

Figure 7. Visualization results of Vanilla Backpropagation, Guided Backpropagation,
SmoothGrad, IntegrateGrad, Mask, RISE, Grad-CAM, Grad-CAM++, and Score-CAM [116]
(the image has been taken from the open access version of the paper available at
https://openaccess.thecvf.com/content_CVPRW_2020/papers/w1/Wang_Score-CAM_Score-
Weighted_Visual_Explanations_for_Convolutional_Neural_Networks_CVPRW_2020_paper.pdf
(accessed on 1 March 2024)).

5.4. Perturbation-Based Methods

The perturbation approach identifies the relevance of a portion of the input by masking
it and checking the consequences on the output.

Zeiler and Fergus in [117] introduced an approach (subsequently) called Occlusion,
where part of the input is masked with 0s and the difference in the output is measured.
So, moving the Occlusion, we can use the differences in the output as a measure of the
relevance of the masked part of the input.

Comparing neural networks and linear models, it is known that even though neural
networks provide better results, linear models are much more easily explainable. Thinking
of this fundamental difference, Ribeiro et al. introduced Local Interpretable Model-agnostic
Explanation (LIME) in [118], trying to build a linear model to explain the decision taken
by the neural network by lightly perturbing the input and measuring the difference in the
output. Formally, given a function of probability f with respect to a class (the model we are
trying to explain), a class of explainable models G (it could be the class of linear models), a
function πx that measures the proximity distance with respect to x, and a function Ω to

https://openaccess.thecvf.com/content_CVPRW_2020/papers/w1/Wang_Score-CAM_Score-Weighted_Visual_Explanations_for_Convolutional_Neural_Networks_CVPRW_2020_paper.pdf
https://openaccess.thecvf.com/content_CVPRW_2020/papers/w1/Wang_Score-CAM_Score-Weighted_Visual_Explanations_for_Convolutional_Neural_Networks_CVPRW_2020_paper.pdf
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measure the complexity of a model of the class G, we try to find a model M for the input x
defined as

M(x) = arg ming∈G ℓ( f , g, πx) + Ω(g) (13)

where the function ℓ returns a measure of how unfaithful the model g is in approximating
f in the locality defined by πx.

The definition is very general and could be arranged in many different ways. For
the sake of clarity, we take the class of linear models as an example for G, defined as
g(z) = wg · z. Considering this type of model, we would define πx as

πx(z) = e

− D(x, z)2

σ2 (14)

with the function D defined as a distance function (e.g., cosine distance for text and L2
distance for images) and σ as a weight factor. Furthermore, we would define the function
ℓ as

ℓ( f , g, πx) = ∑
z,z′∈Z

πx(z) · ( f (z)− g(z′))2 (15)

with Z defined as the set of samples obtained by perturbing the initial input x.
It is important to notice that this type of technique guarantees a faithful local explana-

tion but not a global one.
Lundberg et al. introduced SHAP in [119], a method based on the game-theory-based

notion of Shapley values developed by Shapley in [120]. In their work, Lundberg et al.
connected pre-existing methods (such as LIME and DeepLIFT) to Shapley values. They
proved that LIME could return valid Shapley values after some variations. First of all,
the perturbing method should introduce random masking over the features, replacing the
missing ones with values sampled from a marginal distribution computed on the original
input. The masking is represented by the function hx. The proximity distance should be
defined as

π′x(z) =
M− 1

(M
|z|)|z|(M− |z|)

(16)

where Z′ is the set of masked samples; z ∈ Z′, |z| is the number of unmasked features; and
M is the max number of unmasked features among the samples in Z′. The model to be
used should be a weighted linear regression model defined as

g′(z) = w0 + ∑
j

wj · zj (17)

Finally, the loss function ℓ′ is defined as

ℓ( f , g′, π′x) = ∑
z∈Z′

πx(z) · [ f (hx(z))− g′(z)]2 (18)

A different approach, called Anchors, was proposed by Ribeiro et al. in [121]. They
focused on the subset of input features that leaves the same output classification (with a
high probability) even after the change in the remaining features.

Petsiuk et al. in [122] presented a method called RISE (Randomized Input Sampling
for Explanation), which is suitable for any image classification model. It generates many
random masks that are applied to the input image. The probability of classification is
measured for each masked image, and then the relevance map is composed as a weighted
sum of the masks (with respect to the probabilities measured in the output) after applying
a normalization with respect to how many times a pixel was in a mask.

