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Abstract: This paper presents a comprehensive review of natural fiber-reinforced composites (NFRCs)
for lower-limb prosthetic designs. It covers the characteristics, types, and properties of natural
fiber-reinforced composites as well as their advantages and drawbacks in prosthetic designs. This
review also discusses successful prosthetic designs that incorporate NFRCs and the factors that make
them effective. Additionally, this study explores the use of computational biomechanical models
to evaluate the effectiveness of prosthetic devices and the key factors that are considered. Overall,
this document provides a valuable resource for anyone interested in using NFRCs for lower-limb
prosthetic designs.
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1. Introduction

Lower-limb amputation is a complex and devastating issue affecting millions of
people worldwide [1–6]. Prosthetic devices are the most practical choice for restoring
ambulatory motor function in individuals with lower-limb amputations [7–9]. However,
in developing countries, most prosthetic users are compelled to use rudimentary and
inefficient designs because of their low acquisition costs [10,11]. This lack of affordable and
efficient prosthetic devices perpetuates the marginalization of individuals with lower-limb
amputations, subsequently affecting their musculoskeletal system and mobility [12–21].

In developed countries, the sustainability of materials and manufacturing components
used in prosthetic devices is usually not a primary concern in the prosthetic design pro-
cess [22]. Consequently, the most functional prostheses are those with the most advanced
components and naturally higher costs [7,8,10,11,23–28]. Therefore, proposing alternative,
sustainable, and cost-effective materials for lower-limb prosthetic designs could provide
affordable prosthetic solutions for the most vulnerable populations.

Recent advances in natural fiber-reinforced composites (NFRCs) have demonstrated
good mechanical and ecological properties compared with synthetic fibers (such as carbon
and glass fibers), while also being economically accessible and abundant [29–34]. To
mention a few, fibers such as kenaf [8,35–37], jute [38], ramie [39], and hemp [40] have
highlighted their mechanical performance and versatility, comparing favorably against
synthetic fibers in terms of their mechanical properties and common applications.

The aim of this review is to methodically evaluate NFRCs (natural fiber-reinforced
composites) as a potential substitute material for use in lower-limb prosthetics. This study
establishes the groundwork for future research and development in this sector by offering
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a thorough examination of the characteristics, manufacturing methods, advantages, and
drawbacks of NFRCs, along with evaluating the pertinent international standards and
available computational biomechanical modeling techniques to validate the performance
and usability of devices. This work supports the development and production of prosthetic
devices that are affordable, eco-friendly, and high-performing, improving the lives of those
who have lost limbs, especially in situations where resources are scarce.

2. Background
2.1. Lower-Limb Amputation and Prosthetic Options

Lower-limb amputations can be caused by trauma, illnesses, or congenital problems,
having a serious negative impact on both physical and emotional health [41–48]. Prosthetic
devices have been created to solve this problem, and can be customized to match the unique
demands of each user [7–11]. Finding a suitable fit for the user and assuring the durability
of the device remain challenges, despite advances in prosthetic technology [18–21].

One major challenge associated with prosthetic devices is their high acquisition costs,
ranging from several thousands to tens of thousands of dollars, depending on the type
and complexity of the device. This cost can limit access to prosthetic devices for many
individuals, particularly those with inadequate health insurance coverage [10,11,49–52].
Programs such as Medicare (https://www.medicare.gov, accessed on 12 May 2023) and
Medicaid (https://medicaid.gov, accessed on 12 May 2023) in the United States may offer
some relief; however, the costs associated with prosthetic devices may not be fully covered.
In addition, restrictions on the types of devices covered or the frequency with which
they can be replaced may limit access. Nevertheless, it must be highlighted that these
government medical programs may vary in their availability and quality from one country
to another, or, in some cases, may not exist, especially in developing countries [53].

In low- and middle-income countries, the high acquisition costs of prosthetic devices
present a significant barrier to their accessibility [10,49,53,54]. Although efforts have been
made to develop low-cost prosthetic devices using alternative materials and manufacturing
processes, these devices may not offer the same level of functionality or durability as more
expensive options [8,55,56].

2.2. Transtibial Prosthetic Design Considerations

Transtibial prostheses are lower-limb prosthetic devices that replace the missing or
amputated foot and ankle. The design of transtibial prostheses involves several key
components, including the socket, pylon or shank, and the foot or ankle [7,8,27,28,57].

The socket component (Figure 1a) is crucial for the prosthesis to fit the residual limb
securely and comfortably. The socket must be made to offer a stable attachment point for
the rest of the prosthesis and fit snugly over the residual limb [8,11,27,28]. A good fit is
essential to ensure that the prosthesis performs as intended and does not irritate or disturb
the user.
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Figure 1. Main components of a passive transtibial prosthesis: (a) the socket, the part of the prosthesis
that fits over the residual limb (the remaining part of the amputated leg); (b) the shank (or pylon), a
rigid component that extends from the socket down to the foot; (c) the foot, the component of the
prosthesis that mimics the function of a natural foot, absorbs shock during walking, and provides
stability. Reprinted from ref. [58].
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Connecting the socket to the foot or ankle component is performed using the pylon or
shank component (Figure 1b) of the prosthesis. For weight-bearing activities, such as walk-
ing or running [11], this component must provide sufficient support and stability [7]. The
materials utilized for this component must be sufficiently sturdy to withstand continuous
loading cycles without failure [10].

The foot component (Figure 1c) of the prosthesis is designed to replicate the function
of the biological foot as much as possible [59–64]. This might involve incorporating features
such as shock absorption, flexibility, and articulation into the design [7]. The materials used
for this element must also be carefully selected to ensure that they are sufficiently durable
to withstand repeated use over time [50]. Table 1 describes some details of the commercial
prosthetic feet currently available on the market, as well as the different materials used to
manufacture them.

