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Abstract: The reliability of satellite precipitation products is important in climatic and hydro-
meteorological studies, which is especially true in mountainous regions because of the lack of
observations in these areas. Two recent satellite rainfall estimates (SREs) from Global Precipitation
Measurement (GPM)-era—Integrated Multi-Satellite Retrievals for Global Precipitation Measurement
(IMERG-V06) and gauge calibrated Global Satellite Mapping of Precipitation (GSMaP-V07) are evalu-
ated for their spatiotemporal accuracy and ability to capture extreme precipitation events using 279
gauge stations from southern slope of central Himalaya, Nepal, between 2014 and 2019. The overall
result suggests that both SREs can capture the spatiotemporal precipitation variability, although
they both underestimated the observed precipitation amount. Between the two, the IMERG product
shows a more consistent performance with a higher correlation coefficient (0.52) and smaller bias
(−2.49 mm/day) than the GSMaP product. It is worth mentioning that the monthly gauge-calibrated
IMERG product yields better detection capability (higher probability of detection (POD) values) of
daily precipitation events than the daily gauge calibrated GSMaP product; however, they both show
similar performance in terms of false alarm ratio (FAR) and critical success index (CSI). Assessment
based on extreme precipitation indices revealed that the IMERG product outperforms GSMaP in
capturing daily precipitation extremes (RX1Day and RX5Day). In contrast, the GSMaP product
tends to be more consistent in capturing the duration and threshold-based precipitation extremes
(consecutive dry days (CDD), consecutive wet days (CWD), number of heavy precipitation days
(R10mm), and number of extreme precipitation days (R25mm)). Therefore, it is suggested that the
IMERG product can be a good alternative for monitoring daily extremes; meanwhile, GSMaP could
be a better option for duration-based extremes in the mountainous region.

Keywords: precipitation extremes; satellite rainfall estimates; Nepal

1. Introduction

Precipitation is the result of the complex interaction between various atmospheric
components at multiple levels and scales [1]. It is highly variable in both space and
time because of its discrete nature. As a primary driver of the hydrological cycle, its
measurement and estimates play a crucial role in water resource management and climate
change adaptation strategy [2]. In the context of global warming and rising precipitation
extremes, accurate measurement of precipitation is crucial for understanding its change and
variability over space and time. Therefore, high resolution gridded precipitation datasets
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aid to better understand the hydro-meteorological cycle [3]. The importance of such
gridded datasets is even higher in the mountainous region where accurate measurement of
precipitation is more challenging due to the inherent limitations of complex topography.

The inevitable observed and projected rise in precipitation extremes around the globe
have been reported on a regional [4–6] to country scale [7–12] studies. Lying in the
southern region of the steep terrain of the central Himalayas, Nepal is more vulnerable to
extreme precipitation related natural disasters such as flood, landslides, and droughts [7].
Moreover, recent studies [7,11,12] have also reported a region-specific drought, flood and
landslides risk upon the escalation of different precipitation extremes over the country.
These extremes have a significant socioeconomic impact; hence, quantitative information
of the spatiotemporal variation of heavy precipitation has great importance [13]. Gauge-
based precipitation measurement is the most direct and well-known practice over land
surface globally [14,15] to provide reasonable estimates of heavy precipitation. However,
steep slopes and remote location limits the installation of the optimum network, and
additionally, harsh weather condition hinders the routine maintenance of existing ones,
especially in a mountainous region such as Nepal. Furthermore, most of the existing
gauge observations in Nepal are located in valley bottoms, leaving the measurement gap
in mountainous areas [16–18]. In addition, this gap hinders obtaining information on
mountainous climatology [19].

Radar-based precipitation measurement could have been a better option over rain
gauge due to its wider spatial coverage and real-time monitoring ability; however, the
rugged terrain limits the coverage due to signal blockage by the shading effect in mountain
regions [20]. Moreover, this technology is expensive to sustain for the least developed
countries like Nepal. Hence, freely available satellite-based rainfall estimates (SREs) with
quasi-global coverage are potential alternatives for precipitation measurement, especially
for the data-sparse region [21].

So far, multiple satellite-based rainfall products have been developed after the suc-
cess of the Tropical Rainfall Measuring Mission (TRMM) [22] to fulfill various hydro-
meteorological needs [23] and are currently available at higher spatial and temporal resolu-
tions [24]. For instance, Precipitation Estimation from Remotely Sensed Information Using
Artificial Neural Networks-Cloud Classification System (PERSIANN-CCS) [25], Climate
Prediction Center (CPC) morphing technique (CMORPH) [26], Climate Prediction Center’s
rainfall estimates (CPC-RFE2.0) [27], Global Precipitation Measurement (GPM) [28], and
Global Satellite Mapping of Precipitation (GSMaP) [29] are some of the widely used SREs.
Most of the SREs rely on inferring rainfall from observing cloud tops properties in visible
(VIS) or infrared (IR) imagery or from the scattering effects of raindrops or ice particles
on passive microwave (PMW) radiation [30]. However, SREs are highly susceptible to
uncertainties in measuring precipitation because of onboard sensors’ limitations in terms
of sensitivity, spatial resolution, and the algorithm used [31].

