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Abstract: Introgression is an important driver of new genetic variation that increases species and
genetic diversity. However, the relationship between introgression and geographic distribution of
upland cotton is still unclear. Herein, we explored geographically comprehensive genomic data
based on 890 upland cotton accessions to decipher the degree of introgression between different
geographic distributions and its effect on selection and fiber quality. We found introgression intervals
to exist across different geographic distributions. Introgression is affected by the similarity of the
environment in which they live, and those with similar ecological environments tend to share the
same introgression area. Introgression is affected by artificial selection. A genome-wide association
study (GWAS) meta-analysis was performed with 6 fiber traits and identified 261 quantitative trait loci
(QTLs). We found that 67 QTLs had introgression signals, and the genome interval size was 118.81 Mb,
while 123 QTLs had selection signals, and the genomic interval was 28.38 Mb. These results provide
insights into the population-scaled introgression landscape, suggesting that introgression contributed
to the cotton genetic improvement, which provides a useful reference for studying intraspecific
introgressions from different geographical distributions in other species.

Keywords: upland cotton; population genomics; introgression; geographical distribution

1. Introduction

Introgression refers to the transfer of genetic material between or within species
through hybridization and backcrossing in a manner that is very widespread in nature [1,2].
As such, introgression is one of the driving forces for increasing genetic diversity and
promoting adaptive evolution [3]. At present, many known gene introgression events
involve adaptation [2], which is now known as adaptive introgression and has been found
in plants [3,4], humans [5,6] and animals [7,8]. Hybridization is a method commonly used
to breed new cultivars with desirable traits between wild and domesticated species in plant
breeding [9,10]. The genomic pattern of introgression is affected by recombination, drift and
selection [11], so the beneficial and deleterious alleles may be introduced simultaneously [1].
In these cases, interspecific hybridization often results in genetic linkage drag and hybrid
sterility, which is an obstacle to plant breeding in which deleterious alleles are introgressed
alongside desired beneficial alleles [1]. As a result, introgression is more likely to occur
between closely related species [12], especially if the allele for introgression is clearly
beneficial in the donor species [2]. However, it is unrealistic to use traditional markers
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to characterize the fine−scale genomic landscape of introgression pattern. In contrast,
population genomics based on advanced sequencing techniques can comprehensively and
precisely describe genetic variation, which can be used to infer fine−scale characteristics
genomic introgression patterns at the population level. There is little empirical data
investigating the introgression patterns in intraspecific hybrid populations. Therefore, the
hundreds of different sequenced cotton varieties were used to construct a cotton population
level introgression map, which made it possible to analyze the potential introgression sites
and potential improved trait sites in the domestication process of upland cotton [13–16].

Cotton genus is not only an excellent model system for the extraordinarily diverse, but
also an important cash crop for its fiber, which has 52 species, including 45 diploids and
7 allopolyploids [17]. However, only four cotton species are independently domesticated
cultivated cottons, which are two diploid A-genome species, G. herbaceum (A1) and G.
arboreum (A2), and two allopolyploid species, G. hirsutum (AD1) and G. barbadense (AD2) [18].
G. hirsutum as the major germplasm pool, which has the characteristics of high fiber yield
and wide adaptability, accounts for more than 95% of the world’s cotton production [19],
and exhibits the highest levels of genetic variation and gene flow [20,21]. The several
major cultivation areas were formed in the history of China, including the main cultivation
areas today, such as the northwest inland areas (mainly Xinjiang), the Yangtze River region
and the Yellow River region [22,23]. However, some studies have shown that cultivated
upland cotton has low genetic diversity and little signal of genetic introgression within
and between species [24]. Compared with foxtail millet [25] and soybean [26], modern
cultivated upland cotton is an admixed population with no geographical structure in
China [15,23,27]. These may have something to do with the way it is bred, as cotton breeding
is often cross-pollinated and re-selected within small sets of breeding materials [28–30].
Moreover, the extent of introgression in different geographic distributions of upland cotton
remains unclear.

