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Abstract: Surface albedo is an essential parameter in many solar radiation applications. Although
several models are available, it remains debatable whether they are applicable to other locations.
Using long-term daily measurements of radiation acquired by observational networks in China, this
study examined the applicability of six existing albedo models: Ineichen model (IeM), Gueymard
model (GM), Dong model (DeM), Iziomon-Mayer model (IMM), Morton model (MM), and Zhou
model (ZeM). The evaluation results of model performance through statistical analysis showed that
among the available ground albedo models, ZeM had the best overall performance at 12 selected
stations, IeM was shown to provide acceptable estimations for locations where albedo records are
readily available. The statistical results of individual station have shownthat the number of input
parameters is not the only key factor for determining the predictive performance of ground albedo
models. In other words, a simple model has potential for accurate estimation of ground albedo with
appropriate model parameters. Therefore, the simple two-parameter DeM was selected to re-calibrate
with in-situ radiometric measurements, which can be adopted as a surrogate for ZeM to predict
surface albedo in China.

Keywords: surface albedo; model evaluation; solar height angle; solar radiation

1. Introduction

Increasing application of solar energy in various respects for environmental and
economic proposes has highlighted the importance of reliable estimation of solar radiation
incident on a target surface [1–3], which consists primarily of direct, diffuse, and reflected
components [4]. The most direct method for achieving such estimations is to conduct
in situ measurements, which entails implementation of a set of various instruments to
sample the temporal variations of these components at the measured surface [5]. Of the
three components of solar radiation, the reflected component is the most complex because
it is strongly conditioned by surface properties and diverse external factors [6], making
it inappropriate to apply site-specific measurements to other unmonitored locations [7].
Furthermore, the high costs of instrumentation and technical constraints have meant that
reflected radiation was measured only at limited scientific stations in earlier studies [8,9].
Owing to a lack of observational data, pioneering researchers (e.g., Liu and Jordan [10])
usually quantified the reflected component of radiation in terms of surface albedo, defined
as a fraction of the accessible global solar radiation [11]. This alternative has been used
widely in subsequent radiation-related studies.

As an essential climate variable for controlling the surface energy budget, surface
albedo has been measured routinely at an increasing number of meteorological stations
around the world [12,13]. Meanwhile, certain databases such as the Global Energy Bal-
ance Archive have been developed through systematic extraction of solar radiation data
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measured at globally distributed observing stations [14]. Continuous measurements of
surface albedo with high temporal resolution have been achieved following the increase
in coverage of regional and global radiometric networks, e.g., Fluxnet [15], the Greenland
Climate Network [16], and the Baseline Surface Radiation Network [17]. Nevertheless,
ground-based radiometric measurements have limited spatial resolution because it is not
possible to install the expensive instrumentation required at all locations necessary [6,18].
Understanding the spatial heterogeneity of surface albedo at regional and global scales
requires remotely sensed measurements, which could be acquired using airborne [19]
and/or satellite instruments [12]. Recently, together with the increasing availability of
multi-decadal satellite data, the derivation of albedo from satellite-based products has
become the most practical method for estimation of regional and global surface albedo
in climate and biogeochemical modelling [20,21]. The retrieval of surface albedo from
remote sensing measurements entails the removal of the effects of coupled atmosphere–
surface scattering processes, which involves applying corrections for both atmospheric
effects and anisotropic surface reflections [22]. The inherent complexity of land surface
processes results in considerable uncertainty in the albedo retrieved using satellite products,
which should be evaluated carefully prior to use [23]. It has become common to use ra-
diometric measurements for validation of satellite-derived albedo via direct point-to-pixel
comparisons [12,24–26] or upscaling methods [23]. In addition, radiometric measurements
have been proven important in the following respects: (1) detection of decadal changes
in surface radiative components [13,27]; (2) generation of spatiotemporally continuous
albedo datasets for use in combination with regional and global satellite-based albedo
products [28,29]; (3) validation of simulated results of surface albedo in physical models [6];
and (4) use in applications such as solar power generation and agricultural water man-
agement [1,30]. These applications highlight the importance of systematic and continuous
radiometric measurements. However, most areas of the world remain unmonitored. The
practical needs of solar radiation applications in unmonitored regions rely strongly on the
development of predictive models for estimation of solar radiation components including
surface albedo.

