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Abstract: Since about 1997, the realisation that the finite Reynolds number (FRN) effect needs
to be carefully taken into account when assessing the behaviour of small-scale statistics came to
the fore. The FRN effect can be analysed either in the real domain or in the spectral domain via
the scale-by-scale energy budget equation or the transport equation for the energy spectrum. This
analysis indicates that the inertial range (IR) is established only when the Taylor microscale Reynolds
number Reλ is infinitely large, thus raising doubts about published power-law exponents at finite

values of Reλ, for either the second-order velocity structure function (δu)2 or the energy spectrum.

Here, we focus on the transport equation of (δu)2 in decaying grid turbulence, which represents
a close approximation to homogeneous isotropic turbulence. The effect on the small-scales of the
large-scale forcing term associated with the streamwise advection decreases as Reλ increases and

finally disappears when Reλ is sufficiently large. An approach based on the dual scaling of (δu)2,
i.e., a scaling based on the Kolmogorov scales (when the separation r is small) and another based

on the integral scales (when r is large), yields (δu)2 ∼ r2/3 when Reλ is infinitely large. This
approach also yields (δu)n ∼ rn/3 when Reλ is infinitely large. These results seem to be supported
by the trend, as Reλ increases, of available experimental data. Overall, the results for decaying grid
turbulence strongly suggest that a tendency towards the predictions of K41 cannot be dismissed
at least at Reynolds numbers which are currently beyond the reach of experiments and direct
numerical simulations.

1. Introduction

The study of small-scale turbulence is of significant theoretical and practical interest
(see the review by Sreenivasan and Antonia [1]). As an example in the latter category, an
improved knowledge of the small scale motion can lead to an improvement in turbulence
models, e.g. the k− ε model and large eddy simulations via the subgrid scale model. Since
the review by Sreenivasan and Antonia [1], significant research has been carried out on
the effect of the Reynolds number on small-scale statistics. The earliest research was by
Qian [2,3] who introduced the term finite Reynolds number (FRN) effect. This effect is best
investigated using either the Kármán-Howarth [4] or generalized Kolmogorov equation in
physical space [5] and spectral space which is Lin’s equation [6]. The framework provided
by these equations allows the constraints imposed on inertial range scales by both the large
scales and the dissipative scales to be readily assessed in the context of the FRN effect. This
aspect constitutes one objective of the present review.

Homogeneous isotropic turbulence (HIT) is the simplest form of turbulence. Its
experimental realization, either in the laboratory or in direct numerical simulation, is
necessarily imperfect. In nearly all grid turbulence experiments, the large scales are
anisotropic. This anisotropy can be improved by introducing a secondary contraction
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downstream of the grid, e.g. [7] and [8] (Reλ was smaller than 100 in these experiments).
Lavoie et al. [8] also attempted to reduce the intensity of the large scale periodicity, primarily
associated with round-rod grids. In this case, the ratio between the normal Reynolds
stresses is almost perfect (≈1) while the ratio between calculated and measured second-
order spanwise velocity structure functions satisfied isotropy within approximately 10% at
all scales (see Lavoie et al. [8] and the discussion on page 4 of Tang et al. [9]).

Starting with the Kármán-Howarth (KH) equation [4], which the authors described as
the fundamental equation for the propagation of the two-point velocity correlation function

in HIT. Kolmogorov [10] obtained the following relation between (δu)2 and (δu)3, the
second- and third-order velocity structure functions

(δu)3 = 6ν
∂

∂r
(δu)2 − 4

5
εr, (1)

where u is the longitudinal velocity fluctuation in the direction x, δu = u(x + r)− u(x),
r being the separation in the direction x; the overbar denotes time averaging; ε is the mean
dissipation rate of the turbulent kinetic energy and ν is the fluid kinematic viscosity. To
arrive at (1), the non-stationary (∂/∂t) term in the KH equation was neglected. With the
further assumption that viscosity is not important in a range identified with the inertial
range (IR), where η � r � L (η = (ν3/ε)1/4 is the Kolmogorov length scale and L is the
integral length scale), (1) reduces to

(δu)3 = −4
5

εr, (2)

a relation that is generally referred to as the 4/5 law. As pointed out by McComb [11], the
use of the prefactor in naming this law is unusual since most laws are named after the
exponent of r. It does however highlight the fact that it is the only law, at least in the context
of HIT, where the prefactor is known exactly. The derivation of (1) has been the subject of
much scrutiny, e.g. [12–17]. Yaglom [18] noted that Kolmogorov’s proof of (1) is not rigorous
since the KH equation is valid for fully (global) homogeneous & isotropic turbulence
whereas Kolmogorov’s physical arguments imply only local homogeneity and local isotropy
at large Reynolds numbers. In Hill’s [16] proof, (1) holds for a locally homogeneous and
isotropic velocity field that satisfies the N-S equation and incompressibility. Hill [16] also
obtained (2) without using the incompressibility conditions on the second- and third- order
structure functions.

It is worth emphasizing that (2) is an asymptotic result, valid only when Reλ (= u′λ/ν,
where λ = u′/(∂u/∂x)′ is the Taylor microscale and a prime denotes a r.m.s value) is very
large. It is evident that the issue of how (2) is approached as Reλ increases cannot be tackled
with the use of (1) since the latter ignores the effect of the large scales on the small scales.
To tackle this issue correctly, the non-stationarity needs to be reinstated in (1), as advocated
for example by Danaila et al. [5], allowing the behaviour of the small scales to be assessed
correctly at ay finite value of Reλ. Equivalently, one could use the KH equation (in physical
space) or Lin’s equation (in spectral space) [6] (see also [19]). It is appropriate to highlight
the work of Qian [2,3] which has paved the way towards a clearer understanding of the
finite Reynolds number (FRN) effect. Kolmogorov [20] predicted that, in the IR, the nth

order velocity structure function is given, after normalizing by the Kolmogorov scales, by

(δu)n

un
K

= An

(
r
η

)n/3
, (3)

where An are universal constants and uK (= (νε)1/4) is the Kolmogorov velocity scale. Since
about 1997, there is significant evidence, e.g. [2,3,9,21–34] that particular attention needs to
be paid to the FRN effect when assessing the scaling behaviour of the velocity structure
functions. These studies indicate that (2), and more generally, the n-thirds law in (3), are in
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fact, approached very slowly, so that a very large value of Reλ may be required before the
IR is unambiguously established. It is worth mentioning that, in order to achieve relatively
large values of Reλ in the laboratory experiments, several strategies have been used by the
experimentalist such as the use of an active grid, e.g. [35–39] or low temperature helium
gas [23] or by varying the density of the fluid, e.g. [40–44]. Kolmogorov [45] or K62
(see also Oboukhov [46]) made an important modification to (3), which has been widely
interpreted as the effect of the spatio-temporal intermittency of ε [1]. (3) was replaced by

