
water

Article

Estimating Baseflow and Baseflow Index in Ungauged Basins
Using Spatial Interpolation Techniques: A Case Study of the
Southern River Basin of Thailand

Pakorn Ditthakit 1,2,* , Sarayod Nakrod 1, Naunwan Viriyanantavong 1, Abebe Debele Tolche 3

and Quoc Bao Pham 4

����������
�������

Citation: Ditthakit, P.; Nakrod, S.;

Viriyanantavong, N.; Tolche, A.D.;

Pham, Q.B. Estimating Baseflow and

Baseflow Index in Ungauged Basins

Using Spatial Interpolation

Techniques: A Case Study of the

Southern River Basin of Thailand.

Water 2021, 13, 3113. https://

doi.org/10.3390/w13213113

Academic Editor: Wencheng Guo

Received: 28 August 2021

Accepted: 1 November 2021

Published: 4 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Center of Excellence in Sustainable Disaster Management (CESDM), Walailak University,
Nakhon Si Thammarat 80160, Thailand; nsarayoo@wu.ac.th (S.N.); jemme.wu42@gmail.com (N.V.)

2 School of Engineering and Technology, Walailak University, Nakhon Si Thammarat 80160, Thailand
3 Haramaya Institute of Technology, School of Water Resources and Environmental Engineering,

Haramaya University, Dire Dawa P.O. Box 138, Ethiopia; abeberobe@gmail.com
4 Faculty of Natural Sciences, Institute of Earth Sciences, University of Silesia in Katowice, Będzińska Street 60,
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Abstract: This research aims to estimate baseflow (BF) and baseflow index (BFI) in ungauged basins
in the southern part of Thailand. Three spatial interpolation methods (namely, inverse distance
weighting (IDW), kriging, and spline) were utilized and compared in regard to their performance.
Two baseflow separation methods, i.e., the local minimum method (LM) and the Eckhardt filter
method (EF), were investigated. Runoff data were collected from 65 runoff stations. These runoff
stations were randomly selected and divided into two parts: 75% and 25% for the calibration and
validation stages, respectively, with a total of 36 study cases. Four statistical indices including mean
absolute error (MAE), root mean squared error (RMSE), correlation coefficient (r), and combined
accuracy (CA), were applied for the performance evaluation. The findings revealed that monthly and
annual BF and BFI calculated by EF were mostly lower than those calculated by LM. Furthermore,
IDW gave the best performance among the three spatial interpolation techniques by providing the
highest r-value and the lowest MAE, RMSE, and CA values for both the calibration and validation
stages, followed by kriging and spline, respectively. We also provided monthly and annual BF and
BFI maps to benefit water resource management.

Keywords: Eckhardt filter method; inverse distance weighting; kriging; local minimum method;
spline; ungauged basin

1. Introduction

Baseflow (BF) is a complete streamflow portion that slowly flows into a stream from the
saturated soil or groundwater storage [1,2] and predominantly contributes to streamflow
during the dry season. It is crucial to understand the hydrological characteristics, especially
the spatiotemporal variation of BF availability in the watershed, to plan and monitor
water resources and ecological systems. BF also helps us understand the hydrology of
the watershed in terms of surface and subsurface water interactions, urbanization effects
on runoff generation, and healthy aquatic habitats within a stream. Owing to the lack
of directly measured BF data in general, the separation method has been recognized for
determining BF. Recently, many researchers have applied and compared the performance
of several different separation methods to obtain BF [3–6]. Eckhardt [3] recommended a
two-parameter filter to be more reasonable than a one-parameter filter and indicated that
the maximum baseflow index (BFImax) values depended on the watershed’s hydrological
and hydrogeological characteristics. Seven different methods of BF separation (namely,
HYSEP1, HYSEP2, HYSEP3, PART, BFLOW, UKIH, and Eckhardt) were investigated by

Water 2021, 13, 3113. https://doi.org/10.3390/w13213113 https://www.mdpi.com/journal/water

https://www.mdpi.com/journal/water
https://www.mdpi.com
https://orcid.org/0000-0001-9847-2177
https://orcid.org/0000-0001-9633-4002
https://orcid.org/0000-0002-0468-5962
https://doi.org/10.3390/w13213113
https://doi.org/10.3390/w13213113
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/w13213113
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w13213113?type=check_update&version=2