Over previous decades, numerous studies have investigated parameterization of
surface albedo using different model parameters at different timescales. Gueymard [31]
presented a regression equation to estimate monthly average surface albedo as a function
of latitude. Paltridge and Platt [32] proposed a general exponential equation to describe the
dependence of surface albedo on solar height angle, which has been applied to estimation
of surface albedo over certain land cover types, e.g., grassland [30,33], cropland [34],
and bare soil [35]. Nkemdirim [8] proposed an exponential function to describe diurnal,
latitudinal, and seasonal variations of surface albedo with the position of the Sun in terms
of solar zenith angle (SZA). Alnaser [36] calculated monthly average albedo as a function
of relative sunshine duration. Morton [37] determined daily average surface albedo by
integrating the Nkemdirim equation over the range of SZAs, weighted with the diurnal
course of extraterrestrial radiation, and by incorporating the relative sunshine duration to
take the impact of cloud cover into account. Zhou et al. [7] modified the Morton model
by adding a function of the leaf area index (LAI) to account for the effect of vegetation
phenology on seasonal variation of surface albedo. They applied their proposed model
to estimation of the zonal surface albedo of a hypothetical reference surface in different
agricultural zones across China. In general, these ground-based models adopted surface
albedo parameterized to certain accessible ground-based measurements, e.g., geographic
information (i.e., latitude, longitude, and elevation), sunshine duration, and precipitation.
In addition, other influential factors have increasingly been taken into consideration as a
reflection of the progress in the understanding of surface-reflected processes. Recently, some
physical models, which can simulate reflected processes precisely, have been developed
for surface albedo estimation for any climate and receiver geometry without need of
site-dependent measurements [6]. However, ground-based models remain the primary
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tool in many respects owing to the simplicity in their application and the relatively less
computational effort involved.

Evaluation of the performance of such ground-based surface albedo predictors against
ground-based measurements has been undertaken in sporadic studies. For example,
Ineichen et al. [38] used six databases of multi-year measurements from four countries
to examine five surface albedo estimation models, obtaining the best results with a site-
dependent constant mean value. Psiloglou and Kambezidis [4] evaluated eight models for
surface albedo estimation against in-situ measurements that were obtained at the National
Observatory of Athens. They found adaptation to the local conditions of models that were
more complex was superior to models that used a constant albedo value. However, some
critical issues remain: which is more appropriate among these existing models, is the model
parameter more, the better the model performance?

In China, a network of 105 stations has been established to measure radiation com-
ponents over all major climatic zones [7]. Multi-decadal data measured by this network
are available online, providing the opportunity to address the outstanding issues high-
lighted above. Therefore, the main objective of this study was to assess existing models
for surface albedo estimation with in-situ radiometric measurements across China during
1993–2015. The findings of this study could provide an important reference for future
model development in large regions with different conditions.

2. Materials and Methods
2.1. Observational Sites and Data Processing

Among the present-day network of 105 radiation stations, only the 21 first-level
stations have measured simultaneously the reflected and global radiation components
required for surface albedo estimation since 1993 [7]. Excluding one pair of stations with
close geographic location (i.e., Shanghai and Chengdu) and shorter records of observations,
daily observations of radiation and meteorological parameters recorded at the remaining
19 stations were obtained for use in this study from the National Meteorological Informa-
tion Centre (NMIC), a central depository of meteorological data sponsored by the China
Meteorological Administration. Observed surface albedo can be computed directly using
reflected and global radiation:

αk,i
Dm =

Rk,i
r

Rk,i
g

(1)

where αDm is the daily mean value of measured surface albedo, Rr and Rg are measured
values of daily reflected and global radiation, respectively, and superscripts k and i are used
to denote parameters on the kth day and in the ith year, respectively.

Among the various influencing factors of surface albedo, snow cover has notable
impact on the surface properties of the radiation layer by directly replacing its underlying
surface [21,26]. It introduces considerable uncertainty for surface albedo estimation because
the surface albedo of snow cover can fall from 0.90 to 0.50 or less, depending on snow
condition [39]. Therefore, this study focused on snow-free surface albedo, referred to as
ground albedo. All measured data required for surface albedo computation are examined
by NMIC through standard processes for data quality control. However, when computing
daily mean values of measured ground albedo using Equation (1) for model evaluation,
the following six types of measured data were discarded:

1. Missing values of daily global radiation component;
2. Missing values of daily reflected radiation component;
3. Zero values of daily global solar radiation and/or daily reflected solar radiation
4. Measured values of daily reflected radiation near the minimum detection limits of the

instrumentation;
5. Values observed during snow-covered seasons;
6. Values when corresponding meteorological variables as model inputs were unavailable.
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After quality control processing, four stations located in cold regions (i.e., Urumchi
Mohe, Shenyang, and Harbin stations) were identified as receiving rainfall and frequent
snowfall with air temperatures below zero during winter-spring seasons. Consequently,
daily measurements from these four stations acquired during the cold seasons were largely
discarded. Therefore, daily measurements from 12 stations with valid data available for all
days of the year during 1993–2015 were selected to evaluate the predictive performance of
the studied models. Details of the geographic locations and solar radiation datasets of the
12 selected stations are listed in Table 1 and illustrated in Figure 1.

