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Abstract: The recent increase in publicly available metagenomic datasets with geospatial metadata
has made it possible to determine location-specific, microbial fingerprints from around the world.
Such fingerprints can be useful for comparing microbial niches for environmental research, as well
as for applications within forensic science and public health. To determine the regional specificity
for environmental metagenomes, we examined 4305 shotgun-sequenced samples from the Meta-
SUB Consortium dataset—the most extensive public collection of urban microbiomes, spanning
60 different cities, 30 countries, and 6 continents. We were able to identify city-specific microbial
fingerprints using supervised machine learning (SML) on the taxonomic classifications, and we also
compared the performance of ten SML classifiers. We then further evaluated the five algorithms
with the highest accuracy, with the city and continental accuracy ranging from 85–89% to 90–94%,
respectively. Thereafter, we used these results to develop Cassandra, a random-forest-based classifier
that identifies bioindicator species to aid in fingerprinting and can infer higher-order microbial
interactions at each site. We further tested the Cassandra algorithm on the Tara Oceans dataset, the
largest collection of marine-based microbial genomes, where it classified the oceanic sample locations
with 83% accuracy. These results and code show the utility of SML methods and Cassandra to identify
bioindicator species across both oceanic and urban environments, which can help guide ongoing
efforts in biotracing, environmental monitoring, and microbial forensics (MF).

Keywords: microbial fingerprint; microbial forensics; supervised machine learning; metagenomics;
bioindicator species

1. Introduction

The decreasing cost of DNA sequencing has made the study of microbial and other
species increasingly possible, ranging from the human-built environments of cities to iso-
lated and extreme natural environments. Large-scale genomics projects such as the Earth
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Microbiome Project (EMP) ([1]) and the Human Microbiome Project (HMP) [2] have pio-
neered the comparative study of microbial species across targeted ecosystems. In addition,
the Tara Oceans Study [3], the Metagenomic and Metadesign of Subway and Urban Biomes
(MetaSUB) Consortium [4,5], and the Extreme Microbiome Project (XMP) [6–8] have all
broadly expanded the collection of diverse environmental microbial samples, revealing
biodiversity and genetic differences between environments at a global scale.

The advancement of DNA sequencing technologies, along with global efforts gener-
ating large-scale molecular and annotated data sets, played an integral role in expanding
traditional forensic methods to those that can utilize DNA-based material evidence in
criminal investigations [9,10]. Historically, there is evidence of microbes providing ancillary
evidence in criminal cases, including bioterrorism, pathogenic outbreak, and transmission,
post-mortem analysis, microbial tracing as well as identification of humans through mi-
crobial “fingerprints”, which are signatures characteristic of a particular environmental
location or niche [11,12]. Previous work has also revealed that using large-scale genomics
datasets can provide the statistical confidence needed for forensics [13]. Outside of human-
associated ecosystems, microbial forensics (MF) could feasibly be used—in the oceans, for
example—for tracking deleterious algal blooms or organisms with unknown migration pat-
terns [14]. This would be complementary to existing approaches in which oceanographers
use discarded host DNA to ascertain the presence of a given species [15].

The goal of microbial forensics is to be able to identify the point of origin, provenance,
or likely history of any given sample using microbial fingerprints: distinct microbiomes
that can identify their place of origin [16]. Prior work in MF has revealed that there is
a distance decay relationship between soil microbiome and geolocation, which could be
exploited for biotracing [17]. Work done by Jesmok et al., 2016 and Chase et al., 2016
demonstrated the successful assignment of places of origin using microbial profiles with
the help of supervised classification methods, such as k-nearest neighbor (k-NN) and
support vector machines (SVM) [18,19]. Microbial fingerprinting methods have also been
used to implement microbial surveillance, as demonstrated by Sanachai et al. (2016),
who identified the site of origin from soil microbes in the sole of the shoe using 16S
recombinant DNA (rDNA) profiles [20]. Additionally, Segata et al., 2011, developed
Linear Discriminant Analysis (LDA) effect size (LEfSe) method and used LDA-based
methods for finding biomarkers, including phenotypic indicators from 16S samples [21].
Using ensemble machine learning approaches in application to forensics, Kim et al., 2015
exhibited that gene expression profiles from the bacterium Escherichia coli can be used
for determining environmental conditions, including abiotic and biotic components, and
when additional genome-scale transcriptional information was provided, the classifier
outperformed the previous results [22]. Ideally, metagenomic datasets could be used to
develop discriminating microbial signatures or fingerprints, but there is a lack of universally
accepted tools for identifying bioindicator species from metagenomics data [10,23].