(δu)n

u′n
∼
( r

L

)ζn
, (4)

where u′ ≡ u21/2
and ζn departs from n/3 except when n = 3, e.g. [1,47–49]. However, as

pointed out above, the studies in the last 25 years or so, e.g. [2,3,9,21–34] indicate that the
FRN effect on (δu)n seriously calls into question the validity of the published estimates
of ζn. The first objective of this paper is to review recent advances in understanding the
FRN effect on (δu)n. These advances have been underpinned by the use of the transport

equations for (δu)2 and (δu)3.
As described by Antonia et al. [50] and Tang et al. [9] in the context of the trans-

port equation for (δu)2 (or scale-by-scale energy budget), the scaling based on (uK, η)
is effective when the effect of the large scale term is neglected. This was first pointed

out by Batchelor [12]. Also, the transport equation for (δu)2, when the viscous term is
neglected and the large scale term retained, satisfies similarity when the scaling based
on (u′, L) applies. This dual scaling is expected to apply, albeit in an approximate fash-
ion, at finite values of Reλ. As Reλ continues to increase, there should be a region of
overlap between the two different normalizations. When Reλ → ∞, the IR should be
established rigorously, and the two sets of scales should become interchangeable in this
range. Tennekes and Lumley [51] and Gamard and George [52] examined the dual scaling
in the context of the energy spectrum in a shear flow and grid turbulence, respectively.
Their results indicate that IR is likely to emerge at very large Reλ. Tang et al. [9] further

examined the dual scaling of (δu)n in the context of both the transport equation for (δu)2

and experimental grid turbulence data over a significant range of Reλ. They show that
the dual scaling leads to a power-law relation (δu)n ∼ rn/3 when the inertial range is
rigorously established. The latter is likely to occur only when Reλ → ∞. Therefore, the
second objective of the present paper is to review the constraints imposed by the dual
scaling approach on the behaviour of (δu)n and energy spectra as Reλ → ∞. It is worth
mentioning that Antonia et al. [53], Tang et al. [54] reviewed the FRN effect on small-scale
statistics in the dissipative and scaling ranges; the scaling range comprises a range of scales
which becomes identifiable with the IR when Reλ → ∞. Research related to the FRN effect,
including that by Qian [2,3,21,55], was reviewed in McComb’s [11] monograph, which
deals exclusively with HIT. Shi [56] reviewed Qian’s various contributions to small-scale
turbulence, including the FRN effect.

2. FRN Effect on the Small Scales

The FRN effect on (δu)3 and (δu)4 can be quantified via the following equations in
grid turbulence [57]:

−(δu∗)3 =
4
5

r∗ − 6 f ′ − 2
r∗4

√
15

Reλ
(Γ1 +

1
2

Γ2), (5)

and

(δu∗)4 = 6Γ3 − Γ4 + 2Γ5 + 2Γ6 +

{
1
3

√
15

Reλ
(3Γ7 + Γ8)

}
, (6)
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where Γ1, Γ2, Γ3, Γ4, Γ5, Γ6, Γ7 and Γ8 are given by

Γ1 =
∫ r∗

0
s∗4 f (s∗)ds∗, Γ2 =

∫ r∗

0
s∗5 f ′(s∗)ds∗ (7)

Γ3 =
1

r∗2

∫ r∗

0
s∗Fuv f 2ds∗, Γ4 =

1
r∗2

∫ r∗

0
s∗2T111ds∗. (8)

Γ5 =
1

r∗2

∫ r∗

0
s∗2E111ds∗, Γ6 =

1
r∗2

∫ r∗

0

(
−4 + 4s∗

∂

∂s∗
+ s∗2

∂2

∂s∗2

)
S f 3/2ds∗ (9)

Γ7 =
1

r∗2

∫ r∗

0
s∗2S f 3/2ds∗, Γ8 =

1
r∗2

∫ r∗

0
s∗3

∂(S f 3/2)

∂s∗
ds∗. (10)

In (7)–(10), S = (δu)3/(δu)23/2
; Fuv = (δu)2(δv)2/(δu)22

; T111 = 3(δu∗)2(∂δp∗/∂X∗);
E111 = 6(δu∗)[(∂u∗/∂x∗)2 + 2(∂u∗/∂y∗)2]; f = (δu∗)2; the asterisk denotes normalization
by the Kolmogorov scales. In deriving (5) and (6), complete similarity was assumed (for
convenience) so that similarity applies at all scales of motion, i.e., the exponent m in u2 ∼ xm

must be −1. In this case, Reλ must remain constant during the decay, e.g. [28,58–60]. Con-
sequently, and provided Reλ is sufficiently large, the scaling based on (u′, L) is equivalent
to a scaling based on (u′, λ) or (uK, η), thus justifying the normalization for (5) and (6).

Taking r → 0, the relations which quantified the FRN effect on the skewness and
flatness factors of ∂u/∂x can be obtained for decaying grid turbulence [57,61,62]. Similar
relations for the skewness of ∂u/∂x have been obtained in other flows, i.e., along the axis
in the far-field of a round jet, the centerline of a fully developed channel flow, the axis in
the far-wake of a circular cylinder and forced HIT, e.g. [61]. Reλ & 300 is sufficient for the
skewness of ∂u/∂x to reach a constant for the flows mentioned above (see for example
Figure 2 of Antonia et al. [53]). The magnitude of the flatness of ∂u/∂x increases with Reλ in
grid turbulence and approaches a constant whose magnitude is in approximate agreement
with that along the axis in the far-field of the plane and round jets when Reλ & 600 [62].
The last term on the right side of (5) is the large scale term, which involves a cumulative
effect (i.e., integration) over all scales ranging from 0 up to r and leads to the deviation
from the four-fifths law at FRN. Similarly, (6) highlights the effect of the large-scale motions,
represented by the last term on the right side. Increasing the Reynolds number would help
to reduce this effect, as demonstrated by Antonia and Burattini [26], Antonia et al. [33] who
showed that (δu)3 approaches 4

5 εr with increasing Reλ in homogeneous isotropic turbulence.
Figure 1 shows the variation of the last term on the right side of Equations (5) and (6),

divided by r∗ and r∗4/3, respectively. Strictly, the effect of the large scales should be zero
before testing K41 and K62. We can observe from this figure that these terms decrease
slowly with increasing Reλ, highlighting the lingering effect of the large-scale motion

responsible for the lack of a power-law behaviour for (δu)3 and (δu)4. In particular,
values of Reλ between 104 and 105 are required before the effect of the large scales (or
equivalently, the FRN effect) disappears. This constraint is entirely consistent with the
finding of Tang et al. [9] that the dual scaling applies to (δu)n (n = 2, 3, 4, 6) and an overlap
range begins to emerge when Reλ > 104; this will be discussed in the next section.

As discussed above, only when the effect of the large scales becomes negligible over
a sufficiently large range of r, which requires Reλ → ∞, can the 4/5 law (or Equation (2))
be observed convincingly. We recall that Sagaut and Cambon [28] summarized the pre-

dictions of Qian [3], Lindborg [22], Moisy et al. [23], Lundgren [24,25] for (δu)3 (see their
Tables 4.4 and 4.5 where a few empirical models that account for the Reynolds- dependency

of −(δu)3/εr and the maximum of −(δu)3 are displayed). These models, together with
the Eddy-Damped Quasi-Normal Markovian (EDQNM) result, the prediction of Antonia
and Burattini [26], and experimental and numerical data, are shown in their Figure 4.6.
This latter figure was discussed by Meldi et al. [34]. In particular, results based on the
EDQNM model of Bos and Bertoglio [63] were presented for both free decaying and forced
HIT. These are shown in Figure 2. For the reasons discussed in Meldi et al. [34], we have
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not included the grid turbulence data of Comte-Bellot and Corrsin [64] and the EDQNM
results of Briard et al. [65] (as reported in Sagaut and Cambon [28]). There is almost per-
fect agreement between the prediction based on the scale-by-scale budget [26] and the
EDQNM [34] in decaying HIT. This is rather impressive in view of the different approaches
adopted by Antonia and Burattini [26] and Meldi et al. [34]. Antonia and Burattini [26]
used Equation (5) with an empirical model for f (see their Equation (2.8) which contains a
typo: the power-law exponent 2c− 2 in (1 + βr∗), viz. (1 + βr∗)2c−2, was left out) and a
power-law for u2, viz. u2 ∼ xm with m = −1.25. For Meldi et al. [34], Lin’s transport equa-
tion for E(κ) is solved, the initial spectrum having a slope (κ → 0) of 2 (i.e., σ = 2, which is
generally associated with Saffman turbulence [66]), which corresponds to m = −1.20 (note
that m = −2(σ + 1)/(σ + 3)). One expects that the green curve in Figure 2 will depend on
the choice of σ, at least at small to moderate Reλ. Similarly, for experimental data, the black
curve will depend on the choice of initial conditions; this is confirmed by the trend of the
Mydlarski and Warhaft [35] data in Figure 2. As pointed out by Sagaut and Cambon [28]
that “Reλ ≥ 50,000 is required to recover the 4/5 value in freely decaying turbulence while
Reλ ≥ 5000 is enough in forced turbulence” (see Figure 2). These results reinforce Antonia
and Burattini’s [26] finding that, for decaying HIT, Reλ should probably exceed 106 before