Table 1. Geographical locations and datasets of the 12 stations used in this study.

No. Location Latitude
(deg., N)

Longitude
(deg., E)

Altitude
(m)

Tmean
(◦C)

P
(mm)

n
(h)

Rg
(MJ m−2 day−1) KD

1
Measured Albedo

Period Mean 2

1 Ejin Banner 41.95 101.07 940.5 9.73 35 9.12 17.83 0.32 1993–2015 0.25
2 Beijing 39.80 116.47 31.3 13.28 588 6.76 13.51 0.48 1993–2015 0.17
3 Zhengzhou 34.72 113.65 110.4 15.35 639 5.15 12.92 0.60 1993–2015 0.17
4 Kashgar 39.48 75.75 754.5 12.74 66 7.98 15.56 0.44 1993–2015 0.22
5 Wuhan 30.60 114.05 23.6 17.47 1259 4.96 11.71 0.60 1993–2015 0.17
6 Shanghai 31.40 121.45 5.5 17.18 1164 4.77 12.51 0.56 1993–2015 0.17
7 Guangzhou 23.22 113.48 70.7 22.46 1737 4.24 11.68 0.63 1993–2015 0.18
8 Chengdu 30.75 103.87 547.7 21.17 905 4.33 9.88 0.73 2004–2015 0.16
9 Kunming 25.02 102.65 1888.1 16.02 989 6.02 15.44 0.46 1993–2015 0.17
10 Sanya 18.22 109.58 419.4 25.29 1340 6.10 16.52 0.46 1993–2015 0.19
11 Golmud 36.42 94.92 2807.6 6.37 40 8.32 18.77 0.35 1993–2015 0.22
12 Lhasa 29.67 91.13 3648.9 9.05 434 8.22 20.47 0.30 1993–2015 0.21

1 Tmean represents mean air temperature, P mean annual precipitation, Rg mean global radiation, KD mean ratio
of diffuse radiation to global radiation; 2 Measurements obtained on February 29 in each leap year have been
discarded from analysis for convenience.

Figure 1. Geographical distribution of the solar radiation observation stations used in this study.

The predictive performance of ground-based models for surface albedo estimation is
commonly evaluated through comparison of modelled results conducted for several specific
sites against in situ measurements obtained at those sites [7,40]. However, it has been shown
that almost everything forming the surroundings of a specific site affects the surface albedo
of that site [6]. This dependence of ground albedo on multiple factors makes it impossible to
develop a ground-based model that integrates all relevant influencing factors. Actually, for
most proposed predictive models, the anisotropy of surface albedo is described by only one
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or two model variables [7,41]. It is impracticable to use point-to-point comparison methods
to assess the performance of ground-based models with consideration of only a limited
number of influencing factors against in situ measurements that were obtained under
the effect of all influencing factors. Moreover, in situ measurements used for computing
surface albedo themselves have inherent uncertainties related to instrument precision
and data processing [42]. In this context, multi-year mean values of daily ground albedo
are recommended for use as true values in model evaluation, which can be determined
as follows:

αk
Ym =

1
Lk

Lk

∑
i=1

αk,i
Dm (2)

where αYm is the multi-year mean value of daily ground albedo, and L is the number of
years with valid data after data quality control.

2.2. Surface Albedo Prediction Models
2.2.1. Ineichen Model (IeM)

In pioneering studies of the solar energy balance over a large land area, it was cus-
tomary to use a constant (i.e., 0.20) as an a priori value of zonal mean albedo because of
the scarcity of ground albedo observations [1,4]. Following the development of advanced
instrumentation for measuring radiation, Ineichen et al. [38] used site measurements of
radiation components to examine the applicability of the default value. Their comparative
results showed ground albedo is generally site-dependent and should be replaced by a
value more representative of the measurement site. Following the suggestions of Psiloglou
and Kambezidis [4], geometric mean value is used in the evaluation, i.e.,

αIeM =

(
K

∏
k=1

αk
Ym

)1/K

(3)

where αIeM is IeM-estimated ground albedo, K is the number of days with valid measured
data.