Water 2021, 13, 3113 2 of 15

Eckhardt [4], and the study indicated that the Eckhardt method was more suitable than the
others. To get precision during the non-precipitation season, Shao, Zhang, Guan, Sadat and
Huang [5] modified an automatic method for separating BF called RDF-M by considering
the precipitation information in the Eckhardt filter technique (RDF-E). Another result from
the study of Gonzales, Noner, Heijkers and Uhlenbrook [6] confirmed that the Eckhardt
method did well when compared to other methods in separating baseflow in the lowland
catchment. Schilling and Jones [7] utilized two separation approaches, i.e., local minimum
and recursive digital filter, for finding the baseflow fraction of tile drainage from the
drainage districts of Iowa, USA. For the estimation of the base flow of the Kolubara River
basin in Serbia, Ðukić [8], the graphical method was used to determine the local minimum
value. In the upper reaches of the Barwon River, Southeast Australia, Cartwright et al. [9]
estimated BF using chemical mass balance, local minimum methods, and recursive digital
filters. The BF estimated from the local minimum and recursive digital filters was found to
be higher than those based on the chemical mass balance.

The Baseflow Index (BFI) is another hydrological term defined as the ratio of BF
volume to total runoff volume. This index indicates that a watershed having a high BFI is a
secure source of water supply or vice versa. Chen and Teegavarapu [10] evaluated four
methods of BF separation, i.e., HYSEP, Web-based Hydrograph Analysis Tool (WHAT),
BFLOW, and PART, for 75 runoff gauged stations located in the South Atlantic-Gulf (SAG)
area, U.S. These four methods were calibrated and validated by comparing the observed
BF using the conductivity mass balance (CMB). It was found that the PART and HYSEP
approaches provided the maximum and minimum average BFI values of 0.62 and 0.52,
respectively. Minea [11] compared six methods for BF separation, i.e., local minimum,
Talaksen filter, Chapman filter, recursive digital filter, Ekchardt filter, and WHAT model,
for determining the BFI in Romania. He found that the Eckhardt filter and Chapman filter
approaches were the most suitable to evaluate BFI in this area.

Accurate prediction in ungauged basins (PUBs) has been challenging and has drawn at-
tention from hydrologists for many years. To predict BF and BFI in an ungauged watershed,
the regionalization approaches have been widely accepted. Regionalization approaches [12]
consist of the transfer of known hydrological variables from gauged basins into ungauged
basins. Regression models, such as simple and multiple linear regression, and stepwise
multiple regression, used to determine the relationships between BF or BFI and watershed
characteristics, have been applied in many research studies [13–22]. For example, Zhang,
Ahiablame, Engel and Liu [21] developed three multiple regression models for estima-
tion of BF and BFI in Michigan, USA, that is, two models for annual BF and one model
for BFI. With the aid of WHAT software, they used the recursive digital filter approach
with two-parameter for BF separation. The hydrological soil group, annual precipitation
and BFI were the influencing factors for annual base flow, and the wetland area and the
depth of the water table were the influencing factors for BFI. Ahiablame, Chaubey, Engel,
Cherkauer and Merwade [22] developed equations based on regression models to describe
the relationship between BF or BFI and physical and climatic characteristics at an ungauged
basin in Indiana USA. Eighteen watersheds used the data from 18 basins for developing
the model and the data from the remaining four basins for validating the model.