Gupta et al. in [123] propose a method (subsequently) called Soundness Saliency,
which consists of learning a matrix (with the same size of the input image) used to mask
the original input, such that the expectation of the negative logarithm computed on the
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classification output probability is minimum. Unlike other methods, the values used to
replace the masked pixels are taken from an image randomly picked from the training set.
The saliency map will correspond to the learned masking matrix.

A variation of CAM, called AblationCAM, was proposed by Desai and Ramaswamy
in [124], also inspired by Grad-CAM but without using gradients. They predicted the
probability of an output class for an input image, considering the last layer activation
matrix, just before the classification layer. They computed the relative increase in the
output probability for each pixel (of each filter) in the last layer, zeroing the corresponding
activation and predicting again the output probability. After that, they computed a saliency
map (reshaped with respect to the input image) composed by the activation of a pixel times
the percentage computed for the same pixel.

When we examine the papers reporting the application of perturbation-based methods,
we see that the great majority are papers using the two best-known methods: LIME and
SHAP. In most cases, they use either alone.

As for LIME, Mehta et al. applied LIME to explain the decisions of BERT-like models
in a hate speech detection task [125]. Rodrigues et al. extended LIME to meta-embedding
input in a model for a semantical textual similarity task with a meta-embedding ap-
proach [126]. Janssens et al. employed LIME when comparing different models to de-
tect rumors in tweets [127]. Chen et al. compared different models to perform Patient
Safety Events classification using a proprietary dataset [128]. Collini et al. proposed a
framework for online reputation and tourist attraction estimation, explaining the output
with LIME [129]. Finally, Silva and Frommholz employed LIME as a model to perform
multi-author attribution [130].

A similar-size group of papers have instead employed SHAP for explanation purposes.
In the following, we report the task for which explainability was sought through SHAP.
Upadhyay et al. proposed a new model for fake health news detection [131]. Abbruzzese et al.
proposed a new architecture for OCR anomaly detection and correction [132]. Benedetto et al.
proposed an architecture for emotional reaction prediction for social posts [133]. Rizinski et al.
proposed a framework to perform a lexicon-based sentiment analysis [134]. Sageshima et al.
proposed a method to classify donors with high-risk kidneys in [135].

Then came several papers that compared different explainability approaches, including
LIME and SHAP, either alone or in combination. Most of them considered gradient-based
approaches. El Zini et al. employed LIME, Anchors, and SHAP when introducing a new
dataset to evaluate the performances of different models for sentiment analysis [136].
Lottridge et al. compared annotations from humans with respect to explanations provided
by both LIME and Integrated Gradients within the scope of crisis alert identification [137].
Arashpour et al. compared a wide range of explainability methods falling into the classes of
perturbation-based methods and gradient-based methods (Integrated Gradients, Gradient
SHAP, Occlusion, the Fast Gradient Sign Method, Projected Gradient Descent, Minimal
Perturbation, and Feature Ablation) for waste categorization in images [138]. Neely et al.
compared LIME, Integrated Gradients, DeepLIFT, Grad-SHAP, and Deep-SHAP to mea-
sure their degree of concordance [139]. Komorowski et al. compared LIME, Attention
Rollout, and LRP-Rollout for a model to detect COVID-19 based on X-ray images [82].
Thakur et al. used LIME and Grad-CAM in [111] to compare different models for plant
disease identification from leaf images. Tornqvist et al. proposed integrating SHAP and
Integrated Gradients for automatic short-answer grading (ASAG) [140]. Vareille et al.
compared different explainability methods (SHAP, Grad-CAM, Integrated Gradients, Oc-
clusion, and different variations of them dedicated to the task) for multivariate time series
analysis [113]. Mishra et al. compared LIME, SHAP, and LRP in explaining models for
hate speech detection [49]. For the same task, Yadav et al. compared LIME, SHAP, and
Attention visualization in [98]. Malhotra and Jindal used SHAP and LIME in models
for depressive and suicidal behavior detection [141]. Abdalla et al. employed LIME and
SHAP when introducing a dataset to be used as a benchmark for human-written papers
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classification [142]. Fiok et al. used both TreeSHAP (a variation of SHAP for tree-based
models) and BertViz in [83].