2.2.2. Gueymard Model (GM)

Gueymard [31] attributed the site variation of surface albedo to latitude dependence
and parameterized the monthly regional albedo as a function of latitude through polyno-
mial fitting of site measurements of surface albedo in North America as follows:

αGM(ϕ) = CΦT (4)

where αGM is GM-estimated ground albedo, Φ =
(
1, ϕ, ϕ2, ϕ3) is the variable matrix,

in which ϕ (deg.) is latitude, and C = (c0, c1, c2, c3) is the coefficient matrix. When
latitude is < 30◦, C = (−0.18, 0.024, −0.0004, 0); when 30◦ < ϕ < 60◦, the coefficient matrix C
is specific for each month, as provided by Gueymard [31]. In addition, daily values can be
obtained through interpolation. Although GM was proposed originally to estimate regional
ground albedo, it has been extended to prediction of local ground albedo [4].

2.2.3. Dong Model (DeM)

Paltridge and Platt [32] examined the dependence of surface albedo on solar height
angle and proposed an exponential equation for determining surface albedo; however, they
did not provide values of the model parameters for detailed land types. Subsequently,
Dong et al. [30] collected meteorological data from a network of 53 stations in California
(USA) to examine the efficacy of the exponential equation through nonlinear regression
analysis, and a modified exponential equation was proposed:

αk
DeM = 0.0905hk + 0.3860 exp

(
−1.0772hk

)
(5)
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where αDeM is DeM-estimated ground albedo, h (rad) is the solar height angle, which is
determined as follows:

hk =
π

2
−
∣∣∣δk − π

180
ϕ
∣∣∣ (6)

in which δ is solar declination

2.2.4. Iziomon-Mayer Model (IMM)

Iziomon and Mayer [33] recognized that the limitation of DeM in estimating surface
albedo results from its ignorance of certain elevation-dependent factors, and they modified
DeM by incorporating an elevation term:

αk
IMM = 0.0905hk + 0.3860 exp

(
−1.0772hk

)
+ 0.00002H (7)

where αIMM is IMM-estimated ground albedo, H (m) is the altitude of the target location.

2.2.5. Morton Model (MM)

Nkemdirim [8], who found that surface albedo is largely dependent on SZA, expressed
the instantaneous clear-sky ground albedo as an exponential function of SZA. By integrating
the Nkemdirim equation over the range of SZA, Morton [37] developed an empirical model
for determining daily average albedo:

αk,i
MM = αk

0MM

[
Sk,i +

(
1− Sk,i

)(
aMM + bMMZk

)]
(8)

where αMM is MM-estimated ground albedo, S is the relative sunshine duration, Z (=0.5π − h)
(rad) is the SZA at noon, aMM and bMM are constants, and αk

0MM is the daily mean value of
ground albedo under clear sky conditions determined as follows:

αk
0MM = αzF

(
ω0, Zk

)
(9)

F
(

ω0, Zk
)
=

exp(0.5πω0)− exp
(

ω0Zk
)(

ω0 cos Zk + sin Zk
)

(
1 + ωk

0
)(

1− sin Zk
) (10)

where ω0 is a constant associated with radiation layer characteristics. In the procedure
of Morton [37], constant ω0 = 0.6875, aMM = 1, bMM = −6/(11π), and αz is determined
as follows:

αz =


0.11
αzd
0.17

for αzd < 0.11
for 0.11 ≤ αzd ≤ 0.17
for αzd > 0.17

(11)

where azd is the zenithal clear-sky ground albedo in the dry season given by:

azd = 0.26− 0.00012p0.5
s P

[
1 + |ϕ/42|+ (ϕ/42)2

]
(12)

in which P (mm) is the mean annual precipitation, and ps is the relative atmospheric
pressure.

2.2.6. Zhou Model (ZeM)

Zhou et al. [7] used the same form of equation as shown in Equation (8) to estimate
ground albedo of a grassy surface but with the following three modifications:

1. ZeM uses different values of two coefficients from those used in the MM (i.e., aZeM = 0.832,
bZeM = 0.032) to take the effect of cloud cover into consideration.

2. ZeM treats a vegetated surface as a mixture of vegetation and its underlying bare
soil to incorporate the effect of vegetation phenology, weighted by the proportions
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of bare soil and vegetation coverage. The daily mean ground albedo under clear sky
conditions is thus determined as follows:

αk
0ZeM = αk

s(1− f k
0 ) + αk

v f k
0 (13)

in which f 0 is the fraction of vegetation cover given by [7]:

f k
0 = 1− exp

(
−ζ · ψk

)
(14)

where ψ is the daily LAI, ζ is the canopy extinction coefficient, αs and αv are the
daily mean values of clear-sky ground albedo over the bare soil surface and over the
vegetated surface, respectively.