the IR for (δu)3 is established unequivocally, Qian’s [2] prediction that Reλ should be higher

than 104 in order to have an IR wider than one decade for (δu)3 and the predictions of
Antonia et al. [33] and Tang et al. [9] that the values of Reλ between 104 and 105 are required
before one can claim an IR for (δu)n (n = 2, 3, 4, 6) of modest extent. Evidently, the values of
Reλ for the establishment of an IR suggested by the above authors are currently beyond the
reach of the experiments and direct numerical simulations. Although there is no doubt that,

for forced turbulence, −(δu)3/εr reaches 4/5 at a smaller Reλ than for decaying turbulence,

a clear plateau for (δu)2/(εr)2/3 cannot be observed. In particular, the distribution for
this quantity exhibits a relatively sharp rise towards the upper end of the scaling range

when forcing is applied. This clearly affects the slope d log((δu)2)/d log r, as can be seen in
Figure 9 of Meldi et al. [34] where the largest Reλ is 106. Mainly, on the basis of this result,
Meldi et al. [34] inferred that conclusions drawn from forced turbulence studies do not
necessarily apply to decaying turbulence and vice versa.
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10
4

10
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-0.05
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0.05
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0.35

Figure 1. Reλ variation of the last term on the right side of Equation (5) (red curve) and last term
on the right side of (6) (blue curve), divided by r/η and (r/η)4/3, respectively, at r = λ in grid
turbulence. The red curve has already been reported in Tang et al. [32] (see their Figure 7). This
figure is reproduced from Figure 5 of Djenidi et al. [57] with permission. The horizontal dashed line
indicates the value of 0.
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Figure 2. Maximum values of −(δu)3/εr in decaying (solid symbols) and forced (open symbols) HIT.
(r), Moisy et al. [23]; (r) [67]; (n) Gagne et al. [68]; (l), Mydlarski and Warhaft [35]; (l), estimated
from Figure 12 of Tang et al. [9] which was originally measured by Bodenschatz et al. [40]. Black
curve was calculated from the scale-by-scale budget [26]. Red and green curves correspond to the
EDQNM results of Meldi et al. [34].

3. Dual Scaling and Its Constraints

It is now well established that the requirements for complete similarity or complete
self-preservation of decaying grid turbulence via the KH equation or the Lin equation are
quite stringent, e.g. [28,60,69,70]. The only way to achieve complete self-preservation, i.e.,
self-preservation at all scales, is for Reλ to remain constant during the decay and for the
slope σ of the spectrum in the infrared range of the spectrum, i.e., E(κ → 0) ∼ κσ (the
prefactor does not depend on the time t), to be equal to 1. The corresponding requirement in
physical space is that, e.g. [71] f (r → ∞) ∼ r−2 ( f is the two-point velocity correlation; the
prefactor does not depend on t). It follows that the invariant is u2λ2, which simply reflects
the requirement that Reλ must remain constant during the decay. Using the EDQNM
closure, Meldi and Sagaut [60] provided excellent support for the “−1” rate of decay (i.e.,
u2 ∼ t−1) when σ = 1 and Reλ is constant (starting from the initial time), regardless of the
initial value of Reλ, i.e., independently of whether the decay is in its initial period or its final
period. Batchelor [72] had identified σ = 1 with the requirement for the ‘quasi-equilibrium’
hypothesis. He noted however that the distribution of energy in the very big eddies cannot
comply with σ = 1. Note also that σ = 1, 2, 3 are incompatible with McComb’s [73]
mathematical results for the low wavenumber behaviour of E(κ) in isotropic turbulence.
McComb [73] emphasized that ’his work says nothing about ’Batchelor turbulence’ versus
Saffman turbulence’. The significance of σ has yet to be clarified for grid turbulence,
where many factors may be involved in determining the initial conditions (see for example
Lavoie et al. [8]). The precise relationship between the initial conditions and the rate of
decay exponent for u2 has yet to be discovered. This applies also to the direct numerical
simulation results for free decaying turbulence (see, e.g. [8,74]).

Since the above requirements are not physically realizable, a more reasonable ap-
proach is to consider incomplete or partial self-preservation. This leads almost naturally to
considering a dual scaling approach, which is physically realizable, where self-preservation
is now satisfied at either small κ or large κ for Lin’s equation or small r or large r for the KH
equation. We discuss this in Section 3.1 in the context of Lin’s equation and in Section 3.2 in
the context of the scale-by-scale energy budget, which corresponds to the KH equation.
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3.1. Dual Scaling of the Energy Spectrum

Tennekes and Lumley [51] first examined a dual scaling of the energy spectrum
E(κ), i.e., a scaling based on the Kolmogorov scales (uK, η) and another based on (u′, L)
representative of the large scale motion in a shear flow. The starting point is the recognition
that the small and large wavenumber portions of E(κ), the 3D energy spectrum, scale
differently. The high wavenumber end of the spectrum should scale on Kolmogorov
scales, viz.

E(κ)
ν5/4ε1/4 =

E(κ)
u2

Kη
= f (κη). (11)

For small wavenumbers, the principal parameters are the mean strain rate S, assumed to
be u′/L, and the rate, assumed to be ε (≡ u′3/L), at which energy is transferred from large
to small scales, i.e., E(κ) is now described by

E(κ)
ε3/2S−5/2

=
E(κ)
u′2L

= F(κL), (12)

where S = u′/L. Equating (11) and (12) leads to a solution

E(κ) = αε2/3κ−5/3, (13)

where α is the Kolmogorov (Obukhov) constant. Tennekes and Lumley [51] use κL = 367
and κη ≈ 0.05 to delineate the boundaries of the inertial range. Their Figure 8.6 is replotted
in Figure 3 where we have used Reλ (≡151/2R1/2

L ) instead of RL, mainly because, from an
experimental perspective, λ can be determined more accurately than L. The intersection
of the two lines is at Reλ = 1425. Reλ would need to be at least one order of magnitude
larger than this value before one could claim to have an inertial range of significant extent.
We realise there is unavoidable arbitrariness in constructing Figure 3. Nonetheless, the
delineated region is not implausible and, as concluded by Tennekes and Lumley [51],
highlights the difficulty in encountering an inertial range in laboratory flows. Gamard
and George [52] used this dual scaling approach to describe how the longitudinal velocity
spectrum, as measured by Mydlarski and Warhaft [35] in grid turbulence, evolves with
Reλ in the overlap region. They observe that the scaling based on (uK, η) extends to
increasingly smaller values of κ1η. In contrast, the scaling based on (u′, L) extends to
increasingly more significant values of κ1L as Reλ increases (see, for example, Figure 3 of
Gamard and George [52]). Such a feature can also be observed in Figure 4, which shows
distributions of the one dimensional energy spectra, normalized by (u′, L) and (uK, η), in
grid turbulence at Reλ= 110–1450. Here, the maximum Reλ is much larger than that of
Gamard and George [52] where the maximum Reλ is 470. More importantly, both scalings
should eventually overlap in the inertial range over which Equation (13) is valid as Reλ

continues to increase. This can be confirmed by Figure 5 which shows the (u′, L) and (uK, η)
normalized energy spectra in decaying isotropic turbulence using the EDQNM model at
Reλ = 103, 104 and 105 respectively. In particular, at Reλ = 104 and 105, the upper value
of κL exceeds 104 whilst the lower value of κη lies below 10−4. Taking Reλ = 5× 104