Table 1. Commercial prosthetic feet from different manufacturers.

Brand Model Material Reference (Access Date) Country

Blatchford Elan Carbon Fiber www.blatchfordmobility.com (17 April 2024) UK
Blatchford Epirus Carbon Fiber www.blatchfordmobility.com (17 April 2024) UK
Blatchford Stellar Nylon www.blatchfordmobility.com (17 April 2024) UK

Össur Balance Foot S Glass Fiber www.ossur.com (17 April 2024) US
Össur Vari-Flex Carbon Fiber www.ossur.com (17 April 2024) US

Ottobock Kintrol Glass Fiber www.ottobock.com (17 April 2024) DE
Ottobock Restore Glass Fiber www.ottobock.com (17 April 2024) DE

Hydraulic systems, advanced sensors, and control systems are just a few more ele-
ments that transtibial prostheses may contemplate if necessary, increasing the cost for the
user [11]. These features can provide the prosthesis with more control and allow a more
fluid gait pattern.

Transtibial prostheses must be carefully designed considering characteristics such as
the proper fit, support, functionality, and material selection [11]. In recent years, advances
in both materials science and engineering have achieved more sophisticated prosthetic
devices, but to advance the field of prosthetics and improve outcomes for those with
amputated lower limbs, continued work in this area is crucial.

2.3. Materials Used in Prosthetic Manufacturing

For many years, conventional materials, such as metals and plastics, have mainly been
used in the manufacture of prosthetics [7,11,65]. Although they are strong and long-lasting,
metals, such as aluminum and titanium, can also be heavy and unwieldy [10,26,66]. In
contrast, while plastics such as polypropylene and polyethylene are lightweight, they cannot
be as strong or long-lasting as metals and usually deteriorate with time [7,10,65,67,68].

In contrast to conventional materials, synthetic composites offer several benefits. They
are created by fusing a matrix substance, such as epoxy resin, with synthetic fibers such as
carbon or glass fibers [29,69–73]. Excellent strength-to-weight ratios and customizability
for particular design requirements are notable features of synthetic composites [70,74–76].
They also exhibit good fatigue characteristics and are corrosion-resistant [77–80]. Although
they can be expensive [71,81–87], synthetic composites may not be biodegradable [8,27,28].

NFRCs have many advantages over synthetic and conventional materials [30–32].
Natural fibers, such as kenaf, flax, or jute, can be used to create these types of com-
posites [29,73,88–90]. Natural fiber-reinforced composites have exceptional mechanical
qualities, including a low density, biodegradability, and high strength-to-weight and impact–
resistance ratios [29,33,34,90]. Additionally, compared with synthetic composites, they are
less expensive to manufacture [33].

Ensuring the consistent quality and performance of NFRCs is one of the key issues
regarding these materials. Natural fibers can have different qualities depending on factors
such as their moisture content and the harvesting conditions [89,91–93]. Nevertheless,

www.blatchfordmobility.com
www.blatchfordmobility.com
www.blatchfordmobility.com
www.ossur.com
www.ossur.com
www.ottobock.com
www.ottobock.com
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recent studies have shown that high-quality natural fiber-reinforced composites may be
fabricated to match the specifications for prosthetic designs with fiber treatment and a good
composite composition [30,31,79,94,95].

Each material has its own unique advantages and disadvantages in prosthetic man-
ufacturing. Conventional materials are durable but may be heavy or uncomfortable for
users, and they offer excellent strength-to-weight ratios but may not be biodegradable
and can be expensive, whereas natural fiber-reinforced composites offer a lightweight
and biodegradable option with excellent mechanical properties but require careful quality
control during production.

3. Natural Fiber-Reinforced Composites
3.1. Characteristics of Natural Fibers

The utilization of natural fibers as reinforcement materials in composite materials
has garnered significant attention owing to their distinctive properties [73]. Derived
from diverse sources (Figure 2), such as plants, animals, and minerals [69,90,96], natural
fibers have become increasingly popular in recent years owing to their cost-effectiveness,
biodegradability, and renewability [30–32].
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Figure 2. Classification of natural fibers based on their origin: plant, animal, or mineral [29]. Reprinted
from Materials Today: Proceedings, Vol. 50, Sandeep Kumar, Alakesh Manna, Rakesh Dang, A review
on applications of natural fiber-reinforced composites (NFRCs), Pages 1632–1636, Copyright (2022),
with permission from Elsevier.

The remarkable characteristic of natural fibers lies in their exceptional strength-to-
weight ratio, particularly in jute, flax, and hemp fibers [38,79,90,97]. Owing to their robust
tensile strength, natural fibers are highly suitable for integration into composite materials,
particularly in applications where weight reduction is paramount, such as the development
of lower-limb prosthetics. Furthermore, the low density of natural fibers presents an
additional advantage, as they significantly contribute to reducing the overall weight in
weight-sensitive applications [29,33,34]. The mechanical and physical properties of the
most popular natural fibers are shown in Table 2.
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Table 2. Physical and mechanical properties of the most popular natural fibers [88,98–100].