Quite a smaller group of papers considered perturbation methods other than LIME
or SHAP. Poulton et al. applied different methods (saliency, InputXGradient, Integrated
Gradient, Occlusion, and GradientSHAP) to explain the decisions of transformers for the
automatic short-answer grading task [115]. Kadir et al. compared Soundness Saliency and
Grad-CAM with respect to image classification [112]. Tang et al. proposed a new method
for explainability that consists of finding the relevance matrix that minimizes the difference
between the loss computed on the original image and the perturbed version obtained by
masking the image with the relevance matrix, applying the new technique to a new model
for cancer survival analysis [143].

5.5. Hybrid

The methods described in Sections 5.1–5.4 fall sharply into one of the categories we
identified at the beginning of Section 5. However, some methods have been proposed that
employ a combination of approaches (in most cases, a couple). In this section, we describe
those methods, devoting a subsection to each combination.

5.5.1. Activation + Attention

As we said before, Chefer et al. in [41] introduced a form of a relevance score that is
the combination of the Attention Rollout method and LRP method with the assumption of
an architecture based on self-attention. For the sake of brevity, we will call it LRP-Rollout.
Indeed, for each transformer block B, they compute a score matrix AB, multiplying them
(equally to what is performed in Attention Rollout) to obtain a global score matrix C:

C = A1 · A2 · . . . · AN (19)

where A1 is the score matrix for the last transformer block and AN is the score matrix for
the first transformer block. The difference with respect to the Attention Rollout methods is
the definition of each score matrix. They are defined as

AB
= I +Eh

(
∇AB ⊙ RB

)+
(20)

where∇AB is the gradient of the attention matrix AB;⊙ is the Hadamard product (element-
wise product); RB is the relevance scores obtained with LRP over the softmax layer of the
transformer block B; Eh is the average operation over all the heads in the transformer block
B; and (. . . )+ indicates only the positive values, leaving all the others as 0.

The number of applications of the combination of Activation and Attention is quite small.
Bianco et al. compared different architectures for food recognition, using LRP-Rollout

for the explanation [144]. A combination of Attention Rollout with the activations of the
last layer was proposed by Black et al. when detecting image similarities in the input
of transformers [145]. Sun et al. proposed a method to estimate the relevance of each
token in the input by masking all the attention matrices (in each layer) by the columns
corresponding to the token we are computing, keeping also all the other values fixed
in [146]. A comparison of LIME, Attention Rollout, and LRP-Rollout was carried out by
Komorowski et al. in COVID-19 detection based on X-ray images [82].

5.5.2. Activation + Gradient

Gur et al. in [147] presented a method called Attribution-Guided Factorization (AGF),
which combines the ideas behind both LRP and Grad-CAM. In their work, they tried to
classify each neuron, with respect to the output class, as either in the background or in the
foreground. The main idea behind the method is to use positive components of the gradi-
ents, which are then propagated back using variations of Relevance Propagation methods.
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A similar approach is the basis of Softmax-Gradient Layer-wise Relevance Propagation
(SGLRP), presented by Iwana et al. in [148]. They considered the relevance scores computed
from the last layer, just as the gradients computed for the selected class, and then used
classical LRP rules to propagate relevance to the input layer.

A method called FullGrad, thought for convolutional networks, was presented by
Srinivas and Fleuret in [149]. They summed two terms: the InputXGradient term and the
sum of the gradients with respect to each channel of each layer, each of them multiplied by
its bias term. All the terms were rescaled and transformed according to the input image,
just before the global sum. The result is a saliency map of the input image (with respect to
the class of interest).

There also exists another method called Eigen-Grad-CAM, derived from both Eigen-
CAM and Grad-CAM, that, as far as we know, has never been published, and it is only
present in a Python library (https://github.com/jacobgil/pytorch-grad-cam (accessed
on 1 March 2024)). The method consists of multiplying activations and gradients (like
Grad-CAM) but then projecting on its first eigenvector (just like Eigen-CAM).

Ferrando et al. extended the ALTI method (see Section 5.1), multiplying each compo-
nent Al

i,jV(hl−1
j ) by the matrix just before the final softmax computation in the network

(supposing a next token prediction task) built by training and dropping the difference with
respect to the module output. The method is called ALTI-logit. They also proposed to
measure the difference between two different tokens in the output, subtracting the results
of ALTI-logit for the two tokens. They called it Contrastive ALTI-logit. They also compared
their methods with the Contrastive Gradient Norm and Contrastive InputXGradient in [54].