and using the isotropic relation L
η = Cε

Re3/2
λ

153/4 with Cε = 0.8 [9], we can estimate that the

overlap region is given by 10−4 . κη . 8.5× 10−3. Evidently, a distinct “(κ−5/3)” range of
overlap, smaller than two decades, between the (u′, L) and (uK, η) scalings can be observed
at Reλ = 104 and 105. A similar behaviour can be observed in Figure 3 at comparable
Reλ. The overlap region in Figure 5 is unlikely to depend on the choice of the spectrum
slope parameter σ (E(κ → 0) ∼ κσ), at least for σ= 1 to 4; the choice of σ only affects the
distributions in the range 0 . κL . 1. Note that σ = 2 corresponds to what is described as
Saffman turbulence [66] whilst σ = 4, which is based on the Loitsiansky invariant [75], is
generally referred to as Batchelor turbulence (see Batchelor [59]). Gamard and George [52]
used this dual scaling approach to describe how the longitudinal velocity spectrum, as
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measured by Mydlarski and Warhaft [35] in grid turbulence, evolves with Reλ in the
overlap region. In the scale range of Gamard and George [52] at finite Reynolds numbers,
the spectrum was assumed to vary, albeit approximately, as ακ

−5/3+β
1 , where α and β

depend on Reλ. In the limit Reλ → ∞, β→ 0 and α→ constant and thus (13) is established.
Figure 6 shows the dependence of the difference (5/3− β) on Reλ in grid turbulence. The
“−5/3” power-law scaling is approached slowly as Reλ increases. This is further confirmed
by the local slope (LSE = d log(E(κ))/d log κ) in decaying isotropic turbulence using the
EDQNM model at Reλ = 204, 471, 1131, 104, 105 and 106 respectively (Figure 7a).

Figure 3. The emergence of an inertial subrange (red region) in the context of energy spectrum with
increasing Reλ. The two lines correspond to κL = 367 and κη = 0.052 respectively. This figure is
similar to Figure 8.6 of Tennekes and Lumley [51] except we have used Reλ instead of RL.
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Figure 4. (a) Distributions of one-dimensional energy spectra φu(κ1), normalized by (u′, L), in grid
turbulence at Reλ = 110–1450; they are plotted using the data in Figure 1a of Tang et al. [9], originally
measured by Bodenschatz et al. [40]. (b) corresponding distributions normalized by (uK , η).
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Figure 5. (a) Distributions of three-dimensional energy spectra E(κ), normalized by (u′, L), in decay-
ing isotropic turbulence using the EDQNM model at Reλ = 103, 104 and 105 respectively. (b) corre-
sponding distributions normalized by (uK , η). They are plotted using the data in Figures 5a and 5g
of Meldi and Sagaut [60]. The curves correspond to σ = 2.
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Figure 6. 5/3− β (φu(κ1) ∼ κ
−(5/3−β)
1 ) in grid turbulence (n [35]; l [36]). Dashed horizontal line:

5/3. Black empirical curve, 5/3− 8Re−3/4
λ [36].
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Figure 7. (a) Local slope (LSE = d log(E(κ))/d log κ) in decaying isotropic turbulence using the
EDQNM model at Reλ = 204, 471, 1131, 104, 105 and 106 respectively. Dashed horizontal line: −5/3.

(b) Local slope (LS2 = d log((δu)2)/d log r) corresponding to (a). Dashed horizontal line: 2/3. They
are plotted using the data in Figures 2 and 9a of Meldi et al. [34].
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3.2. Dual Scaling of the Scale-By-Scale Energy Budget

The transport equation for (δu)2 is given by

4
5

εr = −(δu)3 + 6ν
∂

∂r
(δu)2 − 3

r4

∫ r

0
s4

[
U

∂(δu)2

∂x

]
ds, (14)

where U is the mean (constant) velocity in the x direction and the last term reflects the

contribution from the large scales to the transport of (δu)2 in homogeneous and isotropic
turbulence, e.g. [5,76]. Equation (14) has already been satisfactorily validated against
grid turbulence data, e.g. [5,8,77]. Normalizing Equation (14) by Kolmogorov scales and
assuming u2 ∼ xm with m = −1 lead to Equation (5).

Tang et al. [9], Antonia et al. [50] examined the conditions for which Kolmogorov
scaling (uK, η) satisfies the similarity of Equation (14). Briefly, when the effect of the large-
scale term (the last term in Equation (14)) is neglected, Equation (14) can be rewritten as

4
5

r
l0

=
6νu2

0
εl2

0
f ′ −

u3
0

εl0
g
(

r
l0

)
, (15)

when the (uK = u0, η = l0) scaling applies (here, the prime signifies a derivative with
respect to r/l0), so that εl0/u3

0 and εl2
0/νu2

0 (or εl0/u3
0, u0l0/ν) are constants. Clearly, (uK, η)

is a possible solution since

εη

u3
K
= 1 and

uKη

ν
= 1. (16)

Tang et al. [9] also examined the conditions for which the scaling based on (u′, L) satisfy
the similarity of Equation (14). When the large-scale term (the last term in Equation (14)) is
retained and the viscous term is neglected, Equation (14) can be rewritten as

4
5

r
l0

= −
u3

0
εl0

g
(

r
l0

)
+

3

(r/l0)
4

(∫ r/l0

0

(
s
l0

)4
f
(

r
l0

)
ds
l0

)[
U
ε

∂u2
0

∂x
−

Uu2
0

ε

(
r
l0

)2 f ′

l0
dl0
dx

]
. (17)

The first term within square brackets is constant since ε̄ = − 3
2 U ∂u2

0
∂x is the turbulent energy

budget (when u0 ≡ u′). The coefficient of the second term, i.e., Uu2
0

ε
dl0
dx is also constant

with the (u′, L) scaling since the normalized dissipation-rate εL/u′3 is constant and 1
u′

dL
dx is

also constant as both u′ and dL/dx vary as xm/2 when the energy decays according to a
power-law, viz. u2 ∼ xm and ε ∼ xm−1. It is worth mentioning that the (u′, L) scaling may
depend on the flow types since εL/u′3 differs from flow to flow (see for example Figure 2
of [9]). Even in a given flow such as grid turbulence, the (u′, L) scaling may also depend on
the initial conditions.

The above considerations indicate that similarity based on (uK, η) can satisfy (15)
when r is sufficiently small. This is supported by the grid turbulence data in Figure 8a
over a significant range of Reλ. Equally, (17) admits a similarity solution based on (u′, L)
when r is sufficiently large, which is supported by the grid turbulence data in Figure 8b.
Since both scalings must eventually overlap as Reλ → ∞, the overlap region should
include the inertial range. Regardless of the scaling used, this overlap region should
satisfy similarity and hence be independent of Reλ, which leads to a ‘2/3’ power-law

scaling for (δu)2 [9]. This result was also derived by Lundgren [24] from the Karman-
Howarth equation using matched asymptotic expansions when Reλ → ∞. A similar result
was derived earlier by Gamard and George [52] in the context of the u spectrum; the
approach adopted in this paper is consistent with the asymptotic invariance principle and
the methodology of near-asymptotics, introduced by George [78,79]. We recall that Ni and
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Xia [30] examined the prefactors of (δu)2 (A2) and the one-dimensional energy spectrum
(α) in the scaling range for various flows, e.g. in the central region of a cylindrical Rayleigh-
Benard turbulent convection cell, an axisymmetric jet, a turbulent boundary layer and a
stationary forced periodic box turbulence over a large range of Reλ(= 55 ∼ 1450). They

found that all prefactors of (δu)2 and spectra in these flows depend on Reλ and the type of
flow. In particular, they found that α/A2 − 0.25 = 1.95Re−0.68