Fiber Diameter (µm) Density
(g/cm3)

Tensile
Strength (MPa)

Young’s
Modulus (GPa)

Elongation
at Break (%)

Moisture
Absorption (%)

Abaca 10–30 1.5 430–813 31.10–33.60 2.9–10 ~
Bagasse ~ 1.20 20–290 19–27 1.10 ~
Bamboo 88–125 0.91–1.26 503 35.91 1.40 ~
Banana 100–250 1.35 529–914 27–32 2.60–5.90 ~
Basalt 17 2.8 4800 90 3.15 ~

Coconut 150–250 1.15–1.25 131–220 4–6 15–40 10
Cotton ~ 1.50–1.51 287–597 5.50–12.60 0.30–10 8–25

Flax 25 1.40–1.50 345–1500 27.60–80 1.20–3.20 7
Hemp 25–600 1.48–1.50 550–900 70 1.60–4 8

Henequen ~ 1.20–1.40 430–570 10–16.30 3.70–5.90 ~
Jute 25–250 1.30–1.48 393–800 0.13–27.60 1.16–1.80 12

Kenaf ~ 1.25–1.40 284–930 0.13–26.50 1.16–1.80 ~
Pineapple 50 1.44 413–1627 60–80 14.50 ~

Ramie 20–280 1.30–1.50 400–938 61.40–128 3.60–3.80 12–17
Rice husk ~ 0.50–0.70 ~ ~ ~ ~

Sisal 50–200 1.30–1.50 390–635 9.40–41 2–2.50 11
Softwood ~ 1.50 1000 40 ~ ~

Viscose cord ~ ~ 593 11 11.4 ~

Another noteworthy attribute of natural fibers is their biodegradability and renewa-
bility, rendering them an environmentally friendly alternative to synthetic fibers. By
incorporating natural fibers into composite materials, the environmental impact of such
materials can be reduced, thereby promoting sustainability [8,30–32].

Moisture absorption is a significant consideration in the utilization of natural fibers.
Untreated natural fibers tend to exhibit higher moisture absorption than treated fibers [95].
This moisture absorption can cause dimensional changes and affect the mechanical prop-
erties of composites [33]. Techniques such as alkali treatment and the incorporation of
hydrophobic additives or coatings can effectively mitigate moisture absorption [30,31,95].

Natural fibers possess distinctive characteristics that make them highly suitable for
integration into composite materials, making them attractive substitutes for synthetic fibers.
Incorporating natural fibers into composite materials not only offers the potential to reduce
the environmental impact associated with these materials but also provides a sustainable
solution for the design of lower-limb prosthetics.

3.2. Types and Properties of Natural Fiber-Reinforced Composites

Natural fiber-reinforced composites typically consist of natural fibers embedded
within a polymer matrix [96]. The selection of the polymer matrix significantly influ-
ences the mechanical properties and overall performance of the composite [29,101–106].
The matrix materials commonly used in NFRCs include polypropylene (PP) [40], polyester
(PET) [72,107,108], and epoxy [109–113], each offering distinct advantages in terms of their
mechanical strength, durability, and compatibility with natural fibers [72,114,115].

While thermoplastic and thermosetting matrices are mostly used in NFRCs, bio-based
epoxy resins derived from renewable sources such as vegetable oils offer a sustainable
alternative for the matrix phase [116–119]. These bio-resins can potentially improve char-
acteristics like the biodegradability and environmental impact of NFRCs when combined
with natural-fiber reinforcements [118]. However, challenges related to the fiber–matrix
compatibility, moisture sensitivity, and achieving the optimal mechanical performance still
present difficulties that hinder their use in heavy-duty and long-lasting applications, such
as in prosthetic devices.

The mechanical properties of NFRCs play a critical role in determining their suitability
for lower-limb prosthetic designs. Parameters such as their tensile strength, flexural
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strength, impact resistance, and fatigue behavior are of utmost importance and must be
carefully considered (Table 1).

Tensile strength represents the maximum stress that a material can withstand un-
der tension before failure. NFRCs exhibit promising tensile strength owing to the re-
inforcing effect of their natural fibers. Several factors, including the fiber type, fiber
content, fiber orientation, and fiber–matrix adhesion, influence the tensile properties of
NFRCs [33,69,93,120,121]. Table 3 exhibits a summary of several NFRCs proposed and
studied by different authors in detail.

Table 3. Tensile and flexural strengths of some NFRCs [68].

Authors Matrix Types of Fiber Method of Fabrication

Aslan et al. [122] Polypropylene matrix Carbon/sisal, glass/sisal Single-screw co-rotating extrusion method
Assarar et al. [123] Epoxy matrix Flax–carbon fiber Platen press process

Campbell et al. [124] Plant oil resin Ramie/stockinet Standard layup method
Chaudhary et al. [125] Epoxy matrix Flax hemp/jute/fiber Hand-layup method

Essabir et al. [126] Polypropylene matrix Coir fiber Twin-screw extrusion method
Gu et al. [127] Epoxy matrix Ramie fiber Vacuum infusion process

Indra Reddy et al. [128] Epoxy matrix Pineapple, glass, and jute fiber Hand-layup method
Jagannatha et al. [129] Epoxy matrix Glass/carbon Vacuum bagging technique

Lee et al. [130] Polypropylene matrix Kenaf/jute Hot-pressing method
Rahman et al. [131] Vinyl-ester matrix PALF Hand-layup method

Saba et al. [132] Epoxy matrix Kenaf fiber Hand-layup technique
Sekaran et al. [133] Epoxy matrix Sisal fiber and aloe vera Hand-layup method

Shanmugam et al. [134] Polyester matrix Jute fiber palmyra and leaf stalk
fiber Compression molding

Shih et al. [135] Poly-lactic acid PALF/chopsticks Counter-rotating internal mixing
Shrivastava et al. [136] Epoxy resin Coir–glass Hand-layup method
Sreekumar et al. [137] Polyester matrix Sisal fiber Resin transfer molding technique

Widhata et al. [138] Methyl methacrylate Water hyacinth Compression molding
Yan et al. [139] Epoxy matrix Flax/linen/bamboo Vacuum bagging process

Yang et al. [140] Polypropylene matrix Hemp fiber Twin-screw extrusion

Flexural strength characterizes a material’s ability to resist deformation when subjected
to bending. NFRCs exhibit considerable flexural strength, which renders them suitable for
load-bearing applications. The flexural properties of NFRCs are influenced by factors such
as the fiber content, fiber length, fiber orientation, and matrix properties [33,74,93,141,142].
Attaining proper fiber–matrix interactions and optimal fiber dispersion within the matrix
are crucial for achieving enhanced flexural strength.