It is a well-known fact that SREs are widely used in hydro-meteorological appli-
cations, which, of course, draws immense attention toward its reliability [32]. Several
studies [33–36] have identified and discussed the limitations of IR and PMW sensors in
precipitation measurement particularly during multi-layered raining clouds [33], warm
orographic rain events, and overland surface snow areas [33,36,37]. These limitations
lead to higher uncertainties in SREs performance over complex terrain [31]. On one hand,
few studies [38–40] have highlighted the potential of machine learning (ML) based error
characterization methods in quantifying and correcting SREs uncertainties over the com-
plex terrain. Similarly, a study conducted in China suggested that blended product better
facilitate the hydrological modeling by blending SREs, reanalyzing, and gauging data [41].
On the other hand, IR and PMW merged algorithm are developed to improve the overall
performance of SREs [31].

Being a successor to TRMM, GPM-era products has significant improvements over
TRMMs spatial coverage (from tropical region to quasi global coverage) and increased
sensitivity to light rainfall and snowfall by adding dual-frequency precipitation radar
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(DPR) [28,42]. GPM mission was launched jointly in 2014 by the National Aeronautics and
Space Administration (NASA) and the Japanese Aerospace Exploration Agency (JAXA).
After the GPM mission, NASA introduced a new SRE product—Integrated Multi-satellite
Retrievals for GPM (IMERG) that combines the data from multiple satellite sensors [28];
meanwhile, JAXA updated to a newer version of GSMaP (i.e., GSMaP-Version 7) with
newer orographic rainfall correction scheme [43]. Although these SREs are available at
improved spatial and temporal resolutions, topographical variation highly influences its
overall performance [44] and are faced with multiple challenges, particularly over the
mountainous area [34]. These challenges are more prominent over Nepal, as the east–west
extended mountain range often provides rise to warm orographic rain while IR and PMW
sensors have difficulty capturing this precipitation [33,34,36,37]. Furthermore, the inability
of PMW sensors in differentiating between frozen hydrometers and surface snow also
creates uncertainty in SREs [33,35]. However, to improve accuracy, several gauge-based
precipitation products are used to calibrate SREs [45]. Nevertheless, these SREs are indirect
measurement tools and need to be verified and calibrated with gauge observation before
further application [37,46].

Several studies have evaluated SREs for different hydro-meteorological applica-
tions globally [2,3,18,20,23,43,47–52]. A study by Liu et al. [47] found that the IMERG
monthly product captured the heavy precipitation regions in both hemispheres. Similarly,
Prakash et al. [50] reported that the IMERG product well represented the mean monsoon
rainfall and its variability more realistically than the gauge-adjusted GSMaP over India. Sta-
tistical comparison to Yellow River Basin, China found that the GSMaP-Gauge performed
better at the daily time scale, while IMERG performed better at the monthly scale [49].
A comprehensive evaluation of multiple precipitation products (SREs and reanalysis) in
China, revealed that IMERG outperformed other datasets except for GSMaP [51]. Fur-
thermore, only a few studies have evaluated GPM-era SREs focusing on complex terrain
areas such as Ethiopia, Italy [53], and India [18,48,54], revealing that GSMaP-V07 and
IMERG-V05 tend to underestimate rainfall over complex mountainous areas. Similarly,
the GSMaP-V07 product surpasses IMERG-V06B over the multiple complex regions of the
world [31].

Apart from global study, only a few studies have evaluated GPM-era SREs over the
most complex region, Nepal. For example, Sunil Kumar et al. [32] for the first time eval-
uated the GPM-IMERG-V05 precipitation product with the Asian Precipitation—Highly
Resolved Observational Data Integration Towards Evaluation (APHRODITE-2 V1801R1)
over the Asian region, including Nepal, and noted that IMERG underestimated the mag-
nitudes of rainfall during the wet season over Nepal. Recently, Sharma et al. [48] eval-
uated the GPM-IMERG and GSMaP products focusing on Nepal and revealed that the
gauge-calibrated IMERG performed better in estimating precipitation amount, while gauge-
calibrated GSMaP shows better spatial relevancy with gauge observation.

Most of the above-mentioned global and regional studies suggested that continuous
evaluation of SREs, especially over the complex topography, is still needed to further
advance the product algorithms [34,43,53,55,56]. Sharma et al. [18] evaluated the TRMM
Multi-satellite Precipitation Analysis (TMPA) and IMERG for monitoring precipitation
extremes using only four extreme indices and found that both products can capture precip-
itation extremes (high-intensity and drought) over Nepal. Moreover, most of the earlier
studies had considered limited stations for performance evaluation in Nepal. Addition-
ally, none of the studies has conducted a comprehensive assessment of SREs to estimate
extreme precipitation using Expert Team for Climate Change Detection Monitoring and
Indices (ETCCDI). Thus, the main objective of this study is to evaluate the performance of
two prominent SREs from GPM-era; gauge-calibrated GSMaP-V07 and gauge calibrated
IMERG-V06 products using a large-scale gauge network (i.e., 279 stations) over the entire
Himalayan country, Nepal during 2014–2019. More specifically, we aim to evaluate the
spatiotemporal performance of these SREs based on (a) various descriptive statistics and
(b) six different extreme precipitation indices.
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2. Material and Methods
2.1. Study Area