Though it is clear that microbial interactions play a significant role in many envi-
ronments, methods associated with applications within microbial forensics (MF) remain
limited as the field is still in a nascent stage [11,24]. While promising, microbial forensics
has historically used reductive or targeted methods for data processing, including Op-
erational Taxonomic Units (OTUs), which focus solely on sequence variation in targeted
regions such as 16S and 18S ribosomal RNA (rRNA) or the internal transcribed spacer
(ITS). By leveraging whole-genome sequencing data generated by short-read, long-read,
and linked-read methods, a more comprehensive view of samples can be leveraged for
biotracing purposes. Even though we can generalize all microbial sequence (16S, long-
reads, WGS) data to be a sparse vector quantifying frequencies (relative/absolute) within
Euclidean space [25] or large kmers [4], the variation of sequencing technologies makes
it computationally challenging to quantify and interpret cross-platform and cross-study
data [26]. Moreover, current forensics tools do not account for differences due to variations
in the sampling method [10], extraction methods [27], and possible noise due to amplifica-
tion, sequencing, or contamination. Furthermore, most microbial forensics studies focus on
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large-scale environmental profiling of natural sources and only recently have data been
related that focuses on the urban microbiome [4,28].

Here, we present Cassandra, an SML tool to address these unmet needs of metagenomics-
based microbial forensics, which can predict bioindicator species from shotgun sequence
datasets. Microbial species selected by Cassandra over multiple iterations were consid-
ered “bioindicator microbial species” for microbial prioritization, meaning that they were
the top taxa unique or enriched across locations. To build this tool we first integrated
six pre-processing methods to address the common challenges of sparsity and composi-
tion affecting data representation of sequence data processed by commonly used metage-
nomics toolkits in the pipeline. Our open-source tool, Cassandra, is a random-forest-based
algorithm that deploys machine learning to identify bioindicator species using quanti-
tative microbiome profiles as features. Using the data available through the MetaSUB
Consortium—which includes extensive metadata including geolocation, the surface of
origin, and temperature—we first explored the presence of microbial fingerprints by test-
ing multiple approaches, including SML methods, traditional clustering, and statistical
approaches, using a protocol developed for MetaSUB [4,29]. We were further able to
identify multiple species that could be used as bioindicator species with high confidence
using Cassandra to further confirm the tool’s utilization for predicting bioindicator species,
we tested on the orthogonal dataset (Tara Oceans using OTU-based microbial profiles)
(https://ocean-microbiome.org/).

2. Methods
2.1. Dataset Details

The MetaSUB Consortium aims “to create geospatial metagenomic and forensic genetic
maps” (MetaSUB, 2016). The organization has been collecting annual metagenomic data
since 2015, providing the largest to-date, built-environment microbial study. The dataset
provides a rich resource of urban microbiomes covering more than 60 cities located across
6 continents, and it also provides longitudinal metagenomics data for 16 cities. Prior
MetaSUB work has explored the diversity of microorganisms in a built environment
consisting of mass transit systems, including subways, buses, and waterways, across
various geographical locations [4]. The dataset used for this analysis contains species-level
resolution from 4305 samples processed by KrakenUniq from 60 unique cities (including
negative controls and positive controls), 9 continental divisions, and surface materials
(including some controls).