Hroub et al. compared different models for pneumonia and COVID-19 existence
prediction from X-rays and used many methods (Grad-CAM, Grad-CAM++, Eigen-Grad-
CAM, and AblationCAM) to produce saliency maps [57].

Arian et al. proposed a new architecture for human age and gender estimation from
panoramic radiographs, using FullGrad to create saliency maps [150].

5.5.3. Activation + Perturbation

Sometimes, the difference in activations is measured when the input changes. The
class of methods opting for this approach actually employs both techniques, perturbing the
input and measuring the activation.

One of the main methods employing this approach is Deep Learning Important
FeaTures (DeepLIFT), presented by Shrikumar et al. in [151]. It is based on the same
ideas behind LRP, but it uses the differences in activations given by the input image and a
perturbed one, which acts as the reference image, depending entirely on the task (for the
MNIST dataset, they used a totally black image, while for DNA sequences, they used a
reference input, which has expected frequencies for the base components in each position).

In the already cited work concerning SHAP, Lundberg et al. also introduced a modified
version of DeepLIFT as an approximation of SHAP values [119]. The method consists of
applying DeepLIFT propagation rules, defined in terms of SHAP values, recursively on
small components of the input to obtain relevance scores for the input features.

Score-CAM, presented in [116], is a variation of Grad-CAM that does not use gradients
but just the activations of the last convolutional layer, where each activation matrix for a
filter is normalized, resized according to the original input size, and then passed again
through the network to obtain the weights used to compute the linear combination of
activation matrices, which will correspond to the saliency map.

Xie et al. in [152] presented ViT-CX, a technique dedicated to visual transformers.
Considering the patches of the input image elaborated by the ViT, they used the output
matrix of a module (usually the last one in the architecture) as the embeddings of the
patches, building a new matrix composed of all the results of the same module for all the
patches. All the slices of the matrix (each of them composed of all the patches) are then
taken separately, upscaled according to the input image, and normalized between 0 and 1.
All these slices become masks for the input. To reduce the cardinality of the problem, we

https://github.com/jacobgil/pytorch-grad-cam
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aggregate the masks using some clustering technique and then we add noise to each mask.
We consider the saliency map from a mask as the output of the model after we apply the
mask, plus the difference in the output between the original input and the original input
with noise added. The final saliency map is the sum of all the saliency maps, with each
pixel component normalized with respect to the number of times the pixel is in a mask.

The papers employing these hybrid techniques typically compare several approaches
to explainability. Neely et al. compared LIME, Integrated Gradients, DeepLIFT, Grad-
SHAP, and Deep-SHAP and evaluated their degree of concordance [139]. Englebert et al.
presented a method called Transformer Input Sampling (TIS), which can be considered a
variant of ViT-CX, but instead of masking the input image, they randomly picked a set of
patches of the input and then computed the output for that set of embeddings. Furthermore,
they compared TIS with ViT-CX, TAM, TMME, LRP-Rollout, Attention Rollout, BT, RISE,
Integrated Gradients, and SmoothGrad [153]. Jourdan et al. proposed a method composed
of three steps: (1) using Non-negative Matrix Factorization on the activation matrix from
the last layer to obtain the topic matrix; (2) applying perturbation on the topic matrix; and
(3) applying Occlusion to obtain the relevance scores [154].

5.5.4. Attention + Gradient

The method AttCAT, presented by Qiang et al. in [155], was inspired by Grad-CAM,
but it was focused on transformers for text-related tasks. Considering the output of a single
layer l of a transformer architecture as composed by the columns hl

1, . . . , hl
i , . . . , hl

n, each
of them representing the output for the i-th token, we can compute what they call Class
Activation Tokens (CATs) for the i-th token in the l-th layer for the output class c as

CATc
i,l =

∂yc

∂hl
i
⊙ hl

i (21)

After computing the CAT values, we can compute the relevance of each token i with
respect to the class c as

Rc
i = ∑

l

Eh

(
Al

i ·CATc
i,l

)
(22)

Al
i is the attention weight in the l-th layer for the i-th token.

As an example of this class of explainability techniques, we can visually compare
different methods, including AttCAT, dedicated to NLP tasks, in Figure 8. In this type of
visualization, the color gradient represents the importance of each token (in this case, each
word) with respect to the classification of the sentence.