Nepal extends longitudinally from 80◦40′ E–88◦12′ E and latitudinally from
26◦22′ N–30◦27′ N with the total area of 147,516 km2 (Figure 1). Lying in the southern
slope of the central Himalayas, topography varies from ~59 m in the southern lowlands to
8848.86 m (i.e., Mt. Everest) in the northern Himalayan region. The diverse topography
creates a unique climate condition that varies from tropical, subtropical in the southern
lowland areas to polar and tundra in the northern high mountain region [57]. Based on
modified Köppen Geiger climatic classification, Karki et al. [57] identified eight different
(Aw, BSk, Cwa, Cwb, Dwb, Dwc, ET, and EF) climate types in the country (Figure 1b).
Among them, Cwa over the southern lowlands (<400 m elevation) covers 30% of the total
area, whereas Dwc over the northern higher mountainous area has the lowest area coverage
of 0.5%, which is mostly characterized by ET (polar tundra) climate. Furthermore, the
complex atmospheric interaction with rugged terrain leads to heterogeneous weather and
climatic condition across Nepal. South Asian summer monsoon (SASM) and westerlies
dominate the seasonal variability with maximum rainfall during the summer monsoon sea-
son (June –September, JJAS) with ~80% of annual precipitation followed by pre-monsoon
(March–May, MAM, 12.5%), post-monsoon (October–November, ON, 4.0%), and winter
(December–February, DJF, 3.5%) [7,58]. Monsoon enters Nepal from the east and advects
toward the west, covering the whole country within a week. Generally, summer monsoon
is characterized by widespread rainfall [7,59], whereas, pre-monsoon season is character-
ized by localized afternoon thundershowers [7]. Furthermore, post-monsoon and winter
seasons are relatively dry seasons. Winter rainfall is more pronounced in the western part
of the country and contributes to snowfall in the high Himalayan regions [60,61].

2.2. Data
2.2.1. Manual Rain Gauge Data

The daily gauge observed precipitation data of 333 manual gauging stations from 2014
to 2019 were obtained from the Department of Hydrology and Meteorology (DHM), Nepal
(www.dhm.gov.np (accessed on 5 August 2020)). DHM uses US standard, 8-inch diameter
rain gauge throughout the country to maintain instrumental consistency in precipitation
measurement. Furthermore, those manual stations report past 24-h precipitation accumula-
tion at every 0300 UTC (end of the day (EOD)) of the observation day [62]. Currently, there
are nearly 481 gauging stations (including manual and automatic) operated by the DHM
over the country; however, all stations do not feature regular observation, especially at
high–elevation mountainous regions. In addition to the data gap in the high mountainous
region, some stations located in the southern low lands also suffers from frequent missing
and poor-quality data. Though DHM applies different quality control (QC) measures in its
raw manual data, the RClimDex toolkit [63] was used to conduct further QC of collected
data, which tests for the outliers and missing values in the data. Stations with more than
three days of missing data in a month and more than 15 days of missing data in a year were
excluded from the analysis [64]. A total of 54 stations out of 333 stations having missing
data, which were then excluded, and only 279 stations were used further in this study
(Figure 1a).

2.2.2. IMERG Product

Among available various GPM products, the IMERG dataset is used in this study.
IMERG is the product generated after inter-calibration, merging, and interpolating precipi-
tation estimates from all passive microwave sensors in the GPM constellation satellites [28].
Based on release time, early run (~4-h latency), late run (~12-h latency), and final run
(2.5 months latency) are the three products of IMERG. Among them, the final run uses
monthly gauge data to create a research-level product, and the other two products are
targeted for the short fuse application like flood monitoring to daily scale crop forecasting,
including water management [65]. IMERG precipitation estimates are computed by the

www.dhm.gov.np
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Goddard Profiling algorithm (GPROF-2017) using microwave measurements from pas-
sive microwave sensors, then calibrated against the GPM microwave-radar estimates and
merged into half-hourly estimates. These estimates are again recalibrated with CMORPH
Kalman Filter (CMORPH-KF) and PERSIANN Cloud Classification System, after which
bias correction with monthly GPCP rain gauge measurements is performed to produce the
final IMERG precipitation product [28]. Version 6 of the product is available from June
2000 to the present at 0.1◦ × 0.1◦ resolution. Sharma et al. [48] suggested that the precipita-
tionCal dataset embedded in IMERG performs better over Nepal against precipitationUcal;
thus, IMERG-V06 precipitationCal (hereafter, IMERG) from 13 March 2014 to 31 December
2019 is considered in this study.
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2.2.3. GSMaP Product