The Tara Oceans Foundation has been exploring the water for scientific knowledge
since 2003. We validated our tool with the publicly available Tara Oceans dataset consisting
of microbes processed using the 16S framework [3], with the supplementary dataset was
downloaded from the publication. We used the metagenomic data [referred to as MetaG
(https://ocean-microbiome.org/)], consisting of taxon classified from gene-coding se-
quences isolated. We trained our model separately on Phylum, Class, Order, Family, Genus,
and OTU from the reported taxa classification. We trained on the feature “OS_region,”
which divided the dataset based on locations, including, the Red Sea, Mediterranean Sea,
Indian Ocean, South and North Atlantic Ocean, North and South Pacific Ocean, Arctic
Ocean, and the Southern Ocean.

2.2. Data Preprocessing and Adopted Classification Methodologies

Since different metagenomic tools including QIIME [30], MetaPhlan [31], Kraken [32],
and others report taxonomic assignments to use different methods, the species data
produced have different quantifiable attributes with respect to compositionality, spar-
sity [26,33]. Given that microbiome datasets can be of multiple formats, we tested the
6 methods for preprocessing to reduce the biases and quantitative challenges.

• binary: Binarizing to 0,1 based on a threshold value (default = 0.0001).
• clr: Transformation function for compositional data based on Aitchison geometry to

the real space.

https://ocean-microbiome.org/
https://ocean-microbiome.org/


Genes 2022, 13, 1914 4 of 17

• multiplicative replacement: Transformation function for compositional data uses the
multiplicative replacement strategy for replacing zeros such that compositions still
add up to 1.

• raw: No preprocessing.
• standard scalar: Standardizing the data by removing the mean and scaling to unit variance.
• total-sum: Converts all the samples to relative abundance.

We selected 10 models from 7 different families based on their successful deployment
in earlier metagenomic studies [34,35] and further developed a Voting Classifier using 3 of
the top performing models. Specifically, this included:

(1) Logistic Regression, which classifies estimating the probability of an event occurring
based on a priori knowledge.

(2) Linear Discriminant Analysis (LDA), a generalization of Fisher’s linear discriminant
for separating multiple classes based on linear combination of features.

(3) Ensemble Methods, which are an amalgamation of multiple models to produce an
optimal classification (Random Forest Classifier, Extra Tree, AdaBoost).

(4) Tree-based Classifiers including Decision Tree that use branching methods to evaluate
the outcomes for classification.

(5) K-nearest neighbor (kNN), a Supervised Learning method which classifies it by a vote
of K nearest training objects as determined by some distance metric.

(6) Bayesian Classifiers, including Gaussian NBC which update their posterior probability
after ingesting new kinds of data.

(7) Support Vector Machines (SVM), which separates classes by using a maximal margin
hyperplane based on nonlinear decision boundary (Support Vector Classifier and
Linear Support Vector Classifier (lSCV)).

The Voting Classifier, another ensemble classifier was created using multiple models
and predicted on the basis of aggregating the findings of each base estimator, which was
created using RF, lSVC, and Logistic Regression. Table 1 shows the parameters tuned for
machine learning prediction; the user-defined parameters can be set manually. If it is blank,
it refers to the default setting for the ML model.

Table 1. Machine Learning parameters used for training. The method name and the code parameters
are listed based on the Python3 SciPy package. If left blank, it means default parameters were used.

Machine Learning Methods Defined Parameters

AdaBoost n_estimators = 1000 (User Defined), learning_rate = 4

Decision Tree -

Extra Tree n_estimators = 1000 (User Defined),
criterion = ‘entropy’

Gaussian Naive Bayes -

K-nearest neighbors n_neighbors = 21 (User Defined)

Linear Discriminant Analysis -

Linear Support Vector Classifier kernel = ‘linear’, probability = True

Logistic Regression solver = ‘lbfgs’, C = 1e5, max_iter = 1,000,000

Voting Classifier voting = ”soft”

Random Forest Classifier
n_estimators = 1000 (User Defined),
criterion = “entropy”, bootstrap = True,
warm_start = True

Support Vector Machine Classifier gamma = ‘scale’, decision_function_shape = ‘ovo’,
kernel = “rbf”, probability = True

A common problem in ML predictions is overfitting the test data. To eliminate over-
fitting, we added random Gaussian noise with a mean 0 and standard deviation ranging
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between 10E−10 and 10E+3 which was done using the “–noise” value set to be TRUE. The
result includes precision, recall value, and top 1, 2, 3, 5, and 10 accuracies (the number of
times the correct label is among the top n labels predicted). The accuracy is the accuracy for
a subset computer for multilabel classification based on the Python3 SciPy package. The
tools also report the confusion matrix for multiclass multilabel classification.