1. ZeM notes the discrepancy in form between Nkemdirim’s exponential function and
the regression equations of numerous subsequent observations for describing the
variation of instantaneous ground albedo with SZA, and it modifies the exponential
function by adding a constant term. The computational formulae of αv and αs thus
become

αk
v = AvF

(
ωv, Zk

)
+ Bv

(
0.5π − Zk

)
(15)

αk
s = AsF

(
ωs, Zk

)
+ Bs

(
0.5π − Zk

)
(16)

where ωs and ωv are statistically estimated coefficients, and Av, As, Bv, and Bs are
empirical constants. In the calculation procedure, ωs =0.4732, ωv =0.6090, and the
empirical coefficients As and Av can be determined as follows:

As = C1sPr
−0.5ξs + C2s (17)

Av = C1vPr
−0.5ξv + C2v (18)

where ξs and ξv are constants, and C1s, C2s, C1v, and C2v are constants that need to be
calibrated. The values of these constants have been calibrated against meteorological
observations across China.

2.3. Statistical Evaluation

The performance of the studied models was evaluated using six dispersion indica-
tors and one global performance indicator (GPI). The dispersion indicators included the
mean absolute percentage error (MAPE), root mean square error (RMSE), relative root
mean square error (RRMSE), t-statistics (TS), uncertainty at 95% (U95), and coefficient of
determination (R2). Details of these dispersion indicators are listed in Table 2. The closer
the R2 value is to 1, and the smaller the values of all other indicators, the better the model
performs.

The GPI, proposed by Despotovic et al. [2] to compare the performance of various
different models, combines all the selected dispersion indicators into a single indicator, i.e.,

GPIm =
6

∑
j=1

κj
(
η̂j − ηj,m

)
(19)

where GPI m is the GPI value for model m, ηj,m is the scaled value of indicator j for model
m, 0 is scaled for the minimum value, and 1 for the maximum value; η̂j is the median of
the scaled value of indicator j, κj is equal to 1 for all indicators except it is equal to −1 for
j = 6 (R2). A higher value of the GPI indicates greater model accuracy.
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Table 2. Statistical indicators for performance evaluation of ground albedo models.

Indicator Concept Equation 1 Function Ideal Value Author(s)

Mean bias error
(MBE)

Arithmetic mean of
the errors MBE = 1

K

K
∑

k=1

(
αk

De − αk
Dm
) A statistical indicator

for testing the
long-term tendency

of the models

0 Behar et al. [3]

Mean absolute
percentage error

(MAPE)

Arithmetic mean of
magnitude of
relative errors

MAPE = 1
K

K
∑

k=1

∣∣∣∣ αk
De−αk

Dm
αk

Dm

∣∣∣∣
A statistical indicator

for comparing
predictive errors of

different models

0 Gueymard [42]
Fan et al. [43]

Root mean square
error (RMSE)

Square root of the
mean square errors RMSE =

√
1
K

K
∑

k=1

(
αk

De − αk
Dm
)2

A measure of
error-magnitude

variance for
examination of the

short-term
performance of

the models

0 Willmott and
Matsuura [44]

Relative root mean
square error

(RRMSE)

RMSE divided by the
average value of
measured data

RRMSE = RMSE
αm

A measure of the
overall relative

accuracy of
the models

0 Jamieson et al. [45]
Li et al. [46]

t-statistics
(TS)

Statistical
significance of model

estimates at a
particular

confidence level

TS =

√
(K−1)MBE2

RMSE2−MBE2

A conjunction of the
RMSE with MBE for

more reliable
assessment of

model performance

0 Stone [47]

Uncertainty at the
95% level (U95)

Expanded
uncertainty with
95% confidence

U95 = 1.96
(

SD2 + RMSE2
)1/2

An indicator
representing

information of
model deviation

0 Gueymard [42]

Coefficient of
determination(R2)

Square of the
correlation coefficient R2 =

[∑K
k=1 (αk

De−αe)(αk
Dm−αm)]

2

∑K
k=1(αk

De−αe)
2

∑K
k=1(αk

Dm−αm)
2

A measure of model
linearity relative to

measured data
1 Behar et al. [3]

Gueymard [42]

1 K is the number of days with valid measured data, SD represents the standard deviation of the difference
between estimated results and observed data, αm and αe represent the annual mean values of measured and
estimated ground albedo, respectively.