Figure 8. Example of visualization for methods devoted to NLP tasks. The green shade indicates an
important positive impact whereas the red shade means otherwise. Darker colors represent higher
impact scores [155].

Chefer et al. presented a method based both on attention weights and gradient
computing in [156]. For the sake of brevity, we will call it TMME. It is compatible both
with transformers with either text or image input and transformers with mixed input
(text and image). Also, it can be applied both on self-attention-based architectures and
co-attention-based architectures. Considering s and q, representing either a text or image,
the relevancy maps are initialized as

Rss = I (23)

Rsq = 0 (24)
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where s ̸= q, and also considering the dimensions of the matrices compliant with the input
features. The matrices are then updated recursively as

Rss = Rss + A · Rss (25)

Rsq = Rsq + A · Rsq (26)

for self-attention layers, and it is updated recursively as

Rsq = Rsq + (Rss)T · A · Rqq (27)

Rss = Rss + A · Rqs (28)

for co-attention layers. In all previous equations, we refer to A, which is formally defined as

A = Eh

(
(∇A⊙ A)+

)
(29)

where A represents the attention matrix of the layer, Eh is the average over all the heads in
the layer, and the gradient is defined as

∇A =
∂Yc

∂A
(30)

A variant of TMME called Grad-SAS (Gradient-guided Self-Attention Summation)
was proposed by Sun et al. in [157], where the relevance scores are just the sum of the A
terms. another variant of TMME was proposed by Huang et al. in [158], where the updating
rules for relevance values are modified as a weighted sum (with weights computing as a
function of the gradient) for multi-modal models.

In [159], Liu et al. proposed a method to explain the classification of a text by a
transformer-based model, composed of two methods: Attention Gradient (AGrad) and
Relevance Propagation from Attention Gradient (RePAGrad). These methods return a
relevance score for each token, which can be either positive or negative depending on the
contribution given by the token for the classification. It computes the gradient of the loss to
find if the contribution is positive (or negative), and it also backpropagates the relevance
recursively using the Layer-wise Relevance Propagation (LRP) technique. Formally, the
relevance score Rj for the j-th input token is defined as

Rj = ∑
i

[
R′i,j ·

(
−

∂L
∂Aj
· Aj

)]
(31)

where R′i,j is the relevance score for the i-th contextual embedding with respect to the
j-th input token computed by using the LRP method (this is true only for the RePAGrad
method), Ai is the attention weight for the j-th input token, and L is the loss of the model.
The variation in the AGrad method, with respect to RePAGrad, is the R′ matrix, which is
defined as equal to the identity matrix.

The product of the AGrad and RePAGrad scores was proposed by Thiruthuvaraj et al.
in [160]. The combination of SHAP and Integrated Gradients was proposed by Tornqvist et
al. for automatic short-answer grading (ASAG) [140].

A comparison of TMME and Grad-CAM was carried out by Wollek et al. for pneu-
mothorax classification from chest radiographs [110]. Another comparison between Label
Attribution (which is a variation of TMME) and Optimal Transport (the comparison be-
tween activations of different input types) was carried out by Ramesh and Koh in [56].

Sun et al. in [146] proposed a method to estimate the relevance of each token in the
input by masking all the attention matrices (in each layer) by the columns corresponding
to the token we are computing, keeping also all the other values fixed (we compute a
forward pass on the original model, then we freeze the input of each layer, and we mask
the attention matrices). The result of the last layer is extracted to represent the Shapley
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values (so the relevance of each token). They also proposed two variations of Grad-CAM
based on attention: the first one consists of computing the gradient of attention multiplied
by the attention, and the second one is the same but expanded to the second order.

5.5.5. Attention + Perturbation

For this combination, we do not have significantly innovative methods.
However, Setzu et al. explained the output of a transformer-based model for many

NLP tasks by extracting structured triples from the input text (for instance: subject, verb,
and object), then perturbing the triples (using WordNet), and finally assigning a score to
each perturbed triple based on attention weights with respect to the original input [161].
Correia et al. proposed a method for the explainability of face detection tasks by computing
a binary attention matrix (using a threshold), using that matrix to compute a set of masks to
perturb the image, and finally measuring the difference between the outputs of the original
image and the perturbed one, repeating the procedure to obtain values to be merged to
compose a relevance matrix [162].