In the present study, based on 890 publicly re-sequenced upland cotton data sets, we
explored the extent of intraspecific introgression between different geographic distributions.
We characterized and analyzed population−scaled introgression of upland cotton cultivars
at the genome−wide level, and compared the differences in introgression between differ-
ent geographical distributions of upland cotton. We analyzed the relationship between
local introgression region and QTLs related to fiber traits. This study aimed to provide
valuable information for understanding the genetic bases of intraspecific introgression and
geographical distribution of upland cotton, which will provide superior genetic resources
for cotton fiber quality improvement.

2. Materials and Methods
2.1. Plant Materials and Genotyping

Here, 890 public upland cotton accessions were collected and downloaded from the
National Center for Biotechnology Information (NCBI), which included 714 improved
upland cotton cultivars from China and 176 improved upland cotton cultivars from the
USA and other countries (FCM). Furthermore, the 714 improved upland cotton cultivars
in China are divided into four groups by geographical distribution, 195 upland cotton
cultivars from the Yangtze River region (YtRR), 390 upland cotton cultivars from the
Yellow River region (YRR), 118 upland cotton cultivars from the northwestern inland
region (NIR) and 11 upland cotton cultivars from other regions. A total of 12.84 Tb
of raw genomic sequencing data was obtained, with an average sequencing depth of
6.3 ×(Table S1). First, the raw data were converted to fastq format with sratoolkit.2.4.3
software (NCBI, USA) [31]. Low-quality sequences were filtered with Trimmomatic (v.0.32)
software (Jülich, Germany) [32]. Then, the filtered sequences were aligned against reference
genome TM-1 [33] with BWA-MEM (v0.7.10-r789) software (Cambridge, UK) [34], and the
duplicated mapping reads were filtered with Picard programme (http://broadinstitute.
github.io/picard/, accessed on 26 February 2022). GATK (v4.0.1, MA, USA) [35] and
SAMtools/bcftools (Cambridge, UK,) [36,37] were used for genotyping, respectively, as
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described by Shen et al. [23]. To further obtain high confidence variants, only variants on the
chromosome shared by GATK [35] and SAMtools/bcftools were retained [36,37], and the
variants on the scaffold and the minimum allele frequency less than 5 were filtered. Finally,
1,427,171 SNPs for all, 1,347,173 SNPs for YRR, 1,370,684 SNPs for NIR, 1,302,014 SNPs for
YtRR and 1,250,515 SNPs for FCM, were obtained, respectively. The number of common
SNP was 1,117,112. The software Beagle (v5.0, Seattle, Washington, DC, USA) [38] with a
hidden Markov model was used for genotype phasing.

2.2. Population Genetic Diversity Analysis

STRUCTURE (v.2.3.4, Lausanne, Switzerland) is used to calculate the population
structure with K values ranging from 1 to 10 for five repetitions using 1,626,626 SNPs [39].
GCTA software (v.1.25, Queensland, Australia) is used to calculate the principal component
analysis (PCA) [40]. LD was calculated using PopLDdecay (v2.69, Xi′an, China) [41]. LD
decay was estimated using pairwise r2 values [27]. SNPhylo (Athens, GA, USA) [42] and
iTOL (http://itol.embl.de/, accessed on 6 February 2023) were used to construct and
visualize the neighbor-joining tree.

2.3. Genome-Wide Selective Sweeps Detection

To identify potential signals of selection between different geographic distributions,
we analyzed the pairwise nucleotide variation (θπ)- and genetic differentiation (FST)-based
cross approaches. The θπ, Tajima’s D value and FST were calculated for YRR, NIR, YtRR
and FCM with a 100-kb window using VCFtools software (Cambridge, UK) [43]. We set
1% of the FST and θπ ratio empirical distributions as the threshold for scanning to identify
selection signals between pairs of YRR, NIR, YtRR and FCM [44], which were merged into
large intervals using BEDtools (v2.27) [45].