GSMaP is the project under JAXA, initiated by Japan Science and Technology Agency
under the Core Research for Evolutional Science and Technology (CREST) program in
2002 [66–68]. When GPM mission was launched, GSMaP updated their algorithm to
produce improved products in 2014 with algorithm version V6 and again updated the algo-
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rithm to version V7 in 2017 known as GPM-era GSMaP products and includes “standard,”
“near-real-time”, “real-time”, and “reanalysis” products at 0.1◦ × 0.1◦ grid resolution with
hourly temporal resolution [68]. In this version of the algorithm, an updated orographic
and non-orographic rainfall classification scheme has been implemented for all the sensors
to overcome overestimation and false alarms on heavy orographic precipitation [69]. The
standard version of GSMaP products processed by Japan Meteorological Agency (JMA)
Global Analysis (GANAL) data comprises of two products—GSMaP-MVK (satellite-only)
and GSMaP-Gauge (gauge-corrected) both updated at an hourly interval. Global precipi-
tation rates retrieved from brightness temperatures (BTs) of multiple passive microwave
sensors (PMWs) is propagated through forward and backward morphing technique based
on atmospheric moving vector derived from 2 IR images, which are then refined by new
Kalman filter model to produce GSMaP-MVK products [48,68,70]. In addition, GSMaP-
MVK precipitation estimates over land are corrected using NOAA/Climate Prediction
Center (CPC) unified gauge based on daily precipitation analysis at 0.5◦ grid resolution
globally [68]. For this study, GSMaP-Gauge is used for further analysis as gauge calibrated
datasets are able to represent a seasonal dynamic range of precipitation, and GSMaP can
capture the spatial pattern of rainfall over Nepal [48]. The overlapping time period from
13 March 2014 to 31 December 2019 is considered for the GSMaP dataset. Table 1 below
has summarized the dataset information used in this study.

Table 1. Overview of the dataset included in the study.

Datasets Spatial
Resolution

Temporal
Resolution Coverage Time Span Study Period

Gauge Point Daily 279 stations
13 March 2014 to
31 December 2019

IMERG-V06 0.1◦ × 0.1◦ Half-hourly 60◦ N–60◦ S June 2000 to present
GSMaP-Gauge (V7) 0.1◦ × 0.1◦ Hourly 60◦ N–60◦ S 1 March 2014 to present

2.3. Methodology
2.3.1. Pre-Processing of Datasets

In order to evaluate the performance of SRE in a reference to gauge observation over
the complex terrain of Nepal, the common time period (i.e., 13 March 2014 to 31 Dec 2019)
was considered. Between the two gridded SRE products, IMERG has a temporal resolution
of 30 min and GSMaP-Gauge is available at the hourly interval, whereas the gauge observa-
tion is only available on a daily time scale. Thus, in order to maintain temporal consistency
between datasets, both SREs were aggregated into a daily scale such that it overlaps with
the 24-h accumulation period (0300–0300 UTC) of gauge observed data, which ends at
0300 UTC (0845 NPT) of the day of measurement [62]. Those aggregated gridded SREs
data were then extracted to the station location using the station-to-grid method [23,48] to
overcome further error accumulation by interpolating gauge observed data to SRE spatial
grid resolution [48,71–73]. Additionally, if the station contains any missing data and then
the corresponding SRE values for that day are also replaced by the missing value [48] to
maintain consistency over the time-series. Finally, mean annual precipitation from SRE
and gauge observations were evaluated based on visual inspection [74]. Mean monthly
precipitation was evaluated using a time-series plot, seasonal precipitation was assessed
using the Taylor diagram, which summarizes how well SRE matches the gauge observation
and statistical metrics were computed from daily data at each station to evaluate spatially.
The analytical workflow followed in this study is presented in Figure 2.
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Figure 2. The flowchart depicting the workflow of the study.

2.3.2. Statistical Evaluation Metrics

Following the previous studies [23,32,43,51,75], several pairwise statistical metrics
were selected to quantify the similarities and discrepancies between gauge-observed and
SREs (Table 2). Among them, Pearson’s correlation coefficient (CC) detects the degree of
linear agreement between SRE and gauge observed precipitation, relative bias (RB) assesses
the systematic bias in SRE. Root square mean error (RMSE) measures the average error
magnitude in SRE, and Kling Gupta efficiency (KGE) [76] assesses the overall goodness-of-
fit between SRE and gauge-observed precipitation.

Four different categorical indices—the probability of detection (POD), false alarm
ratio (FAR), critical success index (CSI), and categorical frequency bias index (FBI) were
considered to evaluate the detection capability of SREs. Seven threshold (0.5, 1, 2, 4,
6, 8, and 10 mm/d) values were selected to assess the SREs performance for different
precipitation rate [23]. These skill indices are calculated based on a 2 × 2 contingency
table (Table 3) of rain/no-rain events. In Table 3, Q1 represents correctly estimated no-rain
events, Q2/Q3 represents a false estimation of rain/no-rain event by SRE where there is
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no-rain/rain event in gauge observed data, and Q4 refers to correctly estimated rain events
by SRE. Skill indices POD, also known as hit-rate, measures the fraction of the correctly
diagnosed gauge observed events, FAR provides the fraction of diagnosed events that
did not occur, CSI measures how well SRE corresponds to gauge observed data and FBI
compares the frequency of SRE events to gauge observed events.