The impact resistance of NFRCs is of utmost importance in prosthetic design be-
cause it determines the material’s capability to absorb and dissipate energy during dy-
namic loading [7,24,25]. As well as the flexural and tensile strength, the impact prop-
erties of NFRCs are influenced by the fiber selection, chemical treatment, and matrix
properties [30,31,93]. Comprehensive assessments and optimization of impact resistance
are essential to ensure the reliability and functionality of lower-limb prosthetics.

3.3. Manufacturing Methods for Natural Fiber-Reinforced Composites

The manufacturing process for natural fiber-reinforced composites (NFRCs) is similar
to that of conventional composites, differing primarily in the utilization of natural fibers
instead of synthetic fibers. Various manufacturing methods exist for producing NFRCs,
each with its own set of advantages and disadvantages [29,33,88,121]. The selection of a
specific method depends on its intended application and production requirements [120].

The hand-layup approach (Figure 3) is the most widely used manufacturing method.
It entails manually inserting fibers into a mold, followed by applying resin to help the
fibers join. This approach is well suited for small-scale production because it is simple and
economical [121,143,144].
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Compression molding is another process used in the production of NFRCs. Using
this technique, the fibers are placed in a mold and compressed under pressure to release
trapped air. The mold is then filled with resin, which is then heated to start the resin’s curing
process. Compression molding permits the creation of intricately formed components, and
is appropriate for high-volume production [33,89,121,146].

The resin transfer molding (RTM) method (Figure 4) is employed to produce com-
posites with high strength and stiffness. In this approach, the fibers are positioned within
a mold and resin is injected under pressure. The mold is then heated to promote the
curing of the resin. RTM has widespread applications in the automotive and aerospace
industries [71,147–150].
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Pultrusion is a continuous manufacturing method that is extensively used for the
production of fiber-reinforced composites. In this technique, the fibers are pulled through
a resin bath and subsequently passed through a heated die, resulting in resin curing.
Pultrusion is well suited for creating components with a consistent cross-section and is
commonly employed in the construction sector [89,120,121,146,147].

Finally, the filament winding method is employed to manufacture cylindrical NFRC
parts, including pipes and tanks. This process involves winding fibers around a mandrel in
a specific pattern, followed by the application of a resin to facilitate fiber bonding. After
curing, the mandrel is removed, leaving the final product [71,120,146,147,152].
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4. Lower-Limb Prosthetic Design Using Natural Fiber-Reinforced Composites
4.1. Advantages and Drawbacks of Natural Composites in Prosthetic Design

NFRCs have garnered attention in the field of lower-limb prosthetic design owing
to their unique properties and potential benefits. However, like other existing materials,
they have their own advantages and drawbacks, which must be carefully considered and
addressed in the design and manufacturing processes to fully exploit their potential in
prosthetic applications.

Advantages:

1. Low Weight and High Strength-to-Weight Ratio: As mentioned before, NFRCs have
the remarkable ability to have both a minimal weight and a high strength-to-weight
ratio [29,33,34,55]. This quality is very helpful for designing lower-limb prosthetics
because it makes it possible to create lightweight, comfortable prosthetics without
sacrificing strength and longevity [7–9,11,66].

2. Energy Return and Shock Absorption: The mechanical properties of natural com-
posites, including their ability to store and release energy, contribute to enhanced
energy return and shock absorption [30,31,55,56]. This feature is crucial in lower-limb
prosthetics, as it mimics the natural gait cycle and improves the overall walking
efficiency [7,10,24–26,58].

3. Sustainability and Environmental Friendliness: Natural fibers used as composite
reinforcements, such as kenaf and flax, are renewable resources that provide a sustain-
able alternative to synthetic fibers [8,29–33,35–37,98,119]. The utilization of natural
composites in prosthetic design aligns with the increasing demand for eco-friendly
materials and reduces the reliance on non-renewable resources.

Drawbacks:

1. Moisture Absorption: Natural fibers have a propensity to absorb moisture [89,93],
which can lead to dimensional changes and diminished mechanical properties of
the composites [33]. This drawback presents a challenge for prosthetic designs, as
exposure to moisture can affect the long-term performance and durability of prosthetic
devices [50]. Detailed data on different natural fibers are displayed in Table 1.

2. Limited Durability: Compared to synthetic-fiber-reinforced composites, natural com-
posites may exhibit lower durability and resistance to wear and tear [29,34,153]. The
natural fibers used in reinforcement may degrade over time [94], affecting the overall
lifespan of prosthetic devices.

3. Variability in Mechanical Properties: Natural fibers, which are organic materials,
inherently exhibit variability in their mechanical properties [89,93]. This variability
can pose challenges in achieving consistent and predictable performance with natural
fiber-reinforced composites in prosthetic designs. This necessitates careful selection
and quality control of the natural fibers to ensure consistent mechanical properties
and high performance of the prosthetic devices.

4.2. Cases of Natural Fiber-Reinforced Composites Used in Prosthetic Designs

Nurhanisah et al. [8] proposed the use of a kenaf-fiber-reinforced composite material
for the fabrication of transtibial prosthetic sockets (Figure 5). Their proposed design
exhibited favorable results in terms of mechanical properties and comfort, making it
suitable for providing good strength and added aesthetic value. Additionally, the proposed
design demonstrated environmental friendliness compared to fiberglass-based sockets.