Similarly, spatial interpolation approaches have been successfully applied to obtain
hydrological and hydrogeological values in ungauged basins because of their ability to
extract unknown values from known values in ungauged basins. Spatial interpolation
approaches can be classified into two main groups, i.e., deterministic and geo-statistical
approaches, for the production of continuous surfaces from point measurements [23]. A
deterministic interpolation approach employs mathematical functions to create surfaces
from determined points based on either the degree of similarity (e.g., weighted inverse
distance) or the degree of smoothing (e.g., radial base functions). A geo-statistical inter-
polation approach (e.g., kriging) exploits the mathematical and statistical characteristics
of the points observed to create surfaces [24]. Recently, a variety of research studies have
been undertaken to investigate spatial interpolation techniques for environmental and
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water resource issues. Shyamala et al. [25] studied spatial interpolation techniques for
groundwater pollution. They noticed that kriging was the best approach compared to
IDW and spline. Yan et al. [26] applied the ordinary kriging interpolation method to
characterize soil thickness on various land use types in the Yimeng Mountain area of China.
Some research have shown that regression kriging can significantly boost spatial predic-
tion accuracy when providing a weakly correlated auxiliary variable [27]. Ly et al. [28]
reviewed various approaches for the spatial interpolation of rainfall data for operational
hydrology and watershed modeling. They indicated that for point-by-point assessment,
interpolation using the IDW and kriging methods is more efficient than simple Thiessen
and spline techniques, particularly for a monthly time period. Li and Heap [29] presented
guidance and suggestions for the application of three types of spatial interpolation tech-
niques to environmental tasks including, the non-geostatistical interpolation approach,
geo-statistical interpolation approach and combined approach. Apart from the quantitative
approach, Wu and Hung [30] suggested a visualization approach for the evaluation of
spatial interpolation techniques.

From reviewing the literature for the applicability of spatial interpolation techniques
in estimating BF and BFI in ungauged watersheds, we found only one study that used
the IDW and kriging approaches to interpolate BFI with a grid resolution of 1000 m for
the conterminous United States [31]. The actual and interpolated BFI comparison was
undertaken, and the analysis results showed that the error could vary from 12% to 22%,
depending on the US region. Our research work was to present and expand the study case
of applying and finding the most suitable spatial interpolation techniques to estimate BF
and BFI in ungauged basins. To achieve our goal, we had three main objectives as follows.

1. To compare the two separation methods, namely, the local minimum method (LM)
and the Eckhardt filter method (EF), for estimating BF and BFI.

2. To evaluate the efficacy of three spatial interpolation approaches (IDW, kriging, and
spline) in estimating BF and BFI in ungauged basins.

3. To create maps showing the BF and BFI’s spatial and temporal variation as useful
information for supporting water management-related agencies.

Our investigation results gave more accurate information on the spatial and temporal
variation of BF and BFI, which is valuable information for water resource planning and
management in our region.

2. Materials and Methods
2.1. Study Area and Data Used

Our study focused on the southern river basin of Thailand, which covers five main
river basins: the Peninsular-East Coast, the Peninsular-West Coast, Mae Nam Tapi, Thale
Sap Songkhla, and Mae Nam Pattani, as depicted in Figure 1. These river basins have areas
ranging from 13 to 6713 km2 in size. This area is geographically a peninsula between the
Andaman Sea’s western side and the South China Sea’s eastern side. It is also extended
in the northern and central parts by the long ridge on the west of the mountains. This
section is divided into two regions by the Phuket ridge along the west coast and the
Nakhon Si Thammarat ridge in the central lower portion of the southern backbone: the
east and west coasts. The climate variability on both sides of the river basins was primarily
dominated by the northeast monsoon winds and southwest monsoon. The southwestern
monsoon wind usually begins in mid-May and ends in mid-October, while the northeastern
monsoon typically starts in mid-October and ends in mid-February. The average annual
rainfall in this area is approximately 2291 mm, and the average monthly rainfall is between
9 mm and 670 mm. The runoff data used in this analysis were obtained from the daily
reports of 65 runoff stations with periods ranging from 4 to 12 years. The annual runoff
average is approximately 853 MCM, and the monthly runoff average is between 0.29 MCM
and 716 MCM. Table 1 shows the meteorological and hydrological characteristics of the
study area.
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Figure 1. Locations of selected runoff stations in the southern river basin, Thailand.

Table 1. The meteorological and hydrological characteristics of our studied river basin.