Table 2. List of Statistical Metrics.

Statistical Index Equations Perfect Value

Pearson correlation coefficient (CC) CC =
∑n

i = 1(Gi−G)(Si−S)√
∑n

i = 1(Gi−G)
2
√

∑n
i = 1(Si−S)

2
1

Relative bias (RB) RB = ∑N
i = 1(Si−Gi)

∑N
i = 1 Gi

× 100% 0

Root mean square error (RMSE) RMSE =

√
1
N

N
∑

i = 1
(Si − Gi)

2 0

Kling Gupta efficiency (KGE) KGE = 1−
√
(1− r)2 +

(
1− αS

αG

)2
+
(

1− µS
µG

)2
1

Probability of detection POD = Q4
Q4+Q3 1

False alarm ratio FAR = Q2
Q2+Q4 0

Critical success index CSI = Q4
Q4+Q3+Q2 1

Frequency bias index FBI = Q4+Q2
Q4+Q3 1

Where n = number of samples; S = satellite-based precipitation (IMERG, GSMaP-Gauge); G = gauge observation; r = correlation coefficient;
α = standard deviation; µ = mean; Q2 = false alarms; Q3 = misses; and Q4 = hits.

Table 3. Contingency Table.

SRE

Gauge-Observed
No-rain Rain

No-rain Q1 Q2
Rain Q3 Q4

2.3.3. Extreme Precipitation Indices

ETCCDI under the World Meteorological Organization (WMO) Commission for
Climatology and the Research Program on Climate Variability and Predictability (CLI-
VAR) [7,23,64,77] has proposed eleven indices for precipitation. These indices are widely
used to detect precipitation extremes in the context of rising global warming [7,23] and are
classified into absolute, threshold, duration, and percentile indices based on computation
method [7,77,78]. In our study, we have considered the indices that are useful indicators
of floods and droughts. For instance, among the selected indices, RX1day and RX5day
characterize the magnitude of extreme precipitation events that can trigger landslides and
flash floods. Similarly, R25mm and R10mm provides the frequency of heavy to very heavy
precipitation events. Additionally, CDD and CWD indirectly assess the droughts condition,
which is vital for agricultural sectors [7]. Further, a comparison of those indices between
the gauge observed and SRE was performed (Table 4).



Atmosphere 2021, 12, 254 9 of 22

Table 4. Selected Expert Team for Climate Change Detection Monitoring and Indices (ETCCDI) extreme indices used in
this study.

Class Index ID Index Name Index Definition Index Unit

Absolute Indices
RX1day Max 1-day

precipitation amount Annual maximum 1-day precipitation mm

RX5day Max 5-day
precipitation amount

Annual maximum consecutive 5-day
precipitation mm

Threshold Indices
R10 Number of heavy

precipitation days
Annual count of days when precipitation is

≥10 mm Days

R25 Number of extreme
precipitation days

Annual count of days when precipitation is
≥25 mm Days

Duration Indices
CDD Consecutive dry days Maximum number of consecutive dry days

(precipitation <1 mm) Days

CWD Consecutive wet days Maximum number of consecutive wet days
(precipitation ≥1 mm) Days

3. Results
3.1. Spatiotemporal Variability
3.1.1. Spatial Distribution of Mean Annual Precipitation in Nepal

The spatial distribution of mean annual precipitation computed from gauge observa-
tion and SREs in Nepal between 2014 and 2019 is presented in Figure 3. It is evident that
the highest precipitation area over Nepal is located between the extent 28.3◦ N–28.5◦ N
and 83.8◦ E–84◦ E (around Lumle on the windward side of Mt. Annapurna, Figure 1a) with
>10 mm/d, and the lowest mean annual precipitation (<2 mm/d) is located in the northern
side of Mt. Annapurna (leeward) (Figure 3a). Such precipitation gradient is mainly due
to the existence of Mt. Annapurna’s mountain range in between, which acts as a barrier
to let the moisture advection further north. The orographic response of mountain plays a
dominant role in creating such precipitation gradient [79]. Both SREs well reflect the hetero-
geneous precipitation characteristics over Nepal (Figure 3b,c), exhibiting remarkable spatial
consistency in precipitation patterns; however, there is a marked variation in the amount
and maximum precipitation areas. GSMaP-Gauge shows a better ability to quantitatively
detect such high precipitation pocket areas (>10 mm/d) (Figure 3c), whereas IMERG com-
pletely misses the heavy precipitation region (Figure 3b). Since GSMaP-Gauge applies an
orographic/non-orographic precipitation classification scheme [69] it outperforms IMERG
in such areas of orographic precipitation. Although the orographic/non-orographic precip-
itation classification scheme is not applied in the IMERG algorithm [80], it shows heavy
precipitation around 27.7◦ N, 84.5◦ E area (Figure 3b), which is not present in GSMaP-
Gauge (Figure 3c). Moreover, both SREs captured the north-south precipitation variability
with relatively low precipitation (<2 mm/d) areas in the leeward sides along with the high
mountain range and high precipitation (>10 mm/d) areas in the windward side around
the southern part of the country. Overall, both SREs underestimated the gauge observed
mean annual precipitation during the study period.