2.3. Addressing Overfitting by Cross-Validation

Beyond the standard methodologies listed in Table 1, it is also necessary to accom-
modate and correct small human and machine errors, such as sampling variability, DNA
heterogeneity, and missing metadata. To address these issues, we test for overfitting of
the data by methods including the addition of Gaussian Noise, cross-validations (k-fold
cross-validation), and cross-parameter analysis (leave-one-group-out). The k-fold cross-
validation makes the model more generalizable, by estimating the model performance
in new sets of data created by different model splits, thus providing a more accurate es-
timation of accuracy. Leave-one-group-out uses a third-party provided group to create
a split, where the group information encodes arbitrary domain-specific stratifications of
the samples. Both the cross-validations report the best accuracy, average accuracy scores,
and standard deviation in accuracy. Machine learning approaches can be used for spatial
extrapolation. In Section 3.3, we first use k-fold cross-validation to classify the accuracy
of parameters. We then use leave-one-group-out cross-validation, choosing city and conti-
nents as the group, while looking into the prediction accuracy for the parameters. Here, we
use the cross-validation methods to validate critical parameters that could be affected by
interpolation accuracy.

2.4. Cassandra Predicts Bioindicator Species Providing Explainability and Interpretability
of Datasets

Cassandra was developed as a factor-analysis method to find the bioindicator mi-
crobial species (Figure 1A,B). This can be defined as the species chosen by random forest
to differentiate between the various sub-environments [36]. Notably, the top five meth-
ods compared here (Table 2) displayed high accuracy and low standard deviation, which
matches some prior work. Bioinformatic-based benchmark studies by Couronné et al.,
2018 have shown Random Forest classifiers generally perform better than Logistic Re-
gression in 69% of the datasets [37]. Other studies designed for metagenomic datasets by
Statnikov et al., 2013 supported RF, SVM, kernel ridge regression, and logistic regression are
the best methods for microbiome datasets [38]. We chose to use a Random Forest because
it yields output that is simple to interpret, stable against Gaussian noise, does not overfit
in unbalanced datasets, and the standard deviation between the various preprocessor
methods is extremely low.

The input to Cassandra takes the metadata feature of interest, like geolocation, tem-
perature, and the minimum accuracy for prediction expected by the user for the dataset.
Using standard machine learning protocols, Cassandra first does an 80–20 train-test split,
creates a new tree based on the training set, and trains the model. It evaluates the accuracy
of the test set. If the desired accuracy is achieved, Cassandra selects the run and reports
the attributed features (microbes) for the run. The algorithm keeps running till we have
1000 instances to achieve consensus (which can be modified by users) with the desired
accuracy. The weight of all the species is reported for each of those instances, which helps
us understand higher-level interaction between species and the geolocation. Furthermore,
another output file is generated which selects the top n-species of interest (which can be
user modifiers) of interest which are bioindicator species.

If the accuracy cutoff provided is unachievable in 15,000 runs, Cassandra archives
arbitrary accuracy ranging from 0 to less than the desired value, based on the dataset.
Hence, exploratory analysis for classification was run based on Danko et al., 2021 protocol,
based on which we selected the accuracy parameter [4]. We used the entire MetaSUB
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dataset to predict bioindicator species with >80% accuracy for cities and >90% accuracy for
continents and >85% accuracy for predicting OTUs for the Tara Oceans dataset.
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Figure 1. Working principle of Cassandra. The Random Forest-based method is designed to select
bioindicator species for applications to microbial forensics. (A) Diagramatic schematic showing
a conceptual interpretation of how Cassandra selects top bioindicator species for discriminating
location from microbial data and geolocation and (B) Algorithmic Schema that Cassandra uses for
reporting species of interest.
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Table 2. Performance of the top 5 models for city classification: The accuracy and standard deviation
between the model accuracy for the 5 five models.