In a study by Irawan et al. [55], the manufacturing of lower-limb prosthetic sockets
using ramie fibers and epoxy composites was suggested. Their results showed that such
sockets had a significant impact on comfort because of their light weight, strength, and
flexibility compared to fiberglass sockets. Furthermore, sockets fabricated with the ramie
fibers exhibited a considerably lower weight than those made with fiberglass, with a
difference of 186 g, representing a 46.26% reduction. As mentioned several times before,
the strength-to-weight ratio exhibited by natural fibers is one of their key advantages over
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synthetic fibers [33,34], which is essential for maintaining the prosthetic weight within an
appropriate range, and thus avoiding increased energy expenditure and excessive stress on
the user’s residual limb [11,66].
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Moreover, a study by Mankai et al. [56] showed that esparto fibers (Stipa tenacissima)
are a promising alternative material for manufacturing prosthetic sockets. Their fatigue
testing results revealed the viscoelastic behavior of the material and estimated its lifespan
to be 2,325,000 cycles, satisfying 77.5% of the ISO 10328 objective.

These studies provide evidence for the potential of NFRCs in lower-limb prosthetic
designs. The utilization of these composites can result in lightweight, strong, and bio-
compatible prostheses. Furthermore, their incorporation into prosthetic designs offers
environmental benefits, as natural fibers are renewable resources with a lower carbon
footprint than synthetic fibers. This makes them a more sustainable option for prosthetic
designs. In addition to their mechanical properties and sustainability advantages, natural
fiber-reinforced composites can also provide aesthetic benefits by providing prosthetics
with a more natural and organic appearance, thus mitigating the stigma associated with
prosthetic use.

5. Evaluation of Natural Fiber-Reinforced Composite Prosthetics
5.1. Standards and Guidelines for Evaluating Prosthetic Devices

The evaluation of prosthetic devices is an important step in the design process because
it ensures that the functional, safety, and performance requirements are met. Adhering to
accepted norms and criteria is essential for prostheses constructed of NFRCs to guarantee
their safe and efficient use.

One widely recognized standard for evaluating prosthetic devices is ISO 10328, which
provides comprehensive guidelines for the mechanical testing of lower-limb prosthe-
ses [154,155]. This standard defines the testing procedures for various mechanical prop-
erties, including static strength, fatigue strength, and impact resistance. Furthermore,
ISO 22675 offers guidelines specifically for testing ankle/foot prostheses, encompassing
durability, strength, and range-of-motion requirements [156]. Both ISO 10328 and 22675 es-
tablish frameworks for evaluating prosthetic devices, ensuring the adherence to safety and
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performance requirements. Widely recognized and employed by manufacturers, clinicians,
and researchers in the field of prosthetics, these standards guarantee the safety, efficacy,
and reliability of prosthetic devices for individuals with lower-limb amputations.

ISO 10328 outlines procedures for both the static and dynamic testing of lower-limb
prostheses, encompassing mechanical properties such as static strength, fatigue strength,
and impact resistance (Figure 6). Static strength testing involves subjecting the prosthetic
device to increasing loads until failure, whereas fatigue strength testing simulates cyclic
loading to mimic normal usage stresses. Impact resistance testing involves dropping a
weight onto the device to simulate the impact of a fall.
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Figure 6. Alignment and angles of test loads for a prosthetic foot, established by ISO 10328 [157].
Reprinted from Procedia Engineering, Vol. 10, C. Colombo, E.G. Marchesin, L. Vergani, E. Boccafogli,
G. Verni, Study of an ankle prosthesis for children: adaptation of ISO 10328 and experimental tests,
Pages 3510–3517, Copyright (2011), with permission from Elsevier.

ISO 22675 provides guidelines for testing ankle–foot prostheses, including the require-
ments for durability, strength, and range of motion (Figure 7). This standard presents
testing procedures for both cyclic and static loading, aiming to replicate the load conditions
experienced during the stance phase of an individual’s gait. Cyclic loading tests involve
applying loads to the device cyclically to simulate typical usage stresses, whereas static
loading tests apply loads at specific points in the gait cycle to simulate the maximum loads
at those instances.
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Numerous other studies have also employed the ISO 10328 [10,56,154,159,160] and
22675 [160–162] standards to assess the mechanical properties of prosthetic devices. These
standards offer a valuable framework for evaluating the safety and performance of such
devices, enjoying broad recognition and adoption by researchers, clinicians, and manufac-
turers in the prosthetics field. Additionally, organizations such as the American Orthotic
and Prosthetic Association (AOPA) (https://www.aopanet.org/, accessed on 1 August
2023) [160,162] and KS P 8403 [163,164] have established guidelines for prosthetic device
design, fabrication, fitting, clinical evaluation, and follow-up care.

Although these criteria and recommendations offer a framework for assessing prosthetic
devices, it is crucial to keep in mind that not all device types or materials necessarily fall under
their purview. Additional testing and assessments may be required for NFRC prostheses to
guarantee their compliance with appropriate safety and performance standards.

5.2. Using Computational Biomechanical Models to Assess Prosthetic Devices

Computational biomechanical models have become a prevalent tool for assessing the
performance of prosthetic devices, enabling simulations of the interaction between the
device and the residual limb, as well as the forces and stresses during walking. These mod-
els offer the opportunity to optimize prosthetic designs and evaluate device performance
under diverse conditions [165–167] (Figure 8).
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In the context of NFRC prosthetics, computational biomechanical models allow the
assessment of the impact of various design parameters on device performance (Figure 9).
Parameters such as the fiber orientation, number of layers, and composite laminate thick-
ness can be evaluated using these models [168,169]. Additionally, these models facilitate
assessments of the effects of different loading conditions on device performance, such as
walking on different terrains or at varying speeds [165–167].

https://www.aopanet.org/
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An inherent challenge in using computational biomechanical models for prosthetic
designs is the requirement of accurate input data. This includes information about the
geometry and material properties of both the prosthetic device and the residual limb.
However, advances in imaging technology and material characterization techniques have
led to increasingly accurate data acquisition [166,171,172].

The application of computational biomechanical models is a potent tool for designing
and evaluating NFRC prosthetics. By utilizing these models, the design of a device can be
optimized, and its performance can be evaluated under diverse conditions, ultimately leading
to improved prosthetic devices for individuals with lower-limb amputations [67,167,173].