River Basin Number of
Stations

Recorded
Period Area (km2)

Average Rainfall (mm) Average Runoff (MCM)

Monthly Annual Monthly Annual

Peninsula-East coast 15 2001–2012 37 to 1504 18 to 619 2249 2 to 710 837
Peninsula-West coast 23 1999–2012 13 to 2798 9 to 2798 2722 0.29 to 416 671

Mae Nam Tapi 10 1999–2012 60 to 6713 22 to 351 1869 5.54 to 716 1657
Thale Sap Songkhla 14 1999–2012 54 to 1849 24 to 613 2033 1 to 242 346
Mae Nam Pattani 3 2001–2012 2361 to 3489 47 to 267 1867 113 to 428 2572

Southern River Basin 65 13 to 6713 9 to 670 2291 0.29 to 716 853

2.2. Baseflow Separation

In our study, the Web-based Hydrograph Analysis Tool (WHAT) was applied as
a method for performing BF separation [32]. It includes one graphical method (local
minimum approach) and two digital filter approaches (a digital filter with a one-parameter
approach [33] and a digital filter with a two-parameter approach, widely recognized as the
Eckhardt filter method). This research applied and compared the results of using the local
minimum method and the Eckhardt filter method. Previously, there was research trying to
observe the comparison between the Eckhardt filter method and seven other digital filter
methods [4]. The description of the local minimum method and the Eckhardt filter method
is as follows:
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2.2.1. Local Minimum Method (LM)

The LM is one of the graphics approaches used to separate the BF from the total
streamflow. Graphics approaches include fixed interval, sliding interval, and local min-
imum, as introduced by Sloto and Crouse [34]. For each time interval, the LM uses the
idea of searching for the two minimum flows and then connecting them with a straight
line to separate the BF section from the total runoff. In this regard, the time interval is
calculated to determine the lowest discharge within one half the interval minus one day
[(2N − 1)/2d] [15] before and after the considered day. The N value is equivalent to A0.2,
where A is the basin area in square miles [35].

2.2.2. Eckhardt Filter Method (EF)

The focus of the EF is on recursive digital filters (RDFs) that apply signal analysis
and processing theory to separate the low-frequency signal (BF) from the high-frequency
signal (quick flow). There are two parameters, consisting of the filter parameter and BFImax,
for the Eckhardt approach. The filter parameter means the rate at which the streamflow
decreases and can be determined directly by a recession analysis after a recharging event.
BFImax is the maximum BFI that a recursive digital filter algorithm can use to create a
model. Mathematically, the EF can be expressed as:

Qb,t =
(1− BFImax)× α×Qb,t−1 + (1− α)× BFImax ×Qs,t

1− α× BFImax
(1)

where Qb,t and Qb,t−1 are the baseflow at step t and t − 1 time, Qs,t is the complete stream-
flow at step t time; and an is the filter parameter. For the first step in the calculation, the
value of Qb,t−1 was assumed to be 50% of the total flow as suggested by Zhang, Ahiablame,
Engel and Liu [21]. However, empirical judgement would be tried to represent physical
reality. Eckhardt [3] recommended representative BFImax values for three hydrological
and hydrogeological conditions: BFImax = 0.80, for perennial streams with porous aquifers;
BFImax = 0.50, for ephemeral streams with porous aquifers; and BFImax = 0.25, for perennial
streams with hard rock aquifers. The default BFImax of 0.80 and filter parameters of 0.98
were used in our study, as recommended by WHAT, referring to the hydrological and
geological characteristics of the southern river basin of Thailand, a perennial stream of
porous aquifers.

2.3. Spatial Interpolation Techniques
2.3.1. Inverse Distance Weighting (IDW)

The inverse distance weighting (IDW) method is based on the principle that locations
are closely related to each other, spatially, calculating the value at the desired location
where the closest station position will have greater importance. It is an approximation of
an unknown point from the linear sum of the known values and the weighted point to be
limited by distance. With the distance from the unknown point to the next known point,
this weighting is altered and is formulated as follows:

Zi =
∑i

zi
dn

ij

∑i
1

dn
ij

(2)

where Z represents the position of a known point (i) and the predicted value at the unknown
point (j), n denotes the exponent that determines the rate of weight reduction as the distance
increases (e.g., 1, 2, 3), and dij indicates the distance from a known point (i) to an unknown
point (j).

2.3.2. Kriging

Kriging proceeds the estimation by giving the weights of the averaged input values.
This is similar to the moving-average method for calculating the weight. A semi-variogram
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model is used to determine the data’s spatial relationship by analyzing the relation between
the squared differences of pairs of point values and distance. Therefore, it is necessary to
test whether the data are suitable for the model. Kriging is not distance-weighted between
the known and unknown positions. Rather, it is the grouping of known positions according
to the spatial relationship characteristics that are related to each other and finding the
variation to be used as a weight. There are several equations for modulating variograms.
Each equation has an initial value of variation (nugget) and the level of the variogram
ends. Alternatively, the default constant (sill) and the distance from each point to the sill
(range) vary.