Preprocessing Method

Classifier Binary CLR Multiplicative
Inverse Raw Standard

Scalar Total-Sum Standard
Deviation

Extra tree 0.812 0.775 0.776 0.809 0.812 0.771 0.018328

Linear SVC 0.889 0.893 0.581 0.89 0.883 0.562 0.1499

Logistic Regression 0.8952 0.89 0.879 0.895 0.8856 0.881 0.00617

Random Forest 0.781 0.734 0.778 0.778 0.779 0.735 0.02126

SVM 0.834 0.845 0.79 0.833 0.792 0.798 0.02226

3. Results
3.1. Microbial Fingerprints can Be Observed from the MetaSUB Dataset Both at the City and
Continent Levels

For evaluating the potential of geographical profiling to identify the city and continent
of origin using the microbiome, we compared the performance of 10 models on the Meta-
SUB dataset (Figure 2). The best classifiers for city prediction were Logistic Regression,
Linear Support Vector Classifier (LSVC), Support Vector Machine (SVM), Extra Tree, and
Random Forest (RF), with most showing >80% accuracy (Table 2 and Figure 2A). Using the
top 3 models, namely LSVC, Logistic Regression, and RF, we developed an ensemble voting
classifier, which was able to reach an accuracy of 89.51% and had a standard deviation of
0.0175. Overall, these data showed that microbial fingerprints are a good indicator for de-
termining geolocation. Notably, classifications for continents using shotgun metagenomics
data outperformed those for cities with (Figure 2B) Linear Regression, Logistic Regression,
and Voting Classifiers, reaching over 90% accuracy.

However, metagenomics data can have technical noise and other biases introduced
by experimental protocols, sequencing methods, or data-cleaning approaches, and this
can create challenges for classifier algorithms [39]. We simulated noise in the natural
environment by adding Gaussian noise to gauge the impact on the models’ performance
(Figure 2C). Most models maintained their performance metrics, even with the addition
of random Gaussian noise, with a mean change of 0 and standard deviation ranging
between 10E−10 to 10E+1), indicating our model does not likely suffer from overfitting,
but still demonstrates the importance of preprocessing and model selection (Figure 2D).
In general, we observed that all the classifiers performed better than random chance
(1/no_of_distinct_classes = 1/60 = 0.0167 or 1.67% accuracy) which was achieved with a
training time of fewer than 10 min for each instance (Figure 2C).

3.2. Adding Interpretability and Explainability to Machine-Learned Microbial Fingerprints by
Characterizing Bioindicator Microbes with Cassandra

Prior work by Danko et al., 2021 showed that RF models can be used for city classifica-
tion from shotgun sequence data, and as such, we decided to use an RF method to develop
Cassandra, a new tool to identify bioindicator species associated with geolocations [4].
Cassandra requires user input of desired accuracy, a parameter that defines the minimum
accuracy expected for uniquely identifying cities. As we have observed from previous
experiments, RF could achieve an accuracy score of around 80% for classifying cities. Thus,
we set Cassandra to achieve 80% accuracy for classifying our desired biomarker species.
We also selected clr preprocessing for our dataset, as it was most stable against noise, as
indicated in Figure 2C. Cassandra took 1108 runs for a feature selection to achieve an
average accuracy of 81.3% across 1000 iterations.
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Figure 2. Performance of the ML tools for predicting geolocation from MetaSUB dataset. Top 5 meth-
ods to detect microbial fingerprints of cities with high precision and recall for (A) city. (B) continents.
Micro-averaging (used for un-balanced classes in NumPy) has been used for calculating the precision
and recall values to account for class imbalances. (C) Gaussian noise (used to mimic metagenomic
noises) for the best preprocessing method for each model to predict city (D) Training time required
for city classification.
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We next examined the output of Cassandra after this processing, which details the
weight associated with each microbe for classification with minimum accuracy. We found
that microbial abundance (the amount of a given microbe) and microbial prevalence (the
number of samples where the microbes were found) had a linear relationship (Figure 3A).
Furthermore, we found the bioindicator species displayed a strong correlation with mi-
crobial abundance and prevalence (Figure 3B,C). Previous studies (Danko et al., 2021)
have shown a bimodal, wide distribution of taxa prevalence across the MetaSUB dataset,
and, as expected, the abundance of the top 50 bioindicator species showed a wide vari-
ance (Figure 3D) as well [4]. Out of the 31 core microbial taxa in the MetaSUB dataset,
we observed 4 of them in the top 50 bioindicator species, namely: Streptococcus mitis,
Brevundimonas sp. GW460, Brevundimonas naejangsanensis, Cutibacterium acnes.

