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Abstract: Infantile onset transient hypomyelination (IOTH) is a rare form of leukodystrophy that
is associated with transient motor impairment and delayed central nervous system myelination.
Here, we report a case of a new mutation in the transmembrane protein 63A (TMEM63A) gene
identified using Whole-Exome Sequencing (WES) in an 8.5-year-old boy with clinical symptoms
similar to IOTH. The patient exhibited a mild developmental delay, including hypotonia and delayed
motor milestones, as well as some notable phenotypic characteristics, such as macrocephaly and
macrosomia. Despite the absence of early neuroimaging, genetic testing revealed a paternally
inherited variant in TMEM63A (NM_14698.3:c.220A>T;p:(Arg74*)), potentially linked to infantile
transient hypomyelinating leukodystrophy type 19. Our findings in this study and the patient’s
favorable clinical course underscore the potential for successful myelination even with delayed
initiation and may contribute to a better understanding of the genotype–phenotype correlation in
IOTH, emphasizing the importance of genetic analysis in unresolved developmental delay cases and
providing critical insights for accurate diagnosis, prognosis and potential therapeutic strategies in
rare leukodystrophies.

Keywords: leukodystrophy; myelin; oligodendrocyte; hypomyelination; remyelination; infantile
transient hypomyelinating leukodystrophy type 19; motor delay; developmental delay; TMEM63A variant

1. Introduction

Leukodystrophies are rare neurological disorders that are primarily characterized by
deficiencies in the formation of myelin (CNS), which plays a crucial role in the efficient
transmission of electrical signals between neurons [1]. The term “leukodystrophy” derives
from the Greek language, meaning “the abnormal growth of white matter”. Myelin pro-
duction starts during the third trimester of pregnancy and rapidly accelerates postnatally
and during early childhood. By the age of 2 years, most of the myelination process is
complete. However, it continues at a slower rate into adulthood [2,3]. The incidence of
leukodystrophies ranges from 1/8000 to 1/80,000 [4], and they are often associated with
regression or the loss of developmental abilities, such as speech and motor milestones, as
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well as with cognitive defects. Although most of them present during childhood, some
are adult-onset, which may reflect diverse etiologies and disease mechanisms and is an
ongoing topic of research.

Leukodystrophies have various genetic causes with different inheritance patterns,
including autosomal recessive, autosomal dominant and X-linked recessive traits. De-
pending on the affected gene studied, the therapeutic approaches include replacement
therapies and gene suppression [5,6]. The mutations associated with leukodystrophies
usually affect the pathways involved in the production or breakdown of myelin lipids and
lysosomal enzymes that participate in lipid metabolism (Fabry disease, fucosidosis and
Krabbe disease) [7]. Peroxisomal proteins, which contribute to the β-oxidation of fatty
acids and the synthesis of plasmalogens, are also implicated in multiple leukodystrophies,
including X-linked adrenoleukodystrophy [8]. The other molecular mechanisms associated
with leukodystrophies include defects in the mitochondrial proteins (cerebrotendinous xan-
thomatosis); cytoskeletal proteins (autosomal dominant leukodystrophy with autonomic
disease); transcription (4H leukodystrophy) and translation (tRNA synthetase-related
leukodystrophies); myelin structural proteins (CNP-related hypomyelinating leukodys-
trophy and Pelizaeus–Merzbacher Disease); cell junction; and other transmembrane pro-
teins [9–17]. While genetic causes play a significant role in white matter development and
disease, a neonatal white matter injury or congenital heart disease can also adversely affect
neurodevelopment and lead to long-lasting effects. Maternal infection and perinatal inflam-
matory insults are also associated with a reduction in the expression of oligodendrocyte
differentiation and cerebral palsy [18–21].