2.4. Detection of Intraspecific Introgressions

In order to analyze whether there is introgression between different geographical
sources, the identity by descent (IBD) was detected with Refined IBD using default pa-
rameters [46] with phased SNPs from 890 upland cotton accessions, YRR accessions, NIR
accessions, YtRR accessions and FCM accessions. The genome is divided into bins accord-
ing to the window of 20 kb with the sliding window of 10 kb. Then, the IBD tracts were
obtained each accession and between pairs of YRR, NIR, YtRR and FCM with a custom
perl script as described by Fang et al. [47]. The relative frequency of IBD (rIBD) was used
for statistics, mainly to infer the area of the introgression sliding window (window size, 20
kb; step size, 10 kb), where positive rIBD values indicate potential introgression [48]. We
further considered results that deviated by more than two times standard deviations to
be a significant criterion, which were merged into large intervals using BEDtools (v2.27,
Charlottesville, VA, USA) [45].

2.5. Meta Genome Wide Association Study for Fiber Traits

We screened a total of 1089 cotton accessions from three previously published ar-
ticles [14,15,27] based on sequencing depth and phenotype, and finally the remaining
890 cotton accessions. Furthermore, a large−scale Meta−GWAS was carried out with the
GAPIT version 3 [49] using 1,427,171 high−quality SNPs (MAF > 0.05) using the basic
scenario of compressed MLM model by Zhang et al. [50]. The distribution of total SNPS on
chromosomes is shown in Figure S1. The distribution and correlation of the five fiber traits
are shown in Figure S2. The threshold for significance for Meta-GWAS was evaluated as
−log(0.05/1,427,171), and the threshold was ~7.39.

3. Results
3.1. Genetic Diversification and Population Properties

Through evolutionary relationship and population structure analysis, we found that
890 upland cotton germplasm materials were divided into four subpopulations (Figure 1a,b).
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Each subpopulation contained the cotton materials from four geographically distributed
sources (Figure 1c). PCA analysis showed no clear separation based on geographic distri-
bution sources (Figure 1d). Genetic diversity was highest in NIR (θπ = 1.99 × 10−4) and
lowest in FCM (θπ = 1.52 × 10−4), indicating a decreasing trend considering geographic
distribution (Figure 1e). The difference in LD of different subgroups was small, but higher
than that of the overall (Figure 1f). These results indicated that the genetic diversity of
the upland cotton population decreased during the improvement process, and population
structure cannot be determined based on geographic distribution.

Figure 1. The population diversity of geographical distribution. (a) The neighbor-joining phylogenetic
tree, which was divided into I, II, III and IV subgroups. (b) Population structure results for all samples
(k = 4). (c) Population structure results for different geographical distribution (k = 4). (d) Principal
component analysis plot for all accessions. (e) θπ and FST in different geographical distribution.
(f) Linkage disequilibrium decay of different geographical distribution.

3.2. Whole Genome Characterization of Intraspecific Introgression

In order to estimate the potential pattern of introgression among NIR, YRR, YTRR
and FCM, the rIBD statistic was used to infer introgression regions. Here, we found that a
total of 42.73 Mb and 76 genomic regions containing 1470 protein−coding genes exhibited
introgression signals that were introgressed from NIR to YRR (Figure 2 and Table S2).
Noticeably, several large regions (>3 Mb) on chromosomes A10 and D06 exhibit very strong
introgression signals (Figure 2). We found 462.49 Mb and 301 genomic intervals, containing
12,013 protein-coding genes exhibited introgression signals that were introgressed from
YtRR to YRR (Figure S3 and Table S2). We obtained 25.42 Mb and 25 genomic intervals,
containing 514 protein-coding genes that were introgressed from FCM to YRR (Figure S4
and Table S2). There were 45.91 Mb and 58 genomic intervals, containing 2888 protein-
coding genes, introgressed from YtRR to NIR (Figure S5 and Table S2). No significant
introgression signal was found between FCM and NIR (Figure S6 and Table S2). We
obtained 88.29 Mb and 118 genomic regions, containing 2105 protein-coding genes, that
were introgressed from FCM to YtRR (Figure S7 and Table S2). Genome-wide introgression
pattern analysis showed that the introgression pattern was different among different
geographical distributions.
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Figure 2. Genome−wide distribution of introgression signals between NIR and YRR. The red boxes
indicate significant introgression intervals.