3.1.2. Monthly Precipitation Distribution

The mean monthly precipitation cycle and time-series plots during the study pe-
riod are presented in Figure 4. As the GSMaP-Gauge is available from March 2014; the
monthly cycle is only presented from 2015 to 2019. It is evident that the months from
June to September (monsoon season) received high precipitation with a peak in July
(15.53 mm/d), whereas October to November is the driest season with November be-
ing the driest (0.073 mm/d) (Figure 4a). IMERG and GSMaP-Gauge closely follow the
monthly precipitation cycle of gauge observation with a peak in July; however, they both
underestimated the precipitation, especially during the monsoon months (July–August)
(Figure 4a). It is worthy to note that underestimation during July and August is higher
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in GSMaP-Gauge than IMERG product; however, both products can capture the monthly
precipitation cycle as revealed by observation.
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mean precipitation.

Furthermore, 2016 (2015) is observed as the wettest (driest) year among the study
period. Both SREs well captured the monthly precipitation variability with higher under-
estimation during the wet months. Some unique feature in monthly mean precipitation
distribution during 2016 and 2019 monsoon is observed where there is a sudden drop in
the precipitation peak from July to August and then rises in September, and both SREs also
captured a similar pattern with slight underestimation (Figure 4b).

Taylor diagram in Figure 5 shows CC, centered RMSE, and standard deviation (SD)
for daily and seasonal timescale between gauge observed and SREs. Mean seasonal
precipitation from spatially averaged daily precipitation was computed for both gauge
observation and SREs then SD (blue dotted arc), CC (a black dotted line from the origin),
and centered RMSE (continuous blue arc line) was calculated and plotted in Taylor Diagram.
Centered RMSE value ranges from 0 to 1 and has a similar statistical meaning as of RMSE,
and the performance of SRE is considered best if it lies closer to the black dot of gauge
observation. IMERG outperformed GSMaP-Gauge at both daily and seasonal scales. At
daily timescale, IMERG shows a higher correlation (>0.9) and lower RMSE (<0.5). Similarly,
at seasonal scale IMERG achieves greater CC (DJF = 0.95, MAM = 0.86, JJAS = 0.88,
ON = 0.92) than GSMaP-Gauge (DJF = 0.92, MAM = 0.84, JJAS = 0.81, ON = 0.90) with
gauge observation. During the wet season, IMERG showed low RMSE (0.5) than GSMaP-
Gauge (RMSE > 0.5); however, in the drier season (ON), GSMaP-Gauge showed smaller
RMSE (< 0.5) than IMERG (0.6).
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3.2. Performance Based on Daily Time Scale
3.2.1. Spatial Distribution of Statistical Scores

The spatial distribution of statistical scores based on a daily timescale at each station
is presented in Figure 6. Both products show a higher CC in the southern and middle
hilly regions and a low CC over the northern high mountainous region. SREs limitations
over the mountainous region to capture precipitation [81] can be attributed to low CC over
northern high mountain areas. Different performance between IMERG and GSMaP-Gauge
is observed over a high precipitation zone, i.e., central Nepal (similar to Section 3.1.1).
Further, GSMaP-Gauge outperformed IMERG in terms of CC (Figure 6a); however, they
both underestimated the gauge observed precipitation as indicated by negative bias in
Figure 6c,d. Interestingly, both products showed very similar RMSE distribution at most of
the stations during the study period. Among two SREs, IMERG shows a higher KGE value
(>0.5) in most of the stations lying in southern Nepal, indicating IMERG better performance
in the southern flat region (Figure 6g). Furthermore, in the complex northern side, IMERG
performed well with the comparatively low number of stations having negative KGE
than GSMaP-Gauge (Figure 6g,h). Interestingly in the leeward side of Mt. Annapurna
GSMaP-Gague performed relatively well with a KGE value >0 compared to IMERG.

In addition, SREs performance against gauge observation at daily scale was assessed
based on POD, FAR, CSI, and FBI calculated at different thresholds ranging from 0.5 mm/d
to 10 mm/d. Both SREs can capture light precipitation, the declining curve with an
increasing threshold indicates a decline in SREs performance with increasing precipitation
amount (Figure 7). In terms of POD and CSI at high rainfall intensity, IMERG performed
better than GSMaP-Gauge. Similarly, in terms of FBI, IMERG outperformed GSMaP-Gauge
with slightly smaller underestimation for heavy rainfall; however, for rainfall less than
~3 mm/d GSMaP is better. Overall, IMERG is more capable of detecting heavy precipitation
than GSMaP-Gauge.
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Figure 7. Categorical skill indices for SRE at rainfall threshold ranging from 0.5 mm to 10 mm.