5.5.6. Gradient + Perturbation

The most relevant method for this combination is the Integrated Gradients method,
presented by Sundararaja et al. in [163]. They proposed to compute the integral of all the
gradients computed in each point from a baseline input to the actual input. Formally, we
consider a function F : Rn → [0, 1] as the representation of our model (for a single output),
x as the input, and x′ as the baseline input (i.e., for images, it could be a black image, and
for text, an embedding composed only by 0s). The relevance of each component i of the
input is defined as

Ri = (xi − x′i) ·
∫ 1

α=0

∂F
(
x′i + α

(
xi − x′i

))
∂xi

dα (32)

The integral can be approximated by using the Riemann sum method as follows:

Ri = (xi − x′i) ·
m

∑
k=1

∂F

(
x′i +

k
m
(
xi − x′i

))
∂xi

·
1
m

(33)

where m is the number of steps in the Riemann approximation. The authors experimented
and found that a fair approximation is obtained using values in the (20,300) range for m.
Chambon et al. employed Integrated Gradients for a transformer-based model to detect
COVID-19 presence from radiology reports [164].

A variation of Integrated Gradients called Discretized Integrated Gradients was pro-
posed by Sanyal and Ren in [165]. The variation appears to be more suitable for text
embeddings. The difference with respect to the original technique lies in the interpolation
between the points x and x′, which is a linear interpolation in Integrated Gradients, while
in Discretized Integrated Gradients, it is a path composed of embedding vectors for existing
words, chosen each time according to some distance with respect to the previous vector.
Another variation of Integrated Gradients, though never published, has been implemented
in the captum (https://github.com/pytorch/captum (accessed on 1 March 2024)) library. It
is called Layer Integrated Gradients and is indeed equal to Integrated Gradients, though
applied on a specific layer (to be chosen by the user) instead of using just the global output
and input.

There also exists a commonly used method called Gradient SHAP, developed by the
same authors of SHAP with the aim of extending Integrated Gradients to estimate shapely
values. Again, it has never been published, but it is implemented inside the Python shap
library (https://github.com/shap/shap (accessed on 1 March 2024)).

https://github.com/pytorch/captum
https://github.com/shap/shap
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Smilkov et al. in [166] presented SmoothGrad, a method to compute saliency maps for
images. The relevances are computed as the average over all the gradients computed on a
set of input images, each of them created as the original image plus some Gaussian noise.

Several papers employed a variety of explainability techniques including a combi-
nation of gradient-based and perturbation-based techniques. Lottridge et al. compared
annotations by humans with explanations provided by both LIME and Integrated Gradients
in crisis alert identification [137]. Cornia et al. applied three different gradient-based meth-
ods (saliency, Guided Backpropagation, and Integrated Gradients), aggregating the scores
for different zones in the image [114]. Poulton et al. employed saliency, InputXGradient, In-
tegrated Gradient, Occlusion, and GradientSHAP for automatic short-answer grading [115].
Arashpour et al. employed an even wider choice, including Integrated Gradients, Gradient
SHAP, Occlusion, the Fast Gradient Sign Method, Projected Gradient Descent, Minimal
Perturbation, and Feature Ablation for waste categorization in images [138]. Neely et al.
compared LIME, Integrated Gradients, DeepLIFT, Grad-SHAP, and Deep-SHAP in [139].
Vareille et al. compared SHAP, Grad-CAM, Integrated Gradients, Occlusion, and different
variations of them for a multivariate time series analysis [113]. Maladry et al. used LRP-
Rollout, Discretized Integrated Gradients, and Layer Integrated Gradients when searching
for bias in irony detection [167].

5.5.7. Attention + Gradient + Perturbation

This is the only combination of three techniques for which we have found relevant
literature.

Yuan et al. presented a method called Transition Attention Maps (TAMs). This method
considers the information flow inside the model as a Markov process, where the attention
matrices represent the probabilities of state change. They accumulated attention matrices
similarly to Attention Rollout, computing then the Integrated Gradients’ relevance with
respect to the last attention block and finally obtaining the relevance map as the product of
the accumulated attention and the IG relevance map [168].