3. Results and Discussion
3.1. Model Evaluation

Figure 2 depicts graphically the MAPE values for the six models. It can be seen from
the figure that the best MAPE was obtained with ZeM, which produced the smallest MAPE
at 10 out of 12 selected stations with mean MAPE of 3.76% ranging from 2.00% (Golmud)
to 6.10% (Chengdu). IeM also produced acceptable estimations of surface albedo at all
selected stations with mean MAPE of 4.82% ranging from 3.02% (Sanya) to 9.28% (Lhasa).
For the remaining models, i.e., GM, DeM, IMM, and MM, the MAPE values were in the
range 3.35–34.58%, 6.55–43.03%, 6.11–52.55%, and 6.23–48.98%, respectively.

Figure 2. MAPE values for the six models at 12 selected stations.
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The lowest values of RMSE were obtained for ZeM at 9 out of 12 selected stations
with mean RMSE of 0.0087 varying from 0.0055 (Golmud) to 0.0152 (Kashgar). For IeM,
GM, DeM, IMM, and MM, the RMSE values were in the range 0.0068–0.0225, 0.0070–0.0664,
0.0170–0.0702, 0.0188–0.0898, and 0.0134–0.1094, respectively. In terms of RRMSE, as pre-
sented in Figure 3, ZeM showed the lowest values at 11 out of 12 selected stations with
mean RRMSE of 4.62% ranging from 2.54% (Golmud) to 7.62% (Chengdu). IeM also pro-
vided reasonably small values of RRMSE (mean: 5.99%). However, the mean RRMSE
values of the remaining four models were dramatically higher than both ZeM and IeM,
ranging from 18.34% (GM) to 32.03% (IMM). Jamieson et al. [44] used the criteria “excel-
lent”, “good”, “fair”, and “poor” to test the goodness-of-fit between estimated results and
measured data. For solar radiation time series, a RRMSE values of <10%, 10–20%, 20–30%,
and >30% are considered excellent, good, fair, and poor, respectively [45]. According to
these criteria, the RRMSE indicator ranked ZeM excellent at all selected stations. Although
the RRMSE ranked GM fair at high-latitude stations (e.g., Ejin Banner, Beijing, Kashgar, and
Golmud stations), the model was ranked excellent or good at certain mid-latitude stations
(e.g., Kunming, Wuhan, and Shanghai stations). Similar results were found based on the
estimated results from the other five models.

Figure 3. RRMSE values for the six models at 12 selected stations.

The mean U95 values were 0.0312, 0.0869, 0.0903, 0.1196, 0.1065, and 0.0230 for IeM,
GM, DeM, IMM, MM, and ZeM, respectively, i.e., IeM produced the lowest U95 value. In
terms of individual stations, the estimated TS values for the GM, DeM, IMM, MM and ZeM
models significantly greater than 1.96 (except ZeM that produced TS value of <1.96 at the
Kashgar station, Figure 4), indicating statistically significant difference between the paired
values of estimated and measured data at the 95% confidence level. However, for the IeM
model, the calculated TS values for the 12 selected stations are generally less than 1.96.

Figure 4. TS values for the six models at 12 selected stations.
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In terms of R2, ZeM showed the highest degree of agreement between the estimations
and measurements with mean R2 of 0.3942. Despite being the model with the best overall
performance, the R2 values of ZeM, which ranged from 0.0029 to 0.9459, reflected that
the model produced an almost perfect linear relationship between the modelled results
and measured data at certain studied stations (e.g., Ejin Banner, Guangzhou, Golmud,
and Lhasa stations), while it performed poorly at other stations (e.g., Chengdu, Wuhan,
and Kashgar stations). The R2 value for IeM was zero at each selectedstation, and the
remaining models (i.e., GM, DeM, IMM, and MM) had R2 values of around zero at most
selected stations, indicating absence of a linear relationship between the modelled results
and measured data. Comparisons of the modelled results with measured data at 12 selected
stations are shown in Figure 5.