3.2.2. Spatial Distribution of Extreme Precipitation Indices

Precipitation extremes are the major triggering factor for meteorological disasters,
including flash floods to meteorological drought globally. Identification of such extremes
and monitoring plays a crucial role in controlling economic and human casualties. Figure 8
presents the CC between six extreme precipitation indices from SREs and gauge observa-
tions. IMERG demonstrated better detection capacity on capturing daily extremes with
higher CC (0.37 and 0.53) for absolute indices (RX1day and RX5day), whereas GSMaP-
Gauge on the other hand shows better performance on the total count of heavy and extreme
precipitation events (R10mm and R25mm), including consecutive dry and wet days (CDD
and CWD) detection. Overall, both SREs well captured the extreme precipitation event
than consecutive precipitation days, which is also similar to the study of [23].
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Furthermore, the spatial distribution of CDD and CWD spells in Nepal is presented in
Figure 9. A higher number of CDD spell is observed in the southern lower flat region of
eastern, central, and some areas of the western region than in northern areas (Figure 9a).
IMERG product underestimated the total frequency of CDD spells with higher negative
bias (−20.7%) and RMSE (124.43) (Figure 9b). In contrast, GSMaP-Gauge overestimated the
total frequency of CDD spells. Similar to mean precipitation distribution in Figure 3a, the
peak precipitation region has higher total CWD spells (>100) while lower CWD spells (<100)
in mid-elevation areas and lowest (<50) over southern plain areas of the country. Moreover,
GSMaP-Gauge shows better spatial distribution (higher correlation) than IMERG product;
however, IMERG product achieves smaller bias than GSMaP-Gauge for CWD spells.
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SREs’ ability to capture heavy (R10mm) and extreme precipitation events (R25mm) at
each station during the study period is shown in Figure 10. R10mm and R25mm are the
count of rainy days above 10 mm/day and 25 mm/day, respectively. A small number of
R10mm and R25mm (<100) events are observed over the station located at northern high
elevation and southern flat areas. The higher frequencies of both indices (>150 and >300
events) are concentrated along with the middle elevation areas (Figure 10a,d). IMERG and
GSMaP-Gauge underestimated the frequency of R25mm with a negative bias of −31.9%
and −41.4%, respectively. Further, such underestimation was more prominent over the
heavy precipitation area of the central region. Similarly, both SRE tends to underestimate
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the total frequency of R10mm; however, GSMaP-Gauge captured the spatial distribution
of R10mm over the heavy precipitation area of central Nepal compared to the IMERG
product. Overall, GSMaP-Gauge shows better performance in capturing the total frequency
of R25mm and R10mm in central Nepal. Moreover, GSMaP-Gauge achieves higher CC
indicating better spatial relevancy of heavy precipitation events with gauge observation
than the IMERG product.
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Two absolute indices (RX1day and RX5day) were also computed to evaluate the per-
formance of IMERG and GSMaP-Gauge in capturing maximum one-day and consecutive
five-day precipitation (Figure 11). RX1day and RX5day determine the annual maximum
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precipitation received in a single and five consecutive days, respectively. Compared to
the distribution of heavy precipitation in Nepal, overall extreme precipitation is more
concentrated in the southern flat areas (Figure 11a,d) than the middle and high–elevation
areas. A highest single day extreme precipitation (>500 mm) was observed over central
Nepal, and extreme five-day precipitation (>1050 mm) was observed over western Nepal
(Figure 11a,b). Although both SREs underestimated the magnitude of RX1DAY during
the study period, IMERG shows a better ability to detect single day extreme precipita-
tion events than GSMaP-Gauge (Figure 11b,c). Furthermore, RX1day underestimation
in GSMaP-Gauge was higher for stations located in the eastern and central regions. The
spatial distribution of RX5day in both SREs is very similar to the spatial distribution of
RX1day. Moreover, IMERG shows better capability in capturing both RX1day and RX5day
than GSMaP-Gauge with smaller bias and RMSE values (Figure 11).
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4. Discussion

Nepal is characterized by complex topography and the inherent north–south and
east–west heterogeneity of the precipitation distribution. Sparse station network and only
a few stations in the higher mountainous region limits our understanding of precipitation
pattern and its distribution. Nevertheless, SRE plays a crucial role in providing this
information, especially in the data-scarce region. Although SREs offer a higher spatial and
temporal resolution, several factors like precipitation estimating algorithm from reflectivity,
onboard sensors, and the representativeness of the ground station used to calibrate the
product, and their spatial distribution creates uncertainties in these products [18]. SREs
have major limitations in complex topography to correctly estimate the precipitation as the
interaction of the weather system with the orography at a local scale is often causing the
spatial variability of precipitation. This study evaluates the two GPM-era SREs (IMERG
and GSMaP-Gauge) in Nepal using 279 gauge stations. Evaluations are based on multiple
statistical metrics and their performance to capture precipitation extremes using six extreme
precipitation indices.

As of the results presented above in the result section, both SREs can capture the
temporal and spatial pattern of precipitation on a broad scale; however, there are several
performance differences. A striking weakness of both SREs is a severe underestimation of
precipitation over the central region of Nepal, where maximum precipitation is observed,
particularly SREs missed to locate well-known high precipitation areas in central Nepal
(Lumle area). Similar findings were also reported in recent studies [18,32,48]. Meanwhile,
Shreshta M. et al. [82] also found a similar performance of the GSMaP product in Nepal. The
gauge-corrected GSMaP product showed a better capability to capture spatial variability
in complex terrain than IMERG, where orography plays a dominant role. The latest
version of GSMaP-Gauge (V07) has an updated orographic/non-orographic precipitation
classification scheme applied in the production [69], which can be attributed to better
performance of GSMaP-Gauge than IMERG product over the mountainous areas.