These results further revealed: new insights about bioindicator species for the Meta-
SUB dataset: the algorithm selected for a combination of abundant microbes (which have
a differential presence across cities), unique microbes associated with a given region, as
well as a few core microbes with differential abundances across cities. Hence, both the
abundance and presence of microbes are utilized by machine learning tools for estimating
unique city-based fingerprints. When we compared the top 50 species of microbes selected
for predicting continents (average accuracy attained by Cassandra: 90.3%), we found that
around half (22/50) of species were shared with the top 50 species selected for predict-
ing cities (Figure 3E), but the rank of the species provided by Cassandra differed at both
continent and city levels.

3.3. Feature Interpolation for Microbial Forensics can Be Achieved Using Microbial Data

Using the MetaSUB dataset, we next examined the ability to predict other forensic
features, including surface material (e.g., metal, glass, plastic), temperature, climate, and
other clues of sample provenance. To develop these methods, we trained the MetaSUB
species data on eight unique features, including surface type, sampling type, coastal city,
climate, and others (Table 3). Each feature was analyzed independently using 3 cross-
validation methods (k-fold, leave one group out for the city, and one for the continent),
which repeatedly uses part of the samples for learning the model, and the remainder for
validating the predictions (Methods 2.3).

Three models were separately trained for each feature and cross-validation methods
using the following (classifier + preprocessing) methods: random forest with standard
scalar, the voting classifier (mixed model) with clr, and logistic regression with multiplica-
tive replacement. After compiling all outcomes, we observed that surface material always
outperformed other metadata types (Table 3). In general, microbial data can also classify
other associated features with geolocation, like elevation, coastal association, and climate.
To confirm this, we also tested classification with LOGO, where we also saw some features
like surface material (coarse) outperforming k-fold validation.

3.4. Modeling the Microbial Fingerprint of the Tara Oceans Dataset

We next tested our ability to detect microbial signatures in non-human-associated
ecosystems, specifically, the Tara Oceans dataset. We trained separately for all the separate
taxon levels to classify the oceanic location from which the sample is collected. In general,
we found that we were able to predict all taxon levels, with a precision and recall of greater
than 65% (Figure 4), including Operational Taxonomic Units (OTUs). For class, genus, and
OTU, the accuracy was greater than 80%. We then used OTUs to train Cassandra, which
achieved 86.5% accuracy (the top 15 bioindicators’ OTUs are depicted in Figure 4B).



Genes 2022, 13, 1914 10 of 17Genes 2022, 13, x FOR PEER REVIEW 10 of 17 
 

 

 
Figure 3. Bioindicator Species and their association with other metrics. (A–C): The feature im-
portance (weight assigned to bioindicator species) of the microbes as a bioindicator for cities, species 
prevalence (number of samples the species is present in), and species abundance (relative abun-
dance of species across all samples) shows a linear relationship when plotted against one another 
(D) Boxplot depicting the abundance of the top 50 bioindicator microbial species for cities in the 
original MetaSUB data (E) Boxplot depicting the abundance of the top 50 bioindicator microbial 
species for the continent in the original MetaSUB data. 

3.3. Feature Interpolation for Microbial Forensics can Be Achieved Using Microbial Data 
Using the MetaSUB dataset, we next examined the ability to predict other forensic 

features, including surface material (e.g., metal, glass, plastic), temperature, climate, and 
other clues of sample provenance. To develop these methods, we trained the MetaSUB 
species data on eight unique features, including surface type, sampling type, coastal city, 
climate, and others (Table 3). Each feature was analyzed independently using 3 cross-val-
idation methods (k-fold, leave one group out for the city, and one for the continent), which 
repeatedly uses part of the samples for learning the model, and the remainder for validat-
ing the predictions (Methods 2.3). 