Figure 5. Comparisons of estimated results with measured data at (a) Ejin Banner, (b) Beijing,
(c) Kashgar, (d) Zhengzhou, (e) Wuhan, (f) Shanghai, (g) Chengdu, (h) Kunming, (i) Guangzhou,
(j) Sanya, (k) Golmud, and (l) Lhasa stations.
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The calculated GPI values for the studied models are presented in Figure 6. Based
on the composite indicator GPI, ZeM was found the best-performing model for ground
albedo estimation in China with mean GPI of 1.58 varying from 0.95 (Ejin Banner) to
2.29 (Beijing). The second most accurate model was IeM with mean GPI of 0.68, followed
by GM (−0.78), MM (−1.22), and DeM (−1.65); the model with the poorest performance
was IMM (−2.64). It should be noted that the two most accurate models, i.e., ZeM and
IeM (in essence), were developed using in situ measurements from meteorological stations
in China, whereas the remaining four models (i.e., GM, DeM, IMM, and MM), which
produced unsatisfactory predictions of ground albedo in China, were proposed based on
measurements processed from sites outside China. It is emphasized that existing ground-
based albedo models are generally site-specific and are thus inapplicable to other locations
without model re-calibration. It is also important to note that some simple models with
poor overall performance produced the best GPI value at certain individual stations. For
instance, GM produced the best GPI value at Chengdu station. It reveals that for large-scale
areas with different conditions, it is impossible for a fixed-parameter model, even a complex
one, to perform well everywhere, whereas even a simple model has potential for accurate
estimation of ground albedo with appropriate model parameters.

Figure 6. GPI values for the six models at 12 selected stations.

3.2. Re-Calibration with In-Situ Measurements

Previous studies have shown that ground albedo is largely dependent on solar height
angle. In addition, the use of the solar height angle has the advantage that this single
easily accessible variable can account for both the spatial and the temporal variations of
surface albedo with latitude and solar seasonal variation, respectively. Therefore, DeM was
selected to re-calibrate (referred to as rDeM) with in-situ measurements across China. The
general equation of rDeM can be written as

αk
rDeM = ak

n Hk + bk
n exp

(
−1.0772Hk

)
(20)

where αrDeM is rDeM-estimated daily ground albedo, a and b are constants to be calibrated
against measured data, and subscript n denotes parameters for the nth station.

The general equation for each delineated region was calibrated against the measured
data from the 12 selected stations. The values of an and bn were adjusted repeatedly until
the calculated results of the selected statistical indictors were as close as possible to their
ideal values. The calibrated values of an and bn for all studied stations are listed in Table 3.
Figure 7 depicts the comparisons between the estimated results and the measured data
with acceptable values of MAPE in the range from 2.99% to 6.28%, RMSE from 0.0075 to
0.0168, RRMSE from 4.03% to 7.57%, U95 from 0.0116 to 0.0463, TS from 1.19 to 9.11, and R2
from 0.0078 to 0.7879, as listed in Table 3. With consideration of the indicator GPI illustrated
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in Figure 8, rDeM has the potential to predict surface albedo as accurately as a complex
model (ZeM). The results indicate that rDeM can be adopted as a surrogate for ZeM to
predict surface albedo in China.

Figure 7. Comparisons of rDeM predictions with measured data at (a) Ejin Banner, (b) Beijing,
(c) Kashgar, (d) Zhengzhou, (e) Wuhan, (f) Shanghai, (g) Chengdu, (h) Kunming, (i) Guangzhou,
(j) Sanya, (k) Golmud, and (l) Lhasa stations.
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Table 3. Calibrated values of rDeM parameters for selected stations.

Station
Model Parameters Statistical Indicators

an bn MAPE (%) RMSE RRMSE (%) U95 TS R2

Ejin Banner 0.1140 0.354 3.55 0.0116 4.63 0.0310 7.36 0.6944
Beijing 0.0779 0.250 4.75 0.0094 5.42 0.0251 8.14 0.1666

Kashgar 0.1112 0.300 6.28 0.0168 7.57 0.0463 2.63 0.0128
Zhengzhou 0.0722 0.250 5.06 0.0104 6.19 0.0116 1.19 0.1362

Wuhan 0.0854 0.250 3.92 0.0086 4.94 0.0238 1.28 0.2201
Shanghai 0.0831 0.250 4.44 0.0093 5.46 0.0248 7.71 0.0753
Chengdu 0.0791 0.232 5.55 0.0109 6.86 0.0299 4.57 0.0078
Kunming 0.0814 0.250 3.37 0.0075 4.42 0.0208 1.92 0.0002

Guangzhou 0.0831 0.258 4.79 0.0103 5.81 0.0277 7.22 0.3848
Sanya 0.0882 0.285 2.99 0.0077 4.03 0.0203 8.84 0.0073

Golmud 0.0963 0.325 3.54 0.0091 4.23 0.0251 2.86 0.5104
Lhasa 0.0756 0.386 5.83 0.0152 7.04 0.0402 9.11 0.7879

Figure 8. GPI values for each station when DeM is replaced by rDeM for model comparison.