IMERG is a merged precipitation product from IR and PMW sensors, while GSMaP-
Gauge comprises data from multiple PMW sensors [37]. It is worth mentioning that
cloud tops would be too warm for IR thresholds and it lacks much ice aloft to be detected
by the PMW sensors as well [36]. Meanwhile, the inability of IR sensors to resolve the
multi-layered raining clouds during JJAS could be another reason for such underestima-
tion [34]. Although GSMaP-Gauge well captured the spatial variability; however, IMERG
showed better performance than GSMaP-Gauge in estimating precipitation amount on
the seasonal and daily time scale. In terms of categorical skill scores (POD, FAR, CSI, and
FBI), a substantial performance difference was observed in both SREs, especially to cap-
ture the precipitation magnitude. The light precipitation usually occurs at high-elevation
areas of the country, where orography corrected GSMaP-Gauge outperforms IMERG prod-
uct in detecting light precipitation intensity (0.5 mm/d) during the study period. In
contrast, the IMERG product showed better skill to detect higher precipitation intensity
>2 mm/d, as compared to GSMaP-Gauge. Similarly, previous studies also showed the
weak performance of GSMaP-Gauge in capturing heavy precipitation intensity than light
precipitation [18,23,48,83]. Furthermore, a study conducted in coastal mountains of tropical
regions revealed that the SREs algorithm considering only high echo-top height results
in heavy precipitation that may limit the detecting capability of SRE over mountainous
regions, characterized by orographic precipitation with relatively low echo-height top [84].

Evaluation of six extreme precipitation indices shows that IMERG is better in captur-
ing daily extremes (i.e., RX1day and RX5day) than GSMaP-Gauge; however, they both
underestimated the magnitude. Similarly, Navarro et al. [85] also found that the IMERG
product is better at detecting precipitation maxima in the complex terrain of the Pyrenees
in the Iberian peninsula. The occurrences of extreme daily precipitation are more pro-
nounced over Nepal’s southern flat region, and relatively better performance of IMERG
over such flat region is also evident in a previous study [86]. Although IMERG shows a
good ability to capture daily extremes, GSMaP-Gauge showed a better capability to capture
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the duration based extreme indices (i.e., CDD and CWD). Moreover, the IMERG product
overestimated the CDD, CWD spells and underestimated the R10mm and R25mm, whereas
GSMaP-Gauge overestimated the total frequency of CWD spells. Such positive and nega-
tive bias in both SRE might be related to the bias correction schemes, which smooth out the
precipitation time-series by detecting non-rainy days as rain events and hence reduced the
extreme precipitation amplitude [87]. Furthermore, Xiao et al. [23] concluded that SREs
are better able to capture the single-day extremes than continuous days of rainfall, which
might be attributed to underestimating/overestimating CDD and CWD spells.

5. Conclusions

This study assesses the spatiotemporal performance of two GPM-era SREs (IMERG
and GSMaP-Gauge) in a reference to 279 gauge stations from Nepal during 2014–2019.
Additionally, both SREs’ performance on capturing extreme precipitation events were also
evaluated during the study period.

Both SREs (IMERG and GSMaP-Gauge) well captured the temporal variation of
observed precipitation; however, the negative bias in the IMERG product was slightly
smaller (−2.49 mm/day) than GSMaP-Gauge. In contrast, GSMaP-Gauge was more
consistent than IMERG in capturing the spatial variability of gauge observed precipitation
over Nepal.

Categorical skill score computed at multiple thresholds for defining rain/no-rain
event in daily data shows that both SRE can detect the light precipitation, however their
performance declines with the increasing precipitation intensity. Furthermore, the IMERG
product consistently outperformed GSMaP-Gauge for the higher precipitation intensity.

For extreme precipitation events, the IMERG product showed better skill in capturing
daily extremes than GSMaP-Gauge with a smaller negative bias, whereas GSMaP-Gauge
outperforms the IMERG product and shows a consistent performance for duration-based
indices (CDD, CWD, R10mm, R25mm). Moreover, the IMERG product shows a better
ability to detect the single-day precipitation extremes; however, GSMaP-Gauge is better in
detecting threshold and duration-based extreme precipitation indices.

Overall, the IMERG product showed better performance than GSMaP-Gauge to es-
timate the precipitation amount consistent with gauge observations over Nepal and sug-
gested that IMERG can be a good alternative precipitation product for the data-gap region
to evaluate extreme events. However, there is still space for improvement in the rainfall
retrieval algorithm of SREs in the mountainous region, where topography greatly influ-
ences precipitation distribution. Therefore, rigorous evaluation considering topography
and precipitation type with region-specific robust bias correction is required before any
application of SREs. For algorithm developers and data users, this study further recom-
mends continuous evaluation of these SREs, focusing on major drawbacks under the catch
of warm-orographic precipitation.
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