The approximation from the variogram was used to estimate the distance-weighted
mean when estimating the spatial data. The resulting value is the sum of the known
points’ weighted values, depending on the distance between the estimated point and the
known point. The weights selected for estimation were not biased. In this study, we herein
applied a universal kriging approach. Universal kriging has the form of deterministic
interpolation. It hypothesizes that the spatial variation in z values is combined and has
spatial relationships with known points. In addition, universal kriging is a method of
modulating the area curvature to integrate a plane surface with a quadratic surface, which
takes the form of a polynomial equation. It can be described as:

M = b1xi + b2yi (3)

M = b1xi+b2yi+b3x2
i +b4xiyi+b5y2

i (4)

where M is the weight that has a relationship between the point to be approximated and
the known point (xi), yi is the distance between the points and b1 and b2 are the number of
pairs of points each by distance h.

2.3.3. Spline

Using a mathematical function to minimize the overall surface curvature, a spline is
a deterministic technique used to define two-dimensional curves on three-dimensional
surfaces, resulting in a smooth surface that precisely passes through the input points or
known points. It can create fairly distinct and visually appealing features using just a
few sample points. However, the disadvantages are the resulting surfaces with different
minimum and maximum values from the collection of input data. It is prone to outliers,
and there is no error sign, which is similar to IDW. For surface interpolation, the algorithm
used for the spline utility uses the following formula:

S(x, y) = T(x, y)+
N

∑
j=1

λjR(r j) (5)

where j = 1, 2,..., N; N is the number of points; λj are coefficients found by the solution of a
linear equation system, and rj is the distance from point (x, y) to the jth point. T(x, y) and
R(r) are defined differently depending on the selected option.

The spline method is a mathematical equation suitable for surfaces with gradual
changes, such as the height and depth of the water surface, etc. We chose the regularized
spline in this study. A regularized spline is a technique for smoothing the results, where the
value of information has a more gradual increase or decrease. The optimal weight value
should be between 0–0.5. The regularized spline function is taken as the basis function:

T(x, y) = a1+a2x + a3y (6)

where ai is the coefficient found from the solution of a system of linear equations, and

R(r) =
1

2π
{ r2

4

[
ln
( r

2τ

)
+C− 1

]
+τ2[K 0

( r
τ

)
+C + ln

( r
2π

)
]} (7)
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where r is the distance between the point and the sample, τ2 is the weight parameter, K0 is
the modified Bessel function and “C” is a constant equal to 0.577215.

3. Results and Discussion

The present study deals with estimating BF and BFI in ungauged basins in the southern
river basin of Thailand. Three major results, as indicated in our research objective, are
presented and discussed as follows: (1) comparative results of estimating BF and BFI using
two separation methods (i.e., LM and EF methods); (2) evaluation of the efficacy of three
spatial interpolation approaches (i.e., IDW, kriging, and spline) in estimating BF and BFI in
ungauged basins; and (3) maps showing the spatial and temporal variations of BF and BFI.
The details are presented as follows:

3.1. Local Minimum Method vs. Eckhardt Filter Method for Estimating BF and BFI

The spatial variation of the annual runoff and BF performed by the LM and EF methods
for the 65 runoff stations is shown in Figure 2. The BF computed by the LM method had a
bit higher value than that calculated by the EF method. Additionally, Figure 3 shows the
BFI for 65 runoff stations calculated using the LM and EF methods. We generally found the
same trend as the BF; that is, the BFI calculated by the LM method had a higher value than
that calculated by the EF method. It is because LM’s determination process of the lowest
discharge to separate baseflow from total runoff gives the local minimums and depends on
the calculated time interval as a function of the basin area. Additionally, the baseflow values
for each day between local minimums are estimated by linear interpolations. Therefore,
it may result in overestimation in BF and BFI. On the other hand, the EF considers the
shorter interval (day by day in this experiment), obtaining the smoother and more refined
baseflow values.
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Figures 4 and 5 show an example of the temporal variation of the total runoff, BF,
and BFI at the X.248 runoff station. We observed that almost every month of the year, BF,
and BFI were given by LM had higher values than those provided by EF, except in July,
August, and November. During these three months, X.248 runoff station is influenced
by the southwest monsoon wind (July and August) and the northeast monsoon wind
(November), resulting in a high runoff. As explained previously, the EF method gives
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smoother and more refined baseflow values than those provided by the LM method. As
a result, the LM method may produce underestimation in BF and BFI since the baseflow
values for each day between local minimums are estimated by linear interpolations.
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Using two statistical indices (namely, mean difference (MD) and correlation coefficient
(r)), a distinction was made between these two annual and monthly BF and BFI methods,
as shown in Table 2. This indicates that the BF and BFI, as computed by the EF method,
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had lower values than those values as computed by the LM method for both annual and
monthly periods. The results are similar compared to those found by Schilling and Jones [7].
It can be noted from the acquisition of MD’s negative values that the discrepancy between
the values given by EF and those given by LM, except for the BF result in April, gave
a positive value (0.06 MCM) that was an inverse meaning, as discussed previously. In
October, the maximum difference in value of the BF and BFI was −4.31 MCM and −0.09,
respectively. In addition, there was a very high correlation between the two approaches,
i.e., r ≥ 0.95 for BF and r ≥ 0.70 for BFI.
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Table 2. Comparison of BF and BFI values for all 65 runoff stations calculated by EF and LM.

BF (MCM)
Indices Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual

MD −0.16 −0.20 −1.27 0.06 −1.89 −1.94 −1.56 −1.56 −2.36 −4.31 −1.68 −0.45 −1.45
r 0.993 0.993 0.990 0.956 0.997 0.999 0.994 0.992 0.997 0.998 0.997 0.997 0.998

BFI
Indices Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual

MD −0.01 −0.02 −0.08 −0.06 −0.08 −0.07 −0.06 −0.07 −0.06 −0.09 −0.03 −0.01 −0.04
r 0.883 0.770 0.797 0.795 0.848 0.885 0.837 0.852 0.886 0.865 0.896 0.924 0.926

3.2. Performance Comparison of Spatial Interpolation Techniques

To investigate the performance of three spatial interpolation techniques (namely, IDW,
kriging, and spline), we randomly selected our data sets three times with 75% and 25% of
the total 65 runoff stations for the calibration and validation stages, respectively. Thus, we
had three different repeated samples for each considered period, i.e., April representing a
dry season, November representing a monsoon season, and annual, for BF and BFI. Using
two separation methods, i.e., LM and EF, we finally had a total of 36 study cases (3 cases
by randomly selecting three times from the whole data sets, 3 cases from three considered
periods, 2 cases by having BF and BFI, and 2 cases for two baseflow separation methods) in
our experiment. The information in Tables 2 and 3 shows a summary of the comparative
statistical metrics, that is, mean absolute error (MAE), root mean squared error (RMSE),
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correlation coefficient (r), and combined accuracy (CA) for the three spatial interpolation
techniques in estimating BF and BFI. These were the average values from three randomly
selected times, as mentioned above. The higher performance of interpolation technique
gives the lower MAE and RMSE, and r approaching 1.0 [36]. The combined accuracy
(CA) [37] refers to the combination of RMSE, MAE, and r2, which equals 0.33 *(RMSE +
MAE + (1 − r2)) and should be as small as possible (optimally 0).

Table 3. Comparison of the statistical indices for spatial interpolation techniques in estimating BF.

BF

Methods
r MAE RMSE CA Stage Period

I K S I K S I K S I K S
LM 1.00 0.34 0.99 0.01 8.54 0.76 0.04 12.38 1.48 0.02 7.19 0.75

Calibration
AprilEF 1.00 0.37 0.99 0.01 7.91 0.76 0.04 11.03 1.49 0.02 6.53 0.75

LM 0.65 0.38 0.20 9.26 12.78 23.53 15.51 18.55 39.13 8.36 10.61 20.96
ValidationEF 0.66 0.39 0.31 10.02 12.41 22.88 16.55 19.24 35.96 8.95 10.71 19.69