Infantile onset transient hypomyelination (IOTH) or infantile transient hypomyelinat-
ing leukodystrophy is a rare genetic neurological disorder that affects myelin formation
in the CNS, causing temporary motor impediment [22–24]. It presents in infants with
hypotonia and a delay in developmental milestones, such as sitting, crawling and walking.
The other symptoms include nystagmus, ataxia, dysmetria, an intention tremor, hearing
deficiencies, ocular abnormalities and paroxysmal events with spinal cord involvement
in rare cases [22–24]. IOTH is generally transient and self-limiting, with the symptoms
resolving as myelination catches up to normal developmental timelines. IOTH is due to
pathogenic variants in several genes, most frequently POLR3A and POLR3B, which encode
RNA polymerase III, a key enzyme for the normal formation of the transcription machinery,
and therefore the development and maintenance of myelin in the CNS [25].

The diagnosis of IOTH is based on neuroimaging studies, particularly the magnetic
resonance imaging (MRI) of the brain and spinal cord, which shows a characteristic pattern
of delayed myelination in the white matter of the brain [22–24]. The differential diagnosis
of IOTH includes other leukodystrophies or genetic disorders affecting myelin that have
similar symptoms and imaging patterns. The clinical and neuroradiological presentation
of IOTH is similar to Pelizaeus–Merzbacher Disease (PMD), which is caused by changes
in the gene that encodes for proteolipid protein 1, a structural myelin protein. However,
PMD patients have a less-favorable clinical course and developmental progress compared
to IOTH patients [26]. There is no specific cure for IOTH, and supportive care is the
primary management strategy, as the disease is transient, and its prognosis is relatively
favorable [22–24].

Here, we present a patient with suspected IOTH type 19 caused by a novel non-
sense variant in the gene encoding transmembrane protein 63A (TMEM63A). While the
OSCA/TMEM63 family had not been associated with any human disease, only five years
ago, in 2019, Yan et al. pointed out a connection between the mutations in TMEM63A
and infantile onset transient hypomyelination [22]. In addition, we briefly review other
published data on the known TMEM63A variants.
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2. Materials and Methods
2.1. Clinical Data Collection

This study involved a Greek family that included a boy with a history of developmental
delay and his relatives. Clinical examination of the patient and his parents was followed
by genetic counseling. After the parents signed an informed consent form, blood samples
were obtained for genetic testing. The study was approved (RPURI9002) by the Bioethics
Committee of the University Research Institute of Maternal and Child Health and Precision
Medicine at the School of Medicine of the National Kapodistrian University of Athens. All
the images were published after paternal consent was obtained.

2.2. DNA Sequence Analysis

Genomic DNA was isolated from the white blood cells of the patient and his parents
using a Nucleospin® Blood Quickpure kit (Macherey Nagel GmbH, Düren, Germany)
following the guidelines of the manufacturer. Subsequently, Whole-Exome Sequencing
(WES) was performed on the patient’s DNA sample for the identification of the mutation
using NextSeq-500 (Illumina, San Diego, CA, USA). Variation analysis was performed
using the VarSome Clinical platform and varAFT 2.14 (http://varaft.eu, accessed on
8 May 2022) that uses genotype–phenotype correlation predictions from several genetic
databases. For confirmation, the targeted DNA sequencing of the TMEM63A gene region
containing the found mutation was carried out for the patient and his parents using an
automated capillary sequencer ABI 3730 XL Analyzer (Applied Biosystems, Waltham,
MA, USA).

3. Results
3.1. Case Report

An 8.5-year-old boy was clinically evaluated at the Clinical and Translational Research
Endocrine Unit, School of Medicine, of the National Kapodistrian University of Athens. The
boy was born by normal delivery at 35 weeks gestational age due to placental abruption.
His birth weight was 2.7 kg, and no post-partum complications occurred. His parents were
Greek with self-reported good health and unrelated, but originated from the same agricul-
tural region. The boy presented with macrosomia, macrocephaly, a large forehead, low-set
ears and a depressed nasal bridge as well as hypotonia during infancy and delayed motor
development (Figure 1). His cognitive condition was normal, but his speech speed was
mildly slow. No endocrine disorders, including hypo- or hyperthyroidism, were detected.
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Figure 1. The phenotype of the patient.