3.3. Selection Signals Reveal Genetic Improvement of Different Geographical Distribution of
Upland Cotton Subpopulations

To reveal genetic patterns of genetic improvement in upland cotton across geographic
distributions, we scanned the genome using sliding window (window size, 100 Kb; step
size, 20 Kb) to identify regions with high differences in allele frequencies and regions with
the largest differences in nuclear sequence. We set 1% as the threshold for scanning to
identify positive selection intervals between pairwise subpopulations, which exhibited
high population differentiation and low genetic diversity (Figures 3 and 4). Furthermore,
we identified 134 selected regions (36.94 Mb) between the YRR and NIR subpopulations
(Table S3). Between the YRR and YtRR subpopulations, we found 303 selected regions
(58.66 Mb) (Table S3). We obtained 631 selected regions (102.44 Mb) between the YRR and
FCM subpopulations (Table S3). Between the NIR and YtRR subpopulations, we identified
135 selected regions (36.52 Mb) (Table S3). Between the NIR and FCM subpopulations,
we identified 274 selected regions (56.14 Mb) (Table S3). Between the YRR and FCM
subpopulations, we identified 725 selected regions (120.14 Mb) (Table S3). In addition,
we found that π and Tajima’s D value showed significant positive correlation between
different geographical sources, but Tajima’s D was slightly lower than π. The distribution
of YRR Tajima’s D values showed more positive values than other geographic distributions,
suggesting a large number of high-frequency segregating polymorphisms in YRR (Figure 5).
Overall, these results suggested that there were differences in the process of breeding and
genetic improvement of cotton from different geographical sources.
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Figure 3. Genome−wide distribution of genomic regions with selective sweep signals of different
geographical distribution. (a) Distribution of θπ ratios and FST values between YRR and NIR.
(b) Distribution of θπ ratios and FST values between YRR and YtRR. (c) Distribution of θπ ratios and
FST values between YRR and FCM. (d) Distribution of θπ ratios and FST values between NIR and
YtRR. (e) Distribution of θπ ratios and FST values between NIR and FCM. (f) Distribution of θπ ratios
and FST values between YtRR and FCM.

Figure 4. Statistical distribution of pairwise geographic area selection signal intervals across different
geographic sources.
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Figure 5. Distribution and pairwise correlation of nucleotide diversity (a) and Tajima’s D (b) of
geographic sources. The red−yellow−blue color gradient means decreased density in the graph.
*** means p-value ≤ 2.2 × 10−16.