λ and the widely used relation
A2 = 4.02α holds only when Reλ & 105. These results are consistent with the dual scaling
approach outlined in this paper. It is worth mentioning that the IR in real space should be
much shorter than that in wavenumber space [30]. This can also be inferred from the local

slopes for E(κ) (Figure 7a) and for (δu)2 (Figure 7b) in decaying isotropic turbulence using
the EDQNM model at Reλ = 204, 471, 1131, 104, 105 and 106 respectively. In a recent paper,

Kuchler et al. [44] examined the behaviour of (δu)2 and (δu)3 in grid turbulence at very
large Reλ (=2680–5779). One important conclusion is that they do not observe power laws

for (δu)2, even at Reλ = 5779. Actually, their −(δu)3/(εr) distributions also do not show
a plateau (see their Figure 1) at the same Reλ. Such a behaviour is fully consistent with
the above observations in the context of Figures 2 and 7b that much larger values of Reλ,
beyond the reach of the present experiments, are required to establish the power laws for

(δu)2 and (δu)3 in freely decaying turbulence.
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Figure 8. (a) Distributions of (δu)2, normalized by (uK , η) in grid turbulence. (b) Corresponding
distributions normalized by (u′, L). This figure is reproduced from Figure 6 of Tang et al. [9] with
permission; the data are originally measured by Kaminsky et al. [43].

We stress that the above dual scaling approach can be extended to higher orders which
leads to a power-law relation (δu)n ∼ rn/3 when Reλ → ∞ [9]. In particular, Tang et al. [9]
compared an empirical model for (δu)n (n = 2, 3, 4, 6), i.e.,

(δu)n

un
K

=
1

15n/2 Fn
( r

η )
n(1 + Dn(

r
L )
)2Cn−n(

1 + Bn(
r
η )

2
)Cn

, (18)

where Bn, Cn, Dn and Fn are constants (they are given in Tables 2 and 3 of Tang et al. [9]
except for Cn(= n/3) which is justified in Tang et al. [9]) with grid turbulence data over
a significant range of Reλ. The model, which is consistent with (δu)n ∼ rn/3 as Reλ → ∞,
is in reasonable accord with the data for values of Reλ up to about 1500, thus allowing
extrapolation of the model-based results to larger values of Reλ. As an example, we

show in Figure 9a the distributions of (δu)4/(εr)4/3 based on an empirical model for

(δu)4 at Reλ = 110, 264, 508, 1000, 1450, 104 and 105 respectively. Also, shown are the
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corresponding grid turbulence data, measured by Kaminsky et al. [43]. Figure 9b shows the

corresponding local slope LS4 (= d log((δu)4)/d log r). There is strictly no power-law range

for the experimental data of (δu)4, even at Reλ ∼ 1500. It is evident that the local slope LS4
continues to evolve with Reλ (Figure 9b) and begins to exhibit a small plateau only when
Reλ exceeds 104. An important inference from this trend is that the grid turbulence data
are consistent with (3).

Using the Hölder inequality, Djenidi et al. [80] derived a constraint for (δu)n, i.e.,

(p3 − p1)ζ2p2 = (p3 − p2)ζ2p1 = (p2 − p1)ζ2p3 , (19)

where (δu)n ∼ rζn and p1 ≤ p2 ≤ p3 are any three positive numbers. Equation (19) leads
to ζ2n = nζ2 when taking p1 = 0, p2 = 1 and p3 = n. This indicates that the power-law
exponents of even order increase linearly with n. More importantly, using the Cauchy-
Schwarz inequality, which is a special case of the Hölder inequality, and the 4/5-law, they
further derived ζn = n/3 when Reλ → ∞, i.e the prediction of K41.

10
0

10
2

10
4

10
6

0

5

10

15

20

25

10
0

10
2

10
4

10
6

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Figure 9. (a) Distributions of (δu)4/(εr)4/3 based on an empirical model for (δu)4 at Reλ = 110, 264,
508, 1000, 1450, 104 and 105 respectively [9]. Symbols with the same color are the corresponding grid

turbulence data [43]. (b) Local slope (LS4 = d log((δu)4)/d log r) corresponding to the distributions
in (a). Dashed horizontal line: 4/3. This figure is reproduced from Figure 13 of Tang et al. [9]
with permission.

It is worth mentioning that, based on the assumption of local homogeneity and local
isotropy, the pressure structure function can be written solely in terms of the fourth-order
velocity structure functions [81]

Dp(r) = − 1
3 D1111(r) + 4

3 r2
∫ ∞

r y−3[D1111(y)
+Dχχχχ(y)− 6D11γγ(y)]dy
4
3

∫ r
0 y−1[Dχχχχ(y)− 3D11γγ(y)]dy,

(20)

where Dp(r) is the pressure structure function, D1111(r) =(δu)4, χ and γ stand for 2 or 3.
Since dual scaling applies to the fourth-order velocity structure functions [9], one would
expect, based on Equation (20), that dual scaling will also apply to Dp(r) and concomitantly,
the pressure spectrum Ep(κ). This would lead to Dp(r) ∼ r4/3 and Ep(κ) ∼ κ−7/3 in the
overlap region when Reλ → ∞. Indeed, the EDQNM results of Meldi and Sagaut [82] in
decaying HIT confirmed that there are about three decades of IR in the pressure spectrum
with a K41 −7/3 [83] scaling at Reλ = 106 (see their Figure 2).



Atmosphere 2024, 15, 540 13 of 19

4. Dual Scaling for Higher-Order Even Moments of δu

A final comment is devoted to the scaling of higher-order, even longitudinal structure
functions (δu)n, for n = 4, 6, 8, . . . , in the context of the dual scaling approach. Transport
equations of these higher-order structure functions were developed by Peters et al. [84]
and showed that dissipative effects are reflected in complex terms, involving correlations
between the energy dissipation rate and lower-order moments of velocity increments.
Furthermore, Boschung et al. [85] introduced exact dissipative scales for the even-order
longitudinal structure functions. The derivation was based on exact relations between even-
order moments of the longitudinal velocity gradient (∂u/∂x)n and εn/2. Boschung [86]
related moments of the dissipation rate to moments of the longitudinal velocity derivatives,
which simplifies to some extent the assessment of different terms in the transport equations.

The similarity length scale was shown to be ηg,n = (ν3/εn/22/n
)1/4, where the sub-

scripts ‘g’ and ‘n’ stand for ‘generalized’ and ‘n’-th order, respectively. The velocity scale

is ug,n = (νεn/22/n
)1/4, i.e., the dissipative scales depend on the moments of εn/2 and

not on the mean value of the dissipation rate itself. The derivations are exact for longitu-
dinal even-ordered structure functions under the assumptions of (local) isotropy, (local)
homogeneity and incompressibility. Direct numerical simulations (DNS) for Reynolds
numbers up to Reλ = 754 were used to validate the generalized scalings. The generalized,
order-dependent viscous scales ηg,n are cut-off length scales which are smaller than η,
and decrease with increasing order and Reynolds-number [85]. Gauding et al. [87] have
extended the approach for the scalar field fed by a large-scale mean scalar gradient and
revealed that the appropriate similarity scales for the dissipative range are based on the
n-th power of the scalar dissipation rate.