Chen et al. proposed a method (subsequently) called Bidirectional Transformers (BTs)
that produces a saliency map by the element-wise multiplication of two matrices: the
relevance matrix obtained by applying Integrated Gradients to the last attention block
and a matrix obtained similarly to Attention Rollout but after rescaling the columns of
each attention matrix by using rescaling factors obtained as a function of each module’s
output [169].

5.6. Overall Analysis

So far, we have described each technique according to the classification put forward at
the beginning of Section 5. In this section, we analyze the relative extension and relevance
of those techniques.

In Table 1, we report the major references for the techniques surveyed in Sections 5.1–5.5.7.
The references listed in Table 1 concern those papers where the technique was proposed first.
As we mentioned earlier, it may well happen that the technique was proposed first in one
context and later applied to transformers, possibly with slight modifications.

The papers specifically dealing with transformers are instead shown in Table 2, again
listed by the type of techniques they employ. The relative size of each category is shown
in the heatmap of Table 3. Cells outside the main diagonal account for the combinations
of two techniques. We see the dominance of attention-based techniques, followed by
perturbation-based techniques. Hybrid methods are quite less represented.
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Table 1. References for the initial proposal of major techniques.

Class References

Response
LRP [38], Partial-LRP [40], RAP [42], CLRP [43],
CAM [44], ALTI [45], Input Erasure [46], CAV [47],
Eigen-CAM [48]

Attention Attention Rollout [61], Attention Flow [61]

Gradient

Saliency [100], Guided Backpropagation [101],
InputXGradient [102], Contrastive Gradient Norm [103],
Contrastive InputXGradient [103], Grad-CAM [104],
Grad-CAM++ [105]

Perturbation Occlusion [117], LIME [118], SHAP [119], Anchors [121],
RISE [122], Soundness Saliency [123], AblationCAM [124]

Response + Attention LRP-Rollout [41]

Response + Gradient AGF [147], SGLRP [148], FullGrad [149],
Eigen-Grad-CAM

Response + Perturbation DeepLIFT [151], DeepSHAP [119], Score-CAM [116],
ViT-CX [152]

Attention + Gradient AttCAT [155], TMME [156], AGrad [159], RePAGrad [159]

Gradient + Perturbation
Integrated Gradients [163], Discretized Integrated
Gradients [165], Layer Integrated Gradients, Gradient
SHAP, SmoothGrad [166]

Attention + Gradient + Perturbation TAM [168], BT [169]

Table 2. Classification of papers on XAI for transformers.

Class References

Response [49–60]

Attention [50,62–99]

Gradient [57,58,81,95,106–115]

Perturbation [49,82,83,98,111–113,115,125–143]

Response + Attention [41,82,144–146]

Response + Gradient [54,57,150]

Response + Perturbation [139,153,154]

Attention + Gradient [56,110,140,146,156–160]

Gradient + Perturbation [113–115,137–139,164,167]

Attention + Perturbation [161,162]

However, if we turn our attention to the importance rather than sheer size, as embodied
by the number of citations, the situation changes. As can be seen in the heatmap of Table 4,
the dominant class is a hybrid one, namely Activation+Attention techniques, which have
nearly twice as many citations as sheer Attention-based techniques. Another hybrid
technique, Attention+Gradient, ranks third. Anyway, all the top three techniques include
attention, either alone or as one of the components.
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Table 3. Number of papers by technique class.
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Attention 38 10 2 5
Gradient 10 14 8 3

Perturbation 2 8 27 3
Activation 5 3 3 12

Table 4. Citations by technique class.
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Attention 123 85 1 243
Gradient 85 57 26 1

Perturbation 1 26 51 2
Activation 243 1 2 42

Finally, if we look at the papers proposing methodological innovation in Table 5, we
find attention-based and activation-based methods at the top among the single-class meth-
ods, but the joint use of gradient and attention is attracting more research efforts overall.

Table 5. Number of papers presenting new methods by category.
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Attention 4 7 2 3
Gradient 7 2 1 1

Perturbation 2 1 2 2
Activation 3 1 2 5

6. Discussion and Conclusions

Our survey has highlighted an explosion of papers concerning the explainability of
transformers. This trend accompanies the development of transformers’ applications. As
their domain of application expands into image analysis from the original NLP context, the
development of explainability methods follows suit. As transformer models are increasingly
applied to multi-modal tasks (involving text, images, and audio), research should extend to
develop and assess explainability methods that can handle the intricacies of multiple data
types. Understanding how transformers integrate and prioritize information across modes
is essential for comprehensive explanations. Also, as transformers continue to grow in size,
developing explainability methods that can scale efficiently with model complexity will
be crucial. A trade-off will have to be sought between fast and computationally efficient
explanations and depth or accuracy, especially for real-time applications.