3.4. Meta Genome Wide Association Study for Fiber Traits

To further analyze the relationship between introgression and cotton genetic improve-
ment, we conducted a meta-GWAS using 1,427,171 high−quality SNPs (−log (0.05/1,427,171);
7.39) and identified 512 significantly SNPs loci that were significantly associated with fiber
traits (Figure 6). Finally, a total of 261 fiber-related QTLs were located, including 184 for
fiber elongation (FE), 1 for FL, 2 for FM, 2 for FU and 113 for FS. We found that some
QTLs had fewer candidate genes (Table S4). Further comparisons showed that there were
42 QTLs with FS and FE co-located on A01, A03, A04, A05, A06, A07, A08, A09, A10,
A11, A12, D01, D02, D04, D07, D08, D10 and D11, 1 QTLs with FL and FE co-located
on D11 and 1 QTLs with FS and FU co-located on A02 (Table S4). The tissue expression
patterns and functional annotations of 4,423 candidate genes located in 261 QTLs regions
were shown in Table S5. The QTL region for FL and FE has 19 candidate coding genes, in
which the Ghir_D11G020360 encoding AP2/B3-like transcriptional factor was involved in
cotton fiber development as a candidate gene (Tables S4 and S6). A candidate gene related
to fiber elongation, Ghir_D05G013680, encoding indeterminate (ID)-domain 7, showed
different expression patterns in different fiber development stages (Tables S4 and S6). These
results provide new QTL candidates resources that may be applied to cultivate desirable
agronomic traits in future genomics—guided cotton breeding.
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Figure 6. The results of genome-wide association study for fiber trait. Manhattan plots and quantile-
quantile (Q-Q) plot for FE (a), FL (b), FM (c), FS (d) and FU (e).

3.5. Intraspecific Introgression and Selection Accelerate Genetic Improvement of Cotton

Among the 261 QTLs, 67 intersected with introgression signals, totaling 118.81 Mb,
containing 2939 candidate genes (Figure 7 and Table S6), and 123 intersected with selection
signals, totaling 28.38 Mb, containing 879 candidate genes (Figure 7 and Table S7). For
example, a FS association with introgression signal was identified on A01, a candidate
gene Ghir_A01G011950, encoding UDP-Glycosyltransferase superfamily protein. Another
example shows the QTL23 related to FS association with selection signal was located on A02
among the YRR_vs_YtRR, YRR_vs_FCM and YtRR_vs_FCM, and a gene Ghir_A02G015550,
encoding xyloglucan endotransglycosylase 6 was identified as the candidate gene. These
results indicated that intraspecific introgression and selection contribute the genetic im-
provement of cotton.
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Figure 7. Genome-wide landscape of significant introgression signals, selection signal intervals and
QTLs. Distribution of significant introgression signals (a) and selection signal intervals (b) between
YRR and YtRR. Distribution of significant introgression signals (c) and selection signal intervals
(d) between YRR and NIR. Distribution of significant introgression signals (e) and selection signal
intervals (f) between YRR and FCM. (g) The chromosome. (h) Distribution of QTLs. (i) Distribution
of selection signal intervals between NIR and FCM. Distribution of significant introgression signals
(j) and selection signal intervals (k) between NIR and YtRR. Distribution of significant introgression
signals (l) and selection signal intervals (m) between YtRR and FCM.

4. Discussion

Upland cotton produces 95% of the world’s cotton fiber [19]. Here, we compared and
characterized genome wide patterns of genetic diversity, population divergence and phylo-
genetic relationship in different geographical distribution of upland cotton. The NIR region
demonstrated the highest genetic diversity compared with other regions (Figure 1e), which
differs from previous studies [22] and may be due to the increased amount of material.
In addition, it was found that there were strong correlations of genetic diversity among
groups (Figure 5a), which is consistent with previous findings [22]. Compared to genetic
diversity, we observed a weaker correlations of Tajima’s D values (Figure 5b). The correla-
tion coefficient is higher than that of the previous article [22], which may be caused by the
difference in the interval of 100 Kb and the number of materials. Compared to the Populus,
the correlation coefficient R was higher than that in three species of Populus [51]. These
findings indicated that the modern cultivars showed a low level of genetic differentiation
among different geographical distribution. Additionally, phylogenetic analysis reveals that
these materials do not differ strictly according to geographical distribution (Figure 1a,c).
The reason for this is that breeders developed new varieties based on introduced mate-
rials from America in the early days of cotton breeding in China, and later on, breeders
combined excellent materials from different regions to produce new varieties.