Figure 3. Bioindicator Species and their association with other metrics. (A–C): The feature importance
(weight assigned to bioindicator species) of the microbes as a bioindicator for cities, species prevalence
(number of samples the species is present in), and species abundance (relative abundance of species
across all samples) shows a linear relationship when plotted against one another (D) Boxplot depicting
the abundance of the top 50 bioindicator microbial species for cities in the original MetaSUB data (E)
Boxplot depicting the abundance of the top 50 bioindicator microbial species for the continent in the
original MetaSUB data.
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Figure 4. Validation using the Tara Oceans dataset shows the presence of microbial fingerprints in
the water sample: (A) Precision vs. Recall for the best model for prediction at each category to predict
geolocation based on ocean region. We observe that irrespective of being the same dataset when we
try classifying based on different domains, the best model/preprocessing differ, even if they are able
to achieve similar accuracy. (B) Top 15 OTUs selected by Cassandra from Tara datasets along with
their weight assigned by Cassandra.
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Table 3. Cross-validation methods for data interpolation: For 8 features, we perform cross-validation
based on 10-fold and leave-one-group-out split based on cities/continent as groups. The table
explains the features and reports the average accuracy and standard deviation for the different splits
for the best method among the above 3 mentioned. In general, we find the accuracy for predicting a
feature from an unknown city higher than that from an unknown continent.

Feature #Number of
Variables Desc. of Feature 10-Fold

Av. Accuracy (%)

Leave One
Group out (City)
Av. Accuracy (%)

Leave One Group
Out (Continent) Av.
Accuracy (%)

Random
Chance
(%)

City climate 13 Categorized climate
Types 93.0 ± 0.0168 34.5 ± 0.3537 12.7 ± 0.1338 7.69

Coastal 3 Coastal city and altitude
for non-coastal city 90.9 ± 0.0123 59.1 ± 0.3197 40.8 ± 0.1323 33.33

Coastal City 2 Binary values 90.9 ± 0.0108 52.4 ± 0.2409 40.5 ± 0.1009 50

Location Type 68 Location for collection 85.7 ± 0.0216 44.2 ± 0.3358 40.6 ± 0.3221 1.47

Surface 460 Type of surface 47.2 ± 0.0177 8.7 ± 0.1107 3.8 ± 0.0253 0.22

Surface Material 115 Standardizeding the
“Surface” parameter 54.3 ± 0.0178 24.4 ± 0.1920 32.5 ± 0.2603 0.87

Surface Ontology
(Fine) 6 Type of surface: stone,

biological, etc 66.2 ± 0.0248 50.3 ± 0.2495 61.8 ± 0.1532 16.67

Surface Ontology
(Coarse) 3 Surface permeability/

Control 85.4 ± 0.0127 87.1 ± 0.1722 83.0 ± 0.0980 33.33

# refers to Number of.

4. Discussion

In this study, we describe the utility of SML tools and further developed Cassandra
in identifying and attributing bioindicator species in oceanic and urban environments
that can help guide future microbial forensics efforts. This investigation demonstrates
that, even from varied mixtures of microbial communities, we can uniquely predict the
provenance of a given metagenomic sample by its microbial fingerprint. Deploying the
MetaSUB protocol [4], we were able to classify the continent and city of origin from a
given WGS metagenomic sample from the global dataset, with 94% and 89% accuracy,
respectively, and the sea or ocean of origin with 83% accuracy when using OTUs from
the Tara Oceans dataset. Thus, Cassandra shows that these methods can be utilized for
metagenomic forensics, for example, in the comparison of samples from unknown and
questioned origins.