LM 1.00 0.37 1.00 0.16 23.08 0.19 0.04 32.08 0.32 0.06 18.47 0.17
Calibration

November
EF 1.00 0.44 1.00 0.01 20.29 0.25 0.03 27.44 0.45 0.02 15.98 0.23
LM 0.56 0.31 0.34 21.86 23.51 42.59 39.51 42.01 71.15 20.47 21.91 37.81

ValidationEF 0.53 0.27 0.34 21.04 22.80 40.38 35.73 38.35 67.15 18.96 20.48 35.76
LM 1.00 0.52 1.00 0.00 12.59 0.05 0.00 18.48 0.08 0.00 10.50 0.04

Calibration
Annual

EF 1.00 0.61 1.00 0.00 10.75 0.04 0.00 14.99 0.07 0.00 8.70 0.04
LM 0.61 0.54 0.37 11.27 12.26 20.22 19.03 20.20 27.49 10.19 10.95 16.03

ValidationEF 0.61 0.53 0.39 10.77 11.09 18.43 17.55 18.06 24.81 9.54 9.85 14.54
Remark: I = IDW; K = kriging; and S = spline.

Tables 3 and 4 show comparisons of the statistical indices for spatial interpolation
techniques in estimating BF and BFI, respectively. The findings revealed that among the
three spatial interpolation techniques, IDW gave the best performance. It provided the
highest r-value and the lowest values of MAE, RMSE, and CA for both the calibration
and validation stages. We can notice the bold number showing the best values of r, MAE,
RMSE, and CA in Tables 3 and 4. Most of these indices pointed out IDW as giving the
best performance, followed by kriging and spline, respectively. It was similar to the results
found by Ly, Charles and Degré [28] for estimating monthly rainfall data. We further
noticed that the use of the IDW and spline techniques overfitted in our data sets because
the values of r, MAE, RMSE, and CA for the calibration stage were significantly different
from those values in the validation stages. In contrast, the kriging technique gave less
difference in the values between the two stages. We found that the kriging technique
gave a lower r-value and higher MAE, RMSE, and CA values than the values provided
by the spline technique for the calibration stage. However, it also mostly gave higher
r-values and lower MAE, RMSE, and CA values than those given by the spline technique
for the validation stage. It indicated that overfitting occurred for Spline technique for
estimating BF and BFI in this experiment. This made the kriging technique more suitable
or generalized than the spline technique for estimating BF and BFI in our study region.
The reason why the computed BF by the LM and EF methods in the dry season for the
validation stage gave better results (higher r-value, lower MAE, RMSE, and CA values)
because less runoff fluctuation and less amount of runoff were noticed in the dry season
for all runoff stations resulting in the data range was narrower as compared to those in the
monsoon season. The data range in April used for the validation stage for the LM method
was narrower than that for the EF method. As a result, the LM method’s r, MAE, RMSE,
and CA values were better than the EF method’s. The data range in November used for
the validation stage for the EF method was narrower than that for the LM method. As a
result, the EK method’s r, MAE, RMSE, and CA values were better than the LM method’s.
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Table 4. Comparison of the statistical indices for spatial interpolation techniques in estimating BFI.

BFI

Methods
r MAE RMSE CA Stage Duration

I K S I K S I K S I K S
LM 1.00 0.52 1.00 0.00 0.12 0.00 0.00 0.16 0.00 0.00 0.33 0.00

Calibration
AprilEF 1.00 0.51 1.00 0.00 0.10 0.00 0.00 0.13 0.00 0.00 0.31 0.00

LM 0.81 0.59 0.55 0.10 0.13 0.15 0.12 0.17 0.26 0.18 0.31 0.35
ValidationEF 0.31 0.06 0.20 0.07 0.07 0.12 0.09 0.09 0.17 0.33 0.38 0.40

LM 1.00 0.72 1.00 0.00 0.08 0.00 0.00 0.10 0.00 0.00 0.22 0.00
Calibration

November
EF 1.00 0.86 1.00 0.00 0.05 0.00 0.00 0.07 0.10 0.00 0.13 0.03
LM 0.50 0.54 0.20 0.11 0.10 0.18 0.14 0.13 0.24 0.33 0.30 0.44