Genomic big data reveals that introgression is universal and frequently facilitates adap-
tation and diversification in nature [52–55]. Previous introgression studies have typically
focused on large-scale pairs of individual species [56] and sympatric related species [57],
while studies of distinct geographic distributions within species are rarely studied. Recently,
several studies have mainly focused on the identification of introgression between sea is-
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land cotton and upland cotton to improve upland cotton [47,58–60]. Here we analyzed and
characterized the genome-wide introgression characteristics between different geographical
sources of upland cotton, and found that there were more introgression intervals between
YRR and YtRR, indicating that there were more introductions of YRR and YtRR in the
process of upland cotton breeding. No significant introgression signal was found between
FCM and NIR, suggesting that foreign-introduced materials may be mainly introduced
and bred new varieties in the YRR and YtRR. Domestication and genetic improvement are
important processes in cotton breeding. Thousands of years of domestication and artificial
selection have altered cotton morphology, including growth cycle, photoperiod and fiber
quality [61,62]. We detected genomic regions that have been subject to selection as inferred
from different geographic distribution. We found that the largest genomic regions were
under selection before.

The improvement of cotton fiber quality has always been one of the most important
cotton breeding goals. In recent years, GWAS based on the high-throughput sequencing
technology has been become a powerful method to identify the selection signals that
control the complex agriculture traits [63]. GWASs were recently applied to 267, 258 and
419 diverse accessions of upland cotton and 230 G. arboreum (A2) accessions, and these
results demonstrated that the combination of snp-based GWAS and functional genomics
is an integrated approach to map complex agriculture traits to underlying causal genetic
variation [14,15,27,64]. Until now, favorable QTL alleles for agronomic traits such as yield
and fiber quality have been identified via GWAS in upland cotton [14,15,22,27,65]. We
overlapped introgression, selection sweep signals with the locations of 261 QTLs and
found that 67 QTLs had introgression signals, and the genome interval size was 118.81 Mb,
including 2939 candidate genes (Table S6), 123 QTLs having selection signals and the
genomic interval being 28.38 Mb (Table S7), containing 879 candidate genes. For example,
the gene Ghir_D05G013680 obtained in this study has been confirmed to be related to fiber
development, which also shows the reliability of our results [66]. These results imply that
environmental divergence may be the major determinant of cotton introgression.

5. Conclusions

Introgression plays an important role in adaptation to various environmental changes
during plant domestication and variety formation. Here, we examined a detailed investi-
gation of the extent of introgression that existed among four geographic distributions of
upland cotton and its effect on selection and fiber quality, using whole-genome sequencing
data form large-scale individuals. We found that introgression exists in different geographic
distributions. Meta-GWAS and selective sweeps revealed that introgression was subject
to artificial selection. In addition, introgression is affected by the similarity of their liv-
ing environment, and materials with similar ecological environments tend to share the
same introgression area. These results provide a useful reference for studying intraspecific
introgressions from different geographical distributions in other species.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/agronomy13071781/s1, Figure S1: The Distribution of SNPs
on all chromosomes with 1 Mb window. Figure S2. The distribution and correlation of the five
fiber traits. Figure S3. Genome-wide distribution of introgression signals between YtRR and YRR.
Figure S4. Genome-wide distribution of introgression signals between FCM and YRR. Figure S5.
Genome-wide distribution of introgression signals between YtRR and NIR. Figure S6. Genome-wide
distribution of introgression signals between FCM and NIR. Figure S7. Genome-wide distribution of
introgression signals between FCM and YtRR. Table S1. Summary of genomic sequencing data of
890 cottons in this study. Table S2. The significant introgression signals containing genes in different
geographical distributions. Table S3. The genetic improvement signals and covering genes in different
geographical distributions. Table S4. GWAS QTL regions information. Table S5. Expression and
functional annotation of GWAS candidate genes. Table S6. Summary of QTLs that overlapped
with significance introgression signals. Table S7. Summary of QTLs that overlapped with genetic
development regions.
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