In the following, we show that the dual scaling approach, combined with the similarity
scales ηg,n and ug,n previously defined, are consistent with a scaling for the n-th order
structure function of the longitudinal velocity component (δu)n ∼ rn/3. In other words,
the n/3 scaling, although conditioned by extremely high values of the Reynolds number, is
robust with respect to the particular choice of the small-scale similarity scales. Specifically,
the dual scaling requires small scales to be universal when appropriately normalized with
respect to ηg,n, ug,n, whereas for very large scales the characteristic scale is L (to be defined)
and u′, a typical velocity. The final result is

u′n

ug,nn
∼
(
L

ηg,n

)Cn

(21)

We now need to ascertain the dependence of Cn on n. Specific to higher-order moments,
the definition of L should comply with the large-scale limit of the transport equation of
(δu)n, which is

u′n+1

L ∼ u′n−2ε, (22)

obviously consistent, for n = 2 with the definition of Cε. Note that there is no reason
to use the classical normalized dissipation rate Cε = 1, in the context of higher-order
moments. Indeed, ε is the destruction rate of the kinetic energy (i.e., the second-order
moments), whereas we need the destruction rate of the n-th order moment, which is u′n−2ε
(the transport equation of u is multiplied by u′n−1 resulting finally in a dissipative term
u′n−2ε). This appears to be a distinct point with respect to other previous approaches.
Furthermore, the right-hand side of Equation (22) can be written as

u′n−2ε ∼ ε
n−2

2 +1
(
L
u′

) n−2
2

, (23)
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The one-point budget of un scales as

u′n−2ε ∼ u′n+1

L . (24)

Equations (23) and (24) lead to

L ∼ u′3

εn/22/n , (25)

which fully complies, for n = 2 with the classical Cε definition. Injecting (25) in Equation (21)
results in Cn = n/3, which is fully robust with respect to the choice we made for both small
and large scales. The basic assumptions made stand in selecting scales which comply with
the definition per se of the n-th order moment at very small scales (therefore based upon
the n/2-th order of the dissipation), and with the large-scale limits of the transport equation
for the n-th order structure functions, i.e., the one-point budget of the n-th order moment.

5. Concluding Remarks

We have reviewed relatively recent work in connection with the effect of Reλ on a
range of scales which eventually becomes identifiable with the inertial range, when Reλ

reaches very large values. The focus has been mainly on HIT and the various constraints
that act on this range of scales. The main conclusions that can be drawn from this review
are as follows:

(i) Both K41 and K62 were postulated for very large values of Reλ. Analytical consider-

ations in the context of the transport equations of (δu)2 and (δu)3 in decaying grid
turbulence (Equations (5) and (6) and Figure 1) indicate that values of Reλ between
104 and 105 are required before the effect of the large scales (or equivalently, the FRN
effect) disappears. Consequently, Equation (2), i.e., the 4/5 law, will be validated
when the large scale (or non-stationary) term in (5) is no longer important. This is
confirmed by the experimental data and EDQNM results in Figure 2.

(ii) Results, inferred from the dual scaling approach, based on either the energy spectra
or the scale-by-scale energy budget are consistent with those in (i). For the scale-
by-scale energy budget in decaying grid turbulence, the (uK, η) scaling at small
scales should be effective since the two dimensionless parameters in Equation (16)
are universal (by definition). The (u′, L) scaling should be also tenable for both
large scales and scales within the scaling range since both εL/u′3 and 1

u′
dL
dx should

approach constant values as Reλ increases. The dual scaling approach, which satisfies
incomplete similarity of (5), is supported by the experimental data and the EDQNM
results (Figures 4 and 5); it is also supported by the (δu)n (n = 2, 3, 4, 6) distributions
in grid turbulence over a significant range, in the context of laboratory measurements,
of Reλ [9]. When Reλ is sufficiently large, both scalings should overlap, thus leading
to the power-law relations (δu)n ∼ rn/3 and E(κ) ∼ κ−5/3 in the overlap region
over which the inertial range is established. This is consistent with the constraints
imposed by the Hölder and Cauchy-Schwarz inequalities [80]. The EDQNM results of
Meldi et al. [34] (Figure 7), the empirical fit of Mydlarski and Warhaft [35,36] for the
energy spectra (Figure 6) and the extrapolation of Tang et al. [9] for (δu)n (n = 2, 3, 4, 6)
(Equation (18); see also Figure 9 for n = 4) indicate that values of Reλ between
104 and 105 are required before an overlap range begins to emerge. Evidently, the
maximum values of Reλ that are achievable in the laboratory experiments and direct
numerical simulations are, as yet, insufficient to observe a power-law behavior of
significant extent in energy spectra and, more especially, (δu)n. Also, we note that
Equation (9) of McComb [88] (i.e., the energy flux is equal to the dissipation rate
and also the transfer spectrum is zero) requires that an IR exists and that the FRN
effect is negligible, i.e., the Reynolds number must be large, if not very large. This is
consistent with what we find in this review, based on the KH equation when Reλ is
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infinitely large. McComb [11] concluded the discussion in chapter 6 of his monograph
with “our view is that K41 is basically correct and that, in particular, the work of
Gamard and George [52] and of Lundgren [24], when taken together, leave little room
for doubt on this matter”. The EDQNM results (Figure 7) at very high Reλ and those
obtained by extrapolation, via Equation (18) to comparably high values Reλ (Figure 9),
reinforce McComb’s conclusion.

It is worth mentioning that there has been strong support for the (uK, η) scaling
in the context of the energy spectra in the dissipative range in various flows (see for
example Figure 9 of Saddoughi and Veeravalli [89], Figure 6.14 of Pope [90], Figure 3
of Gotoh et al. [67], Figure 5 of Larssen and Devenport [39], Figures 1–2 of Antonia et al. [50]
and Figure 1a of Tang et al. [91]). However, a departure from this scaling has been noted
in stationary forced periodic box turbulence at relatively high Reλ [92–95], the Kolmogorov-
normalized energy spectra increasing systematically (for κη & 0.5) with increasing Reλ. Con-
comitantly, although the skewness of ∂u/∂x (S∂u/∂x) in this flow is constant for
Reλ = 70 ∼ 300, it starts to increase slowly with Reλ, when the latter exceeds a value of
about 300 (see Figure 4 of Antonia et al. [61]). This is in contrast to the significant amount of
experimental support in the context of the Reλ-independence of S∂u/∂x in various flows when
Reλ & 300, as discussed in Section 2. We have already commented [61,62] on the behaviour
of the Kolmogorov-normalized spectra and S∂u/∂x for forced periodic box turbulence.
Briefly, they are not consistent with:

(i) the (uK, η) scaling, inferred from the N-S equation, e.g. [50] (see also Section 3.2);
(ii) the support for the (uK, η) scaling from earlier DNS studies in forced periodic

box turbulence, e.g. [67,96–98], for Reλ up to 700 (see for example the Figure 1
of Yeung et al. [98] which show that S∂u/∂x is constant for Reλ ≈ 240− 700);

(iii) the overwhelming support for the (uK, η) scaling from experimental and EDQNM
data in various other flows, as reviewed in this paper.

Also, the scaling range exponent ζ2 for (δu)2 in forced periodic box turbulence is about
0.72 [99–101]. However, in the same flow, McComb et al. [102,103] found that ζ2 decreases
with increasing Reλ and ζ2 → 0.679 as Reλ → ∞. This is consistent with the EDQNM
results of Meldi et al. [34] which show that, when Reλ = 106, ζ2 approaches a value of
about 0.674 in the scaling range.

Finally, it is worth recalling that the intermittency of the velocity field, which is intrinsic
to the N-S equations, is reflected in quantities such as S∂u/∂x and the flatness of ∂u/∂x
(F∂u/∂x). For the flows considered in Antonia et al. [53], Djenidi et al. [57], Tang et al. [62],
these quantities saturate beyond a certain value of Reλ. Intermittency is also intrinsic to the
heat transport equation. It is well-known that the passive scalar field is more intermittent
than the velocity field, e.g. [1,104]. Even so, the available DNS data in forced periodic
box turbulence show that both the Kolmogorov-Batchelor normalized scalar spectra in the
dissipative range collapse reasonably well and the mixed velocity derivative-temperature
derivative skewness is approximately constant when the Prandtl number is close to 1 [105].
Evidently, it is desirable to do a thorough review of the small-scale statistics in forced
periodic box turbulence for velocity and passive scalar fields; this is beyond the scope of
our review.

