
Citation: Raczynski, K.; Dyer, J.

Variability of Annual and Monthly

Streamflow Droughts over the

Southeastern United States. Water

2022, 14, 3848. https://doi.org/

10.3390/w14233848

Academic Editor: Alina Barbulescu

Received: 7 November 2022

Accepted: 24 November 2022

Published: 26 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Article

Variability of Annual and Monthly Streamflow Droughts over
the Southeastern United States
Krzysztof Raczynski 1,* and Jamie Dyer 2

1 Northern Gulf Institute, Mississippi State University, 2 Research Blvd, Starkville, MS 39759, USA
2 Department of Geosciences, Mississippi State University, 200A Hilbun Hall, Mississippi State, MS 39762, USA
* Correspondence: chrisr@ngi.msstate.edu

Abstract: Understanding the patterns of streamflow drought frequency and intensity is critical in
defining potential environmental and societal impacts on processes associated with surface water
resources; however, analysis of these processes is often limited to the availability of data. The objective
of this study is to quantify the annual and monthly variability of low flow river conditions over the
Southeastern United States (US) using National Water Model (NWM) retrospective simulations (v2.1),
which provide streamflow estimates at a high spatial density. The data were used to calculate sums
of outflow deficit volumes at annual and monthly scales, from which the autocorrelation functions
(ACF), partial autocorrelation functions (PACF) and the Hurst exponent (H) were calculated to
quantify low flow patterns. The ACF/PACF approach is used for examining the seasonal and
multiannual variation of extreme events, while the Hurst exponent in turn allows for classification of
“process memory”, distinguishing multi-seasonal processes from white noise processes. The results
showed diverse spatial and temporal patterns of low flow occurrence across the Southeast US study
area, with some locations indicating a strong seasonal dependence. These locations are characterized
by a longer temporal cycle, whereby low flows were arranged in series of several to dozens of years,
after which they did not occur for a period of similar length. In these rivers, H was in the range
0.8 (+/−0.15), which implies a stronger relation with groundwater during dry periods. In other
river segments within the study region the probability of low flows appeared random, determined