Finite-element analysis (FEA) is a widely used computational biomechanical tool
for the design and evaluation of prosthetic devices. FEA is a numerical method that can
simulate complex mechanical systems, including prosthetic devices and the human body, by
dividing them into simpler elements. The mathematical equations applied to these elements
allow FEA to predict the system behavior under different loading conditions [166,174,175].
FEA enables the assessment of mechanical performance in the context of prosthetic designs
and evaluation under different specific loading scenarios, including walking, running, and
leaping. Additionally, this computational biomechanical tool makes it easier to optimize
designs of devices by analyzing the effects of many design factors, such as the material
qualities, shape, and thickness.

An advantage of FEA is its ability to assess the stress and strain distribution within
the prosthetic device and residual limb. This information helps in identifying areas of high
stress or strain that could lead to failure or discomfort, prompting design optimization to
mitigate these concerns. FEA has been extensively used in the design and evaluation of
NFRCs [120,143,144,162,168–170]. For instance, it has been employed to evaluate the impact
of different fiber orientations and laminate configurations on the mechanical performance
of devices.

Even though computational biomechanics possesses multiple advantages, such as
evaluating prosthetic device performance under different loading conditions, there are
limitations. The accuracy of the results depends on the accuracy of the input data and
assumptions made in the model, which can introduce errors and uncertainties. Acquiring
accurate input data, such as the geometry and material properties, may be experimentally
challenging. Moreover, the complexity of the models used in computational biomechanics
can make interpreting and understanding the underlying mechanisms difficult. Computa-
tional biomechanics can also be computationally expensive and time-consuming, which
may restrict their use in certain applications. Finally, it is essential to recognize that com-
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putational biomechanics cannot fully replace experimental testing, and that the results of
computational models should be validated experimentally.

6. Future Directions and Conclusions

The integration of NFRCs in lower-limb prosthetic designs has demonstrated signifi-
cant promise in recent times. These materials have several advantages over conventional
prosthetic materials, including enhanced strength, durability, and biocompatibility. Nev-
ertheless, there remains considerable scope for further exploration to fully unlock the
potential of these materials.

A compelling avenue for future research is the development of novel NFRC materials
with improved properties. This may entail exploring new natural fibers, such as bam-
boo or hemp, or devising innovative processing techniques to enhance the mechanical
properties of existing fibers. Furthermore, it is imperative to evaluate the performance of
NFRC prostheses through both computational modeling and experimental testing. This
comprehensive assessment is pivotal to ensure the safety and efficacy of these materials
across a diverse range of applications.

In conclusion, the integration of NFRCs in lower-limb prosthetic designs holds promise
for transformative advancements in the field. These materials exhibit numerous advan-
tages over conventional prosthetic materials, including increased strength, durability, and
biocompatibility. Furthermore, they have the potential to offer enhanced cost-effectiveness
and eco-friendliness compared to traditional alternatives.

However, to achieve widespread adoption in prosthetic designs, several challenges
must be resolved. The foremost task involves the development of new materials with
improved properties. Additionally, it is imperative to develop innovative prosthetic devices
that effectively capitalize on the distinctive attributes of these materials. Concurrently,
ongoing assessments of their safety and efficacy through the combined use of computational
models and experimental testing remain crucial.

Notwithstanding these challenges, the potential benefits of NFRCs engender a com-
pelling domain for future research. Through sustained exploration and refinement, these
materials could significantly enhance the quality of life of millions of individuals worldwide
who rely on prosthetic devices to preserve their mobility and independence.
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84. Husić, S.; Javni, I.; Petrović, Z.S. Thermal and mechanical properties of glass reinforced soy-based polyurethane composites.

Compos. Sci. Technol. 2005, 65, 19–25. [CrossRef]
85. Singh, T.J.; Samanta, S. Characterization of Kevlar Fiber and Its Composites: A Review. Mater. Today Proc. 2015, 2, 1381–1387.

[CrossRef]
86. Rezaei, F.; Yunus, R.; Ibrahim, N.A. Effect of fiber length on thermomechanical properties of short carbon fiber reinforced

polypropylene composites. Mater. Des. 2009, 30, 260–263. [CrossRef]
87. Davis, D.C.; Wilkerson, J.W.; Zhu, J.; Ayewah, D.O. Improvements in mechanical properties of a carbon fiber epoxy composite

using nanotube science and technology. Compos. Struct. 2010, 92, 2653–2662. [CrossRef]
88. Kozlowski, R.; Wladyka-Przybylak, M. Uses of Natural Fiber Reinforced Plastics. In Natural Fibers, Plastics and Composites;

Springer: Boston, MA, USA, 2004; pp. 249–274. [CrossRef]
89. Stokke, D.D.; Wu, Q.; Han, G. Natural Fiber and Plastic Composites. In Introduction to Wood and Natural Fiber Composites; Wiley:

Hoboken, NJ, USA, 2013; pp. 237–285. [CrossRef]
90. Thapliyal, D.; Verma, S.; Sen, P.; Kumar, R.; Thakur, A.; Tiwari, A.K.; Singh, D.; Verros, G.D.; Arya, R.K. Natural Fibers Composites:

Origin, Importance, Consumption Pattern, and Challenges. J. Compos. Sci. 2023, 7, 506. [CrossRef]
91. Tajvidi, M.; Takemura, A. Recycled Natural Fiber Polypropylene Composites: Water Absorption/Desorption Kinetics and