ValidationEF 0.67 0.68 0.36 0.08 0.08 0.13 0.10 0.10 0.19 0.24 0.23 0.37
LM 1.00 0.46 1.00 0.00 0.06 0.00 0.00 0.08 0.00 0.00 0.30 0.00

Calibration
Annual

EF 1.00 0.52 1.00 0.00 0.04 0.00 0.00 0.06 0.00 0.00 0.27 0.00
LM 0.40 0.25 0.19 0.07 0.07 0.12 0.10 0.10 0.19 0.33 0.35 0.41

ValidationEF 0.25 0.18 0.07 0.05 0.05 0.09 0.07 0.07 0.12 0.34 0.34 0.39
Remark: I = IDW; K = kriging; and S = spline.

3.3. Spatio-Temporal Variation of BF and BFI Using IDW Method

As the IDW method was the best spatial interpolation technique for our study, it
was used to create the spatio-temporal variation of monthly and annual BF and BFI maps
with a resolution of 30 × 30 m2. Figures 6 and 7 show the monthly and annual BF and
BFI, calculated by the EF and LM methods, respectively. We can explain and discuss the
following: the maximum average annual BF was found at the Mae Nam Tapi river basin,
where the BF value varied in the range of 80 MCM to more than 100 MCM, followed by the
Mae Nam Pattani river basin and the upper part of the Peninsular-West Coast river basin,
where the BF value varied in the range of 80 MCM to 100 MCM. The minimum average
annual BF was found in the Thale Sap Songkhla river basin, where the BF value was lower
than 20 MCM. For the average annual BFI, we found that the maximum value ranging
from 0.75 to 0.80 was located at the upper part of the Peninsular-West Coast River basin,
followed by the Mae Nam Tapi river basin and the lower part of the Peninsular-West Coast
river basin, where the BFI value varied in the range of 0.70 to 0.75. The minimum average
annual BFI was found in the lower part of the Peninsular-East Coast river basin, where the
BFI value was lower than 0.65. Considering the monthly BF, we found that the maximum
BF value occurred between October and January, which is during the monsoon season. In
addition, we found the Mae Nam Tapi river basin gave the maximum BF value during
October and November, whereas the Mae Nam Pattani river basin gave the maximum BF
value ranging from 80 MCM to more than 100 MCM. As naturally found in the dry season,
the minimum BF value occurred between February and June, and most of the southern
river basins had this values lower than 20 MCM. For the monthly BFI, the maximum BFI
value happened in February, from the end of the monsoon season to the beginning of the
dry season, for most of the southern river basin, where the BFI value varied in the range of
0.90 to 1.0. For the other months, we clearly found a difference in the high value of the BFI
between the Peninsular-East Coast and Peninsular-West Coast areas because of the effect
of the northeast monsoon and southwest monsoon winds, respectively. During April and
September, a high value of BFI ranging between 0.70 and 0.90 was found in the Peninsular-
East Coast area, that is, the Peninsular-East Coast, Mae Nam Tapi, Thale Sap Songkhla, and
Mae Nam Pattani river basins. However, during October and January September, a high
value of BFI ranging between 0.70 and 0.90 was found in the Peninsular-West Coast river
basin. We also found that the minimum BFI value of less than 0.70 happened in March,
which is in the dry season, for most of the southern river basins.
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4. Conclusions

In this study, we mainly aimed to estimate the monthly and annual BF and BFI. Three
spatial interpolation approaches (i.e., IDW, kriging, and spline) were applied to assess their
efficacy. In addition, we compared two baseflow separation methods (namely, the LM and
EF methods) for estimating BF and BFI. Our study area included 65 runoff gauged stations
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located in the southern river basins of Thailand. The findings revealed that the BF and
BFI, calculated using the EF method, had lower values than those calculated using the LM
method for both annual and monthly periods. More than 75% of the basins in the southern
part of Thailand had a BFI of more than 0.60, indicating quite considerable water source
potential in this region. For our experiment, IDW provided the best performance among
the three interpolation techniques, followed by kriging and spline, respectively. Finally,
monthly and annual BF and BFI maps with a resolution of 30 × 30 m2 were created in
this research work. They provide valuable information for water management agencies in
regard to planning and managing water resources in the southern river basin of Thailand.
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