In this study, we explored whether microbial signatures from known sources and
locations can be utilized for predicting the origin of an unknown sample. We were able
to accurately extrapolate location-based metadata—such as identifying an urban environ-
ment or proximity to the coast—with an accuracy as high as 87.1% (Table 2) from surface
ontology. For most cases (with exception of Surface Material and Surface Ontology), extrap-
olating features at the city level outperformed at the continent level (Table 3). Well-curated
metadata for microbial studies at a global scale make such associations possible, and are
required to provide ancillary evidence for the purpose of using these methods in microbial
forensics, but could also be used to reduce boundary negotiating artifacts amongst different
study cohorts [40]. Irrespective of growing evidence suggesting the usage of microbial
forensics to complement traditional forensics methods, a more detailed categorization of
the environmental association of microbes is required including microbiome-disease associ-
ation [41,42], along with more publicly available tools for analysis and more reproducible
quality of research [43].

The use of Cassandra as a tool for the identification of species can be extended to
multiple circumstances including pathogenic propagation as a biodetector [44,45], and the
spread of antimicrobial resistance [46,47]. Looking ahead, future integration using tools like
MetaMeta [48] can homogenize analysis for cross-study data integration. Species classified
by Cassandra can be further used to monitor pathogenic outbreaks as well as the spread of



Genes 2022, 13, 1914 13 of 17

AMR using additional resources. Databases like Global Biodiversity Information Facility
(GBIF) [49], TerrestrialMetagenomeDB [50], and Microbe Directory (MD2) [51] can be used
as ancillary information for defining phenotypes, and other attributes of the bioindicators
species [52]. Thus, the use of this tool can help improve source tracing and phylogenetic
reconstruction to determine disease transmission in geographical locations in the situations
of biocrime and biothreat.

A key objective of microbial forensics is to utilize microbial analyses and other evidence
to resolve a sample’s provenance, and geospatial attribution is often more challenging
than simply identification. For example, increasing the resolution of a location estimate
gets harder as the desired specificity increases (e.g., city vs. continent), and cities have
varying degrees of autochthonous and unique species. Moreover, noise elimination, auto-
correlation, and sample mapping are dependent on many factors, and in this paper, we
have tested a range of options for data cleaning and their impact on SML tools. Microbial
forensics deals with a wide range of microorganisms, including viruses, fungi, parasites,
bacteria, and small eukaryotes, and future work can tease out more interactions between
species as well.

Using metagenomic samples, this model could provide more power to microbial
forensics analyses by helping with the characterization of the origin of a sample based on
its microbial signature, such as at the scene of a crime. Although a daunting endeavor,
Cassandra could be trained to identify the place of the crime, and the place of the death
based on the geographic distribution of the microbial communities. While Cassandra can
have myriad applications, proper interpretation necessitates the requirement of proper
guidelines, orthogonal validation, and statistical ranking.

5. Conclusions

Microbial forensics has a wide range of applications, and work in the field is still
in its infancy. Nonetheless, forensics approaches leveraging microbes have been used in
tracking crimes [53], the provenance of samples in a city (e.g., MetaSUB), and also for
sexually transmitted diseases like HIV and HCV (Network, B). Efforts led by the Human
Microbiome Project were integral in understanding the microbial fingerprint across different
body sites [2,54], and this work is now being leveraged as well in microbial forensics,
such as the human skin signature in the MetaSUB dataset. New studies conducted by
Franzosa et al., 2015 explored the use of the human microbiome as a personal identifier,
which also can aid microbial forensics [55]. The authors reported that body site-specific
microbial profiles of individuals could be used to match an individual, even several months
later. Other applications include exploring the thanatomicrobiome, in determining the time
elapsed since microbial death [56]. Further applications include tracking the microbiome
before and after exposure to diseases like SARS COV2 [57], and determining changes in the
microibial composition following dietary alterations [58–60].

Microbial forensics may have future uses in other areas, such as the identification of
an individual’s past exposures or countries/geographical locations previously visited [61],
which can bring a temporal dimension to microbial tracking. This information could be
used to highlight whether a subject is a person of interest for law enforcement services, as
well as a means by which to eliminate suspects, which would make it a powerful tool that
could be used as ancillary evidence in criminal cases. However, such use requires caution,
as it could contribute to errors, socioeconomic discrimination, or stigmatization, and the
results would need to be verified, as with all other methods in forensics. Nonetheless,
the tools, data, and methods are finally emerging to make such methods of tracking and
provenance a reality.
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