Dimensional Stability. J. Polym. Environ. 2010, 18, 500–509. [CrossRef]

https://doi.org/10.1016/j.clinbiomech.2013.11.019
https://www.ncbi.nlm.nih.gov/pubmed/24355702
https://doi.org/10.1682/JRRD.2014.01.0022
https://www.ncbi.nlm.nih.gov/pubmed/25815769
https://doi.org/10.1016/j.jbiomech.2019.109395
https://www.ncbi.nlm.nih.gov/pubmed/31668413
https://doi.org/10.1016/j.jamcollsurg.2007.10.007
https://www.ncbi.nlm.nih.gov/pubmed/18308228
https://doi.org/10.3109/03093649709164525
https://www.ncbi.nlm.nih.gov/pubmed/9141121
https://doi.org/10.1007/s11517-020-02214-9
https://www.ncbi.nlm.nih.gov/pubmed/32683593
https://doi.org/10.1016/j.matpr.2022.04.276
https://doi.org/10.1002/9780470711804.ch1
https://doi.org/10.1002/0471238961.1921182213151820.a01.pub3
https://doi.org/10.1016/j.compstruct.2021.113640
https://doi.org/10.1155/2022/3425297
https://doi.org/10.1016/j.cep.2011.09.007
https://doi.org/10.13140/RG.2.1.1551.2481
https://doi.org/10.1177/0731684415591302
https://doi.org/10.1007/pl00020339
https://doi.org/10.1039/c2jm32692b
https://doi.org/10.14359/19820
https://www.ncbi.nlm.nih.gov/pubmed/37963969
https://doi.org/10.1177/002199839202600505
https://doi.org/10.1533/9780857095583.1.3
https://doi.org/10.1016/j.compscitech.2004.05.020
https://doi.org/10.1016/j.matpr.2015.07.057
https://doi.org/10.1016/j.matdes.2008.05.005
https://doi.org/10.1016/j.compstruct.2010.03.019
https://doi.org/10.1007/978-1-4419-9050-1_14
https://doi.org/10.1002/9780470711804.ch8
https://doi.org/10.3390/jcs7120506
https://doi.org/10.1007/s10924-010-0215-y


Polymers 2024, 16, 1293 17 of 19

92. Beg, M.; Pickering, K. Reprocessing of wood fibre reinforced polypropylene composites. Part II: Hygrothermal ageing and its
effects. Compos. Part A Appl. Sci. Manuf. 2008, 39, 1565–1571. [CrossRef]

93. Gogna, E.; Kumar, R.; Anurag; Sahoo, A.K.; Panda, A. A Comprehensive Review on Jute Fiber Reinforced Composites; Springer:
Berlin/Heidelberg, Germany, 2019; pp. 459–467. [CrossRef]

94. Wei, L.; McDonald, A.G.; Freitag, C.; Morrell, J.J. Effects of wood fiber esterification on properties, weatherability and biodurability
of wood plastic composites. Polym. Degrad. Stab. 2013, 98, 1348–1361. [CrossRef]

95. Kumar, A.P.; Singh, R.P.; Sarwade, B.D. Degradability of composites, prepared from ethylene–propylene copolymer and jute fiber
under accelerated aging and biotic environments. Mater. Chem. Phys. 2005, 92, 458–469. [CrossRef]

96. Bongarde, U.S.; Shinde, V.D. Review on natural fiber reinforcement polymer composites. Int. J. Eng. Sci. Innov. Technol. 2014, 3,
431–436.

97. Chethan, N.; Nagesh, S.; Babu, L.S. Mechanical behaviour of Kenaf-Jute-E-glass reinforced hybrid polymer composites. Mater.
Today Proc. 2020, 46, 4454–4459. [CrossRef]

98. Lopresto, V.; Leone, C.; De Iorio, I. Mechanical characterisation of basalt fibre reinforced plastic. Compos. Part B Eng. 2011, 42,
717–723. [CrossRef]

99. Bledzki, A.K.; Gassan, J. Composites reinforced with cellulose based fibres. Prog. Polym. Sci. 1999, 24, 221–274. [CrossRef]
100. Vigneshwaran, S.; Sundarakannan, R.; John, K.; Johnson, R.D.J.; Prasath, K.A.; Ajith, S.; Arumugaprabu, V.; Uthayakumar, M. Recent

advancement in the natural fiber polymer composites: A comprehensive review. J. Clean. Prod. 2020, 277, 124109. [CrossRef]
101. Arabpour, A.; Shockravi, A.; Rezania, H.; Farahati, R. Investigation of anticorrosive properties of novel silane-functionalized

polyamide/GO nanocomposite as steel coatings. Surf. Interfaces 2020, 18, 100453. [CrossRef]
102. Zheng, S.; Bellido-Aguilar, D.A.; Hu, J.; Huang, Y.; Zhao, X.; Wang, Z.; Zeng, X.; Zhang, Q.; Chen, Z. Waterborne bio-based epoxy

coatings for the corrosion protection of metallic substrates. Prog. Org. Coat. 2019, 136, 105265. [CrossRef]
103. Ray, B. Temperature effect during humid ageing on interfaces of glass and carbon fibers reinforced epoxy composites. J. Colloid

Interface Sci. 2006, 298, 111–117. [CrossRef] [PubMed]
104. Xu, Y.; Chung, D.; Mroz, C. Thermally conducting aluminum nitride polymer-matrix composites. Compos. Part A Appl. Sci. Manuf.

2001, 32, 1749–1757. [CrossRef]
105. Davim, J.; Reis, P. Study of delamination in drilling carbon fiber reinforced plastics (CFRP) using design experiments. Compos.

Struct. 2003, 59, 481–487. [CrossRef]
106. Mukherjee, M.; Das, C.; Kharitonov, A. Fluorinated and oxyfluorinated short Kevlar fiber-reinforced ethylene propylene polymer.