Author Contributions: Conceptualization, S.T. and R.A.A.; writing—original draft preparation, S.T.,
L.D. and R.A.A.; writing—review and editing, S.T., L.D. and R.A.A.; visualization, S.T. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was supported by the National Natural Science Foundation of China
(project no. 91952109), Guangdong Basic and Applied Basic Research Foundation (project no.
2023B1515020069), Shenzhen Science and Technology Program (project nos. RCYX2021070609204-
6085 and GXWD20220817171516009) and Fundamental Research Funds for the Central Universities
(project no. HIT.OCEF.2024016).

Institutional Review Board Statement: Not applicable.



Atmosphere 2024, 15, 540 16 of 19

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Sreenivasan, K.; Antonia, R.A. The phenomenology of small-scale turbulence. Ann. Rev. Fluid Mech. 1997, 29, 435–472. [CrossRef]
2. Qian, J. Inertial range and the finite Reynolds number effect of turbulence. Phys. Rev. E 1997, 55, 337–342. [CrossRef]
3. Qian, J. Slow decay of the finite Reynolds number effect of turbulence. Phys. Rev. E 1999, 60, 3409. [CrossRef] [PubMed]
4. Kármán, T.V.; Howarth, L. On the statistical theory of isotropic turbulence. Proc. R. Soc. Lond. A 1938, 164, 192–215. [CrossRef]
5. Danaila, L.; Anselmet, F.; Zhou, T.; Antonia, R.A. A generalization of Yaglom’s equation which accounts for the large-scale forcing

in heated decaying turbulence. J. Fluid Mech. 1999, 391, 359–372. [CrossRef]
6. Lin, C.C. Remarks on the Spectrum of Turbulence Proc First Symposium of Applied Mathematics; American Mathematical Society:

Providence, RI, USA, 1947; pp. 81–86.
7. Comte-Bellot, G.; Corrsin, S. The use of a contraction to improve the isotropy of grid-generated turbulence. J. Fluid Mech. 1966,

25, 657–682. [CrossRef]
8. Lavoie, P.; Djenidi, L.; Antonia, R.A. Effects of initial conditions in decaying turbulence generated by passive grids. J. Fluid Mech.

2007, 585, 395–420. [CrossRef]
9. Tang, S.L.; Antonia, R.A.; Djenidi, L. Dual scaling and the n−thirds law in grid turbulence. J. Fluid Mech. 2023, 975, A32. [CrossRef]
10. Kolmogorov, A.N. Dissipation of energy in the locally isotropic turbulence. Proc. R. Soc. Lond. A 1991, 434, 15–17.
11. McComb, W.D. Homogeneous, Isotropic Turbulence, Phenomenology, Renormalization and Statistical Closures; Oxford UniversityPress:

Oxford, UK, 2014.
12. Batchelor, G.K. Kolmogoroff’s theory of locally isotropic turbulence. Proc. Camb. Phil. Soc. 1947, 43, 533–559. [CrossRef]
13. Monin, A.S. The theory of locally isotropic turbulence. Dokl. Akad. Nauk. SSSR 1959, 125, 515–518.
14. Frisch, U. Turbulence: The Legacy of AN Kolmogorov; Cambridge University Press: Cambridge, UK, 1995.
15. Lindborg, E. A note on Kolmogorov’s third-order structure-function law, the local isotropy hypothesis and the pressure–velocity

correlation. J. Fluid Mech. 1996, 326, 343–356. [CrossRef]
16. Hill, R.J. Applicability of Kolmogorov’s and Monin’s equations of turbulence. J. Fluid Mech. 1997, 353, 67–81. [CrossRef]
17. Monin, A.S.; Yaglom, A.M. Statistical Fluid Dynamics; MIT: Cambridge, MA, USA, 2007; Volume 2.
18. Yaglom, A.M. Modern state of Kolmogorov’s theory of developed turbulence. In Advances in Turbulence X; Andersson, H.I., de

Krogstad, P.Å., Eds.; CIMNE: Barcelona, Spain, 2004; pp. 443–448
19. Kármán, T.V.; Lin, C.C. On the concept of similiarity in the theory of isotropic turbulence. Rev. Modern Phys. 1949, 21, 516–519.

[CrossRef]
20. Kolmogorov, A.N. The local structure of turbulence in incompressible viscous fluid for very large Reynolds number. Proc. R. Soc.

Lond. A 1991, 434, 9–13.
21. Qian, J. Normal and anomalous scaling of turbulence. Phys. Rev. E 1998, 58, 7325–7329. [CrossRef]
22. Lindborg, E. Correction to the four-fifths law due to variations of the dissipation. Phys. Fluids 1999, 11, 510. [CrossRef]
23. Moisy, F.; Tabeling, P.; Willaime, H. Kolmogorov equation in a fully developed turbulence experiment. Phys. Rev. Lett. 1999,

82, 3994–3997. [CrossRef]
24. Lundgren, T.S. Kolmogorov two-thirds law by matched asymptotic expansion. Phys. Fluids 2002, 14, 638–642. [CrossRef]
25. Lundgren, T.S. Kolmogorov turbulence by matched asymptotic expansions. Phys. Fluids 2003, 15, 1074–1081. [CrossRef]
26. Antonia, R.A.; Burattini, P. Approach to the 4/5 law in homogeneous isotropic turbulence. J. Fluid Mech. 2006, 550, 175–184.

[CrossRef]
27. Tchoufag, J.; Sagaut, P.; Cambon, C. Spectral approach to finite Reynolds number effects on Kolmogorov’s 4/5 law in isotropic

turbulence. Phys. Fluids 2012, 24, 015107. [CrossRef]
28. Sagaut, P.; Cambon, C. Homogeneous Turbulence Dynamics; Springer: Berlin/Heidelberg, Germany, 2018.
29. Bos, W.J.T.; Chevillard, L.; Scott, J.F.; Rubinstein, R. Reynolds number effect on the velocity increment skewness in isotropic

turbulence. Phys. Fluids 2012, 24, 015108. [CrossRef]
30. Ni, R.; Xia, K. Kolmogorov constants for the second-order structure function and the energy spectrum. Phys. Rev. E 2013,

87, 023002. [CrossRef]
31. Boschung, J.; Gauding, M.; Hennig, F.; Denker, D.; Pitsch, H. Finite Reynolds number corrections of the 4/5 law for decaying

turbulence. Phys. Rev. Fluids 2016, 1, 064403. [CrossRef]
32. Tang, S.L.; Antonia, R.A.; Djenidi, L.; Danaila, L.; Zhou, Y. Finite Reynolds number effect on the scaling range behavior of

turbulent longitudinal velocity structure functions. J. Fluid Mech. 2017, 820, 341–369. [CrossRef]
33. Antonia, R.; Tang, S.; Djenidi, L.; Zhou, Y. Finite Reynolds number effect and the 4/5 law. Phys. Rev. Fluids 2019, 4, 084602.