3.3. Temporal Stability Analysis

Surface albedo varies with everything that forms the local surroundings. These are
impossible to parameterize fully into a simple model, whilst in situ measurements used for
model development would be conducted under the effect of all possible factors. Therefore,
in this paper multi-year mean daily values of time series data were used to evaluate and
calibrate the studied models. Given the vulnerability of time series dynamics to alterations
in the mean and variance [48], particular care should be taken to check the temporal stability
of the time series data obtained from all the selected stations. To eliminate the effect of
short-term random fluctuations and daily data gaps arising from data quality control,
monthly mean values of measured ground albedo were used for the analysis, which were
derived as follows:

αr,k
Mm =

1
Nr

Nr

∑
i=1

αk,i
Dm (21)

where αMm is the monthly mean value of daily ground albedo, Nr is the number of days in
the rth month.

For the rth month, the Θr-year accumulated mean and corresponding variation coeffi-
cient were determined as follows:

µr,Θr
=

1
Θr

Θr

∑
i=1

αr,i
Mm, 1 < Θr ≤ I (22)
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σr,Θr
=

1

µr,Θr

Mm

√√√√ 1
Θr − 1

Θr

∑
i=1

(
αr,i

Mm − µr,Θr
)

(23)

where I is the number of years in the period, µr,Θr
and σr,Θr

are the mean and the variance,
respectively. If a value of Θr exists that is less than I and makes the following two formulae
true, and where the formulae are also satisfied for an arbitrary value greater than Θr, the
time series tested in the rth month can be considered temporally stable:

∆r,Θr

µ =
∣∣∣(µr,Θr − µr,I

)
/µr,I

∣∣∣ ≤ εµ (24)

∆r,Θr

σ =
∣∣∣(σr,Θr − σr,I

)
/σr,I

∣∣∣ ≤ εσ (25)

where ∆µ and ∆σ are the relative differences for the mean and the variation coefficient in
the rth month, and εµ and εσ are acceptable relative differences. Taking two stations as
examples, the variations of µr,Θr

and σr,Θr
with Θr are shown in Figure 9.

Figure 9. Temporal stability checks of accumulated mean surface albedo at (a) Kunming and
(b) Guangzhou stations.

It can be seen that the values of ∆r,Θr
µ and ∆r,Θr

σ in each month tend to be stable as
i increases. The minimum Θr value was defined as the critical value of observation years
for collecting time series data with temporal stability in the rth month, denoted as Θr

∗.
Hence, the maximum value of the critical values for all months throughout the year is the
shortest year for observing data with temporal stability, that is,

Θ∗ = max(Θr
∗) (26)

where Θ∗ represents the critical value of observation years for collecting stable time series
data at selected stations. The mean and standard deviation of Θr

∗ for each station are shown
in Figure 10. Most generally, if one station in China continuously observes albedo data for
more than 10 years, the time series obtained is considered temporally stable.
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Figure 10. Mean and standard deviation of Θr
∗ for collecting temporally stable time series at

12 selected stations.

4. Conclusions

This study investigated the applicability of six available models for ground albedo
estimation with long-term measurements of global and reflected radiation components
acquired by the network for solar radiation observation across China. Comparative results
indicated that model performance does not rely merely on the number of model parameters,
that is, a simplemodel with appropriate model parameters has the potential to predict
surface albedo as accurately as a complex model. Hence, the simple two-parameter DeM
was re-calibrated for surface albedo estimation in China. The detailed conclusions derived
from this study are summarized as follows.

1. The evaluation results of model performance through statistical analysis showed that
among the available ground albedo models, ZeM had the best overall performance
at 12 selected stations for model evaluation. IeM was shown to provide acceptable
estimations for locations where albedo records are readily available, which limits its
scope of application. However, the simple models with fixed parameters (i.e., GM,
DeM, and IMM) are site-specific. Therefore, when applied to other locations, these
models should be re-calibrated with measured data.

2. In the re-calibration procedure of DeM, multi-year mean daily values of time series
data were used in this paper. Special care was taken to examine the temporal stability
of these series. It was found that, in general, a time series of in situ measurements
extending over a period greater than 10 years could be considered temporally stable.

3. The performance of re-calibrated DeM was as acceptable as that of the complex ZeM
in China. This simple model offers an alternative for surface albedo estimation with
easily accessible inputs and less computational effort.
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