Polym. Compos. 2006, 27, 205–212. [CrossRef]
107. Armstrong, D.P.; Chatterjee, K.; Ghosh, T.K.; Spontak, R.J. Form-stable phase-change elastomer gels derived from thermoplastic

elastomer copolyesters swollen with fatty acids. Thermochim. Acta 2020, 686, 178566. [CrossRef]
108. Senthilkumar, K.; Saba, N.; Chandrasekar, M.; Jawaid, M.; Rajini, N.; Alothman, O.Y.; Siengchin, S. Evaluation of mechanical

and free vibration properties of the pineapple leaf fibre reinforced polyester composites. Constr. Build. Mater. 2018, 195, 423–431.
[CrossRef]

109. Hsissou, R.; Abbout, S.; Seghiri, R.; Rehioui, M.; Berisha, A.; Erramli, H.; Assouag, M.; Elharfi, A. Evaluation of corrosion inhibition
performance of phosphorus polymer for carbon steel in [1 M] HCl: Computational studies (DFT, MC and MD simulations). J.
Mater. Res. Technol. 2020, 9, 2691–2703. [CrossRef]

110. Datsyuk, V.; Trotsenko, S.; Trakakis, G.; Boden, A.; Vyzas-Asimakopoulos, K.; Parthenios, J.; Galiotis, C.; Reich, S.; Papagelis,
K. Thermal properties enhancement of epoxy resins by incorporating polybenzimidazole nanofibers filled with graphene and
carbon nanotubes as reinforcing material. Polym. Test. 2019, 82, 106317. [CrossRef]

111. Hsissou, R.; Elharfi, A. Rheological behavior of three polymers and their hybrid composites (TGEEBA/MDA/PN),
(HGEMDA/MDA/PN) and (NGHPBAE/MDA/PN). J. King Saud Univ. Sci. 2020, 32, 235–244. [CrossRef]

112. Parida, S.P.; Jena, P.C. Preparation of epoxy-glass composites with graphene and flyash filler. Mater. Today Proc. 2020, 26,
2328–2332. [CrossRef]

113. Jin, X.; Guo, N.; You, Z.; Wang, L.; Wen, Y.; Tan, Y. Rheological properties and micro-characteristics of polyurethane composite
modified asphalt. Constr. Build. Mater. 2019, 234, 117395. [CrossRef]

114. Saba, N.; Jawaid, M. A review on thermomechanical properties of polymers and fibers reinforced polymer composites. J. Ind. Eng.
Chem. 2018, 67, 1–11. [CrossRef]

115. Dang, Z.-M.; Yuan, J.-K.; Zha, J.-W.; Zhou, T.; Li, S.-T.; Hu, G.-H. Fundamentals, processes and applications of high-permittivity
polymer–matrix composites. Prog. Mater. Sci. 2012, 57, 660–723. [CrossRef]

116. Pokharel, A.; Falua, K.J.; Babaei-Ghazvini, A.; Acharya, B. Biobased Polymer Composites: A Review. J. Compos. Sci. 2022, 6, 255.
[CrossRef]

117. Ortiz, P.; Wiekamp, M.; Vendamme, R.; Eevers, W. Bio-based epoxy resins from biorefinery by-products. BioResources 2019, 14,
3200–3209. [CrossRef]

118. Thomas, J.; Patil, R. Enabling Green Manufacture of Polymer Products via Vegetable Oil Epoxides. Ind. Eng. Chem. Res. 2023, 62,
1725–1735. [CrossRef]

119. Lascano, D.; Valcárcel, J.; Balart, R.; Quiles-Carrillo, L.; Boronat, T. Manufacturing of composite materials with high environmental
efficiency using epoxy resin of renewable origin and permeable light cores for vacuum-assisted infusion molding. Ingenius 2020,
23, 62–73. [CrossRef]

https://doi.org/10.1016/j.compositesa.2008.06.002
https://doi.org/10.1007/978-981-13-6412-9_45
https://doi.org/10.1016/j.polymdegradstab.2013.03.027
https://doi.org/10.1016/j.matchemphys.2005.01.027
https://doi.org/10.1016/j.matpr.2020.09.679
https://doi.org/10.1016/j.compositesb.2011.01.030
https://doi.org/10.1016/s0079-6700(98)00018-5
https://doi.org/10.1016/j.jclepro.2020.124109
https://doi.org/10.1016/j.surfin.2020.100453
https://doi.org/10.1016/j.porgcoat.2019.105265
https://doi.org/10.1016/j.jcis.2005.12.023
https://www.ncbi.nlm.nih.gov/pubmed/16386268
https://doi.org/10.1016/s1359-835x(01)00023-9
https://doi.org/10.1016/s0263-8223(02)00257-x
https://doi.org/10.1002/pc.20195
https://doi.org/10.1016/j.tca.2020.178566
https://doi.org/10.1016/j.conbuildmat.2018.11.081
https://doi.org/10.1016/j.jmrt.2020.01.002
https://doi.org/10.1016/j.polymertesting.2019.106317
https://doi.org/10.1016/j.jksus.2018.04.030
https://doi.org/10.1016/j.matpr.2020.02.501
https://doi.org/10.1016/j.conbuildmat.2019.117395
https://doi.org/10.1016/j.jiec.2018.06.018
https://doi.org/10.1016/j.pmatsci.2011.08.001
https://doi.org/10.3390/jcs6090255
https://doi.org/10.15376/biores.14.2.3200-3209
https://doi.org/10.1021/acs.iecr.2c03867
https://doi.org/10.17163/ings.n23.2020.06


Polymers 2024, 16, 1293 18 of 19

120. Sridhar, I.; Adie, P.; Ghista, D. Optimal design of customised hip prosthesis using fiber reinforced polymer composites. Mater.
Des. 2010, 31, 2767–2775. [CrossRef]

121. Guild, F.J.; Taylor, A.C.; Downes, J. Composite Materials. In Encyclopedia of Maritime and Offshore Engineering; John Wiley & Sons,
Ltd.: Chichester, UK, 2017; Volume 82, no. 35; pp. 1–14. [CrossRef]
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