[CrossRef]
34. Meldi, M.; Djenidi, L.; Antonia, R.A. Sensitivity analysis of the second and third-order velocity structure functions to the Reynolds

number in decaying and forced isotropic turbulence using the EDQNM model. Eur. J. Mech.-B/Fluids 2021, 88, 229–242. [CrossRef]

http://doi.org/10.1146/annurev.fluid.29.1.435
http://dx.doi.org/10.1103/PhysRevE.55.337
http://dx.doi.org/10.1103/PhysRevE.60.3409
http://www.ncbi.nlm.nih.gov/pubmed/11970160
http://dx.doi.org/10.1098/rspa.1938.0013
http://dx.doi.org/10.1017/S0022112099005418
http://dx.doi.org/10.1017/S0022112066000338
http://dx.doi.org/10.1017/S0022112007006763
http://dx.doi.org/10.1017/jfm.2023.888
http://dx.doi.org/10.1017/S0305004100023793
http://dx.doi.org/10.1017/S0022112096008348
http://dx.doi.org/10.1017/S0022112097007362
http://dx.doi.org/10.1103/RevModPhys.21.516
http://dx.doi.org/10.1103/PhysRevE.58.7325
http://dx.doi.org/10.1063/1.869924
http://dx.doi.org/10.1103/PhysRevLett.82.3994
http://dx.doi.org/10.1063/1.1429965
http://dx.doi.org/10.1063/1.1558332
http://dx.doi.org/10.1017/S0022112005008438
http://dx.doi.org/10.1063/1.3678334
http://dx.doi.org/10.1063/1.3678338
http://dx.doi.org/10.1103/PhysRevE.87.023002
http://dx.doi.org/10.1103/PhysRevFluids.1.064403
http://dx.doi.org/10.1017/jfm.2017.218
http://dx.doi.org/10.1103/PhysRevFluids.4.084602
http://dx.doi.org/10.1016/j.euromechflu.2021.04.003


Atmosphere 2024, 15, 540 17 of 19

35. Mydlarski, L.; Warhaft, Z. On the onset of high- Reynolds-number grid-generated wind tunnel turbulence. J. Fluid Mech. 1996,
320, 331–368. [CrossRef]

36. Mydlarski, L.; Warhaft, Z. Passive scalar statistics in high-Peclet-number grid turbulence. J. Fluid Mech. 1998, 358, 135–175. [CrossRef]
37. Kang, H.S.; Chester, S.; Meneveau, C. Decaying turbulence in an active-grid-generated flow and comparisons with large-eddy

simulation. J. Fluid Mech. 2003, 480, 129–160. [CrossRef]
38. Gylfason, A.; Ayyalasomayajula, S.; Warhaft, Z. Intermittency, pressure and acceleration statistics from hot-wire measurements in

wind-tunnel turbulence. J. Fluid Mech. 2004, 501, 213–229. [CrossRef]
39. Larssen, J.V.; Devenport, W.J. On the generation of large-scale homogeneous turbulence. Exp. Fluids 2011, 50, 1207–1223. [CrossRef]
40. Bodenschatz, E.; Bewley, G.; Nobach, H.; Sinhuber, M.; Xu, H. Variable density turbulence tunnel facility. Rev. Sci. Instrum. 2014,

85, 093908. [CrossRef]
41. Sinhuber, M.; Bodenschatz, E.; Bewley, G.P. Decay of turbulence at high Reynolds numbers. Phys. Rev. Lett. 2015, 114, 034501.

[CrossRef]
42. Sinhuber, M.; Bewley, G.P.; Bodenschatz, E. Dissipative effects on inertial-range statistics at high Reynolds numbers. Phys. Rev.

Lett. 2017, 119, 134502. [CrossRef] [PubMed]
43. Kaminsky, J.; Birnir, B.; Bewley, G.P.; Sinhuber, M. Reynolds number dependence of the structure functions in homogeneous

turbulence. J. Nonlinear Sci. 2020, 30, 1081–1114. [CrossRef]
44. Kuchler, C.; Bewley, G.P.; Bodenschatz, E. Universal Velocity Statistics in Decaying Turbulence. Phys. Rev. Lett. 2023, 131, 024001.

[CrossRef] [PubMed]
45. Kolmogorov, A.N. A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible

fluid at high Reynolds number. J. Fluid Mech. 1962, 13, 82–85. [CrossRef]
46. Oboukhov, A. Some specific features of atmospheric turbulence. J. Fluid Mech. 1962, 13, 77–81. [CrossRef]
47. Frisch, U.; Sulem, P.L.; Nelkin, M. A simple dynamical model of intermittent fully developed turbulence. J. Fluid Mech. 1978,

87, 719–736. [CrossRef]
48. She, Z.S.; Leveque, E. Universal scaling laws in fully developed turbulence. Phys. Rev. Lett. 1994, 72, 336. [CrossRef]
49. Maurer, J.; Tabeling, P.; Zocchi, G. Statistics of turbulence between two counterrotating disks in low-temperature helium gas.

Europhys. Lett. 1994, 26, 31. [CrossRef]
50. Antonia, R.A.; Djenidi, L.; Danaila, L. Collapse of the turbulent dissipation range on Kolmogorov scales. Phys. Fluids 2014,

26, 045105. [CrossRef]
51. Tennekes, I.; Lumley, J. A first Course in Turbulence; MIT Press: Cambridge, MA, USA, 1972.
52. Gamard, S.; George, W.K. Reynolds number dependence of energy spectra in the overlap region of isotropic turbulence. Flow

Turbul. Combust. 2000, 63, 443–477. [CrossRef]
53. Antonia, R.A.; Djenidi, L.; Danaila, L.; Tang, S.L. Small scale turbulence and the finite Reynolds number effect. Phys. Fluids 2017,

29, 020715. [CrossRef]
54. Tang, S.L.; Antonia, R.A.; Djenidi, L.; Zhou, Y. Can small-scale turbulence approach a quasi-universal state? Phys. Rev. Fluids

2019, 4, 024607. [CrossRef]
55. Qian, J. Closure approach to high-order structure functions of turbulence. Phys. Rev. Lett. 2000, 84, 646. [CrossRef] [PubMed]
56. Shi, J.Z. Qian Jian (1939–2018) and his contribution to small-scale turbulence studies. Phys. Fluids 2021, 33, 041301. [CrossRef]
57. Djenidi, L.; Antonia, R.; Tang, S. Scale invariance in finite Reynolds number homogeneous isotropic turbulence. J. Fluid Mech.

2019, 864, 244–272. [CrossRef]
58. Dryden, H. A review of the statistical theory of turbulence. Q. Appl. Math. 1943, 1, 7–42. [CrossRef]
59. Batchelor, G. Energy decay and self-preserving correlation functions in isotropic turbulence. Q. Appl. Math. 1948, 6, 97–116.

[CrossRef]
60. Meldi, M.; Sagaut, P. Further insights into self-similarity and self-preservation in freely decaying isotropic turbulence. J. Turbul.

2013, 14, 24–53. [CrossRef]
61. Antonia, R.A.; Tang, S.L.; Djenidi, L.; Danaila, L. Boundedness of the velocity derivative skewness in various turbulent flows.

J. Fluid Mech. 2015, 781, 727–744. [CrossRef]
62. Tang, S.L.; Antonia, R.A.; Djenidi, L.; Danaila, L.; Zhou, Y. Reappraisal of the velocity derivative flatness factor in various

turbulent flows. J. Fluid Mech. 2018, 847, 244–265. [CrossRef]
63. Bos, W.J.; Bertoglio, J.P. Lagrangian Markovianized field approximation for turbulence. J. Turbul. 2013, 14, 99–120. [CrossRef]
64. Comte-Bellot, G.; Corrsin, S. Simple Eulerian time correlation of full-and narrow-band velocity signals in grid-generated,’isotropic’

turbulence. J. Fluid Mech. 1971, 48, 273–337. [CrossRef]
65. Briard, A.; Gomez, T.; Cambon, C. Spectral modelling for passive scalar dynamics in homogeneous anisotropic turbulence.

J. Fluid Mech. 2016, 799, 159–199. [CrossRef]
66. Saffman, P.G. Note on the decay of homogeneous turbulence. Phys. Fluids 1967, 10, 1349–1352. [CrossRef]
67. Gotoh, T.; Fukayama, D.; Nakano, T. Velocity field statistics in homogeneous steady turbulence obtained using a high-resolution

direct numerical simulation. Phys. Fluids 2002, 14, 1065–1081. [CrossRef]
68. Gagne, Y.; Castaing, B.; Baudet, C.; Malecot, Y. Reynolds dependence of third-order velocity structure functions. Phys. Fluids

2004, 16, 482–485. [CrossRef]
69. Lesieur, M.; Schertzer, D. Amortissement autosimilaire d’une turbulence à grand nombre de Reynolds. J. Méc. 1978, 17, 609–646.
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