The boy had a history of developmental delay. The following milestones were was
achieved: head control at age 6 months, sitting without a support at 10 months, walking
without a support at 18 months, and climbing the stairs at 36 months. It is important
to mention that physiotherapy was initiated at the age of 6 months after a neurologist’s

http://varaft.eu
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recommendation and is still ongoing. Communication milestones were achieved without
significant deviation. He started to make meaningful sounds at age 9 months and said
two or more words in a sentence at age 17 months. He was able to speak long sentences
with mildly slow pronunciation. His cognitive performance was spared, without any
noteworthy observations. At the age of 3 years, genetic testing for Prader–Willi syndrome
had negative results, while brain MRI did not reveal myelination abnormalities or other
types of disorders (Figure 2). It should be noted that, unfortunately, MRI was performed
relatively late for this case.
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Figure 2. Serial MRIs (axial T2- and T1-weighted images) of the individual at 3 years of age show
normal myelination. No abnormalities are depicted here.

3.2. Molecular Genetic Analysis

After genetic counseling and signed informed consent was given, we obtained blood
samples from the patient and his parents for genomic DNA isolation and genetic testing. The
WES analysis of the patient’s DNA detected a novel heterozygous nonsense variant in the
gene encoding transmembrane protein 63A TMEM63A (NM_014698.3:c.220A>T;p:(Arg74*)),
potentially underlying the diagnosis of infantile transient hypomyelinating leukodystrophy
type 19 (OMIM 618688). Targeted Sanger DNA sequencing of the TMEM63A gene region
(Figure 3) was carried out for him and his parents, confirming the finding from the patient’s
DNA and revealing that the mutation was paternally inherited. Further testing showed
that the variant was also present in the paternal grandmother.
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3.3. Follow-Up

Records from the father’s and grandmother’s childhoods were unavailable to deter-
mine possible clinical similarities in the infantile period. In light of the genetic testing
results, genetic counseling was offered to the family. The parents reported relief that the
previously unknown case of their child’s condition was finally resolved. In a follow-up of
our patient, who is now a 10-year-old boy, we have observed that he is able to walk, run,
and climb the stairs without difficulties, and his communication and cognitive skills are
concordant with his age at evaluation. A recent physical examination demonstrated no
pathological semeiology, besides the noteworthy facial phenotype described above. Finally,
the results of additional routine investigations were normal, and no endocrine or metabolic
disorders were revealed, nor was the child’s growth rate affected.

4. Discussion

We present a patient with possible infantile transient hypomyelinating leukodystrophy
type 19 caused by a novel nonsense variant in the gene encoding transmembrane protein
63A (TMEM63A) (Figure 4). TMEM63A is a mechanically activated ion channel that belongs
to the osmosensitive calcium-permeable OSCA/TMEM63 family of channels, which is
conserved across eukaryotic species and contains two more members, TMEM63B and
TMEM63C [27–29]. TMEM63A is highly expressed in oligodendrocytes both in humans
and in mice [22,27–29]. Mice lacking the TMEM63A gene exhibit abnormalities in their
gait, as noted in the International Mouse Phenotyping Consortium (IMPC) database [22,29].
TMEM63A is the first member of the OSCA/TMEM63 family to be associated with a
human disease [22]. It is possible that the transient nature of this condition is due to the
developmental and tissue-specific expression of TMEM63A’s homologs, TMEM63B and
TMEM63C, which compensate, at some level, for the loss of TMEM63A’s activity [29]. The
formation of an ion channel properly activated by hyperosmolarity requires the expression
of all three TMEM63 proteins, and this fact may be crucial in certain developmental
processes [30]. However, research on TMEM63A’s role in disease is still ongoing, and since
it is known to be expressed in various tissues throughout the body, its exact function and
implications in human health may not have been fully elucidated yet [27–29].
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Figure 4. A schematic representation of a TMEM63A protein and the location of the identified
variants causing infantile transient hypomyelinating leukodystrophy type 19. Modified version of
the representation by Yan et al., 2019 [22].