The favorite class of methods, as measured by the number of papers, still appears to be
attention-based. That would appear as a natural choice since the introduction of attention
layers has been a major feature of transformers. However, the literature itself warns that
attention is not a synonym for explainability. If we look at citations as a measure of interest
instead of the sheer number of papers, methods based on attention only are overcome by
methods based on both attention and activation, i.e., that look at the output of neurons
tracing the relevance of features from the network output back to its input. Also, if we
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just consider papers proposing methodological innovations, the joint use of gradient and
attention is the topic appearing most in those papers.

Another relevant trend is the adoption of visualization tools to help explain the
relevance of features. Though they do not introduce a real innovation in detecting the
most relevant features, visual tools represent a step forward in the communication of
explainability results to the layman or the professional in charge of using ML tools. In
particular, developing interactive visualization tools that allow users to query, manipulate,
and explore model decisions in real time could significantly enhance understanding. This
is particularly true in the medical field, where ML tools are heavily used to support doctors
in diagnosis tasks. Also, incorporating feedback from end-users, especially those without
technical expertise, could guide the development of more user-friendly and accessible
explainability methods. User studies and participatory design processes could help identify
the most useful explanation approaches according to the context of usage.

Unfortunately, the diffusion of explainability methods and their introduction in ready-
to-use libraries (e.g., in Python) may make it easier to apply such tools as black boxes
without a clear awareness of their preferred field of application or limitations. In the long
term, this behavior may lead to wrongly feeling self-confident and excessively relying on
the method’s output, though it may not be appropriate.

An additional concern is the relative lack of literature on evaluating explainability
methods. There is a need for standardized, objective metrics to evaluate the effectiveness of
explainability methods. These metrics should assess not just the accuracy of explanations
but also their comprehensibility to humans. Developing benchmarks that can compare
different explainability approaches on a common ground would enable more direct compar-
isons and facilitate progress. Incorporating knowledge from fields such as cognitive science,
psychology, and philosophy could also offer new perspectives on what constitutes a good
explanation and how to evaluate the explainability of AI models from a human-centric
viewpoint, aiming at explainability methods that are deeply aligned with human cognition
and understanding and also recognize ethical and fairness issues. This topic is certainly the
most compelling to investigate if we wish to identify the most effective ones.
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Abbreviations
The following abbreviations are used in this manuscript:

AGF Attribution-Guided Factorization
AGrad Attention Gradient
ALTI Aggregation of Layer-wise Token-to-Token Interactions
AttCATs Attentive Class Activation Tokens
BERT Bidirectional Encoder Representations from Transformers
BTs Bidirectional Transformers
Ablation-CAM Ablation Class Activation Mapping
CAM Class Activation Mapping
CAVs Concept Activation Vectors
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CLRP Contrastive Layer-wise Relevance Propagation
CLS Cross-lingual summarization
CNN Convolutional Neural Network
DeepLIFT Deep Learning Important FeaTure
DistilBERT Distilled BERT
DeepSHAP Deep SHapley Additive exPlanations
DOAJ Directory of open-access journals
Eigen-CAM Eigenvalue Class Activation Mapping
Grad-CAM Gradient weighted Class Activation Mapping
LIME Local Interpretable Model-agnostic Explanation
LRP Layer-wise Relevance Propagation
LRP-Rollout Layer-wise Relevance Propagation Rollout
MDPI Multi-disciplinary Digital Publishing Institute
ML Machine Learning
NN Neural network
Partial-LRP Partial Layer-wise Relevance Propagation
RAP Relative Attributing Propagation
RePAGrad Relevance Propagation from Attention Gradient
RISE Randomized Input Sampling for Explanation
RoBERTa Robustly optimized BERT pretraining approach
Score-CAM Score Class Activation Mapping
SGLRP Softmax-Gradient Layer-wise Relevance Propagation
SHAP SHapley Additive exPlanations
TAMs Transition Attention Maps
TMME Transformer Multi-Modal Explainability
ViT-CX Vision Transformers Causal eXplanation
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