The present study involves a novel heterozygous nonsense variant in the TMEM63A
gene (NM_014698.3:c.220A>T:p:(Arg74*)), which is suspected to cause autosomal dominant
infantile transient hypomyelinating leukodystrophy type 19 (IOTH19, OMIM 618688). All
five previously reported patients with IOTH19 due to mutations in TMEM63A carried
heterozygous missense variants, including four de novo and one inherited one. Specifically,
in 2019 Yan et al. was the first to identify heterozygous missense mutations in TMEM63A
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in four unrelated patients, three of whom had a de novo variant, and one was paternally
inherited [22], and in 2021, Tonduti et al. reported a de novo heterozygous missense
mutation in TMEM63A in a 15-month-old girl (Figure 3) [23]. Our patient is the first one
with an inherited nonsense variant in TMEM63A. It is yet to be ascertained whether this
deviation is crucial and responsible for the clinical differentiation of our case. Moreover, the
presented patient had birth complications, specifically placental abruption, while the other
cases reported depicted a range of diverse birth scenarios, including high-risk pregnancies
due to gestational diabetes and completely uneventful pregnancies and births.

The diagnosis of infantile transient hypomyelinating leukodystrophy type 19 is char-
acterized by a temporarily impaired motor ability and hypomyelination on MRI, which
typically improves after the first two years of life. However, in the patient presented
here, no MRI was performed before the age of 3 years old, and hence no image proving
hypomyelination was given, providing our study with a significant limitation to confirm
the delay in myelin formation. Therefore, the effect of the variant on myelin formation can
only be suspected from the clinical observations and not from the radiological findings.

Our patient’s clinical picture was similar to most IOTH cases previously described [22–24].
Nevertheless, he followed a milder course with a favorable outcome, without epileptic
events or intellectual disability. Additionally, our patient displayed a distinct phenotype,
which includes macrosomia, macrocephaly, a large forehead, low-set ears and a depressed
nasal bridge. These features could serve as essential diagnostic clues. However, it is
still unknown and further investigation is necessary to determine if these characteristics
are common among individuals with this condition, or if they are only present in our
case. While the clinical trajectory of other documented cases varies, with some displaying
residual permanent pathology, such as optic nerve atrophy, this case exhibited a favorable
clinical evolution, despite having this damaging genetic variant. This emphasizes the
heterogeneity of this type of disorder, still provides important prognostic information for
affected families, and highlights the potential for successful myelination even when it is
initiated later than usual, offering hope for therapeutic trials in hypomyelinating disorders.

Due to the difficulty of diagnosing based solely on the clinical manifestations, WES was
used to provide a genetic diagnosis of infantile transient hypomyelinating leukodystrophy
type 19. This underscores the significance of genetic analysis methods in unexplained
developmental delay cases.

There is no specific cure for IOTH, and supportive care is the primary management
strategy, which includes physical, occupational and speech therapies to address develop-
mental delays and motor difficulties. Regular follow-ups and monitoring are necessary
to track the progress and make adjustments to the care plans. The prognosis for IOTH
varies, but it can be relatively favorable due to the transient nature of the disease. While
some children experience a significant improvement in their symptoms and developmental
progress, others may have ongoing neurological challenges. The long-term outlook often
depends on the specific genetic mutations involved and the extent of myelin recovery.
However, in most cases, like the one presented here, children improve over time and have
a relatively normal quality of life.

5. Conclusions

Our study has uncovered a novel nonsense variant potentially linked with infantile
transient hypomyelinating leukodystrophy type 19, representing a valuable addition to the
growing body of knowledge on the complex genetic underpinnings of this condition. Also,
by presenting detailed clinical characteristics, we may improve the genotype–phenotype
correlation in the literature for rare and novel variants, and therefore make a critical step
toward improved the diagnostic accuracy, prognosis and potential therapeutic strategies,
ultimately benefiting the affected children and their families. Although we were unable to
evaluate the first diagnostic and later follow-up neuroimaging studies in our case, WES
combined with our clinical suspicion led to a potential diagnosis. This highlights the
importance of Next-Generation Sequencing in reducing the number of unsolved cases and
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associating clinical manifestations with molecular pathways, especially in conditions with
significant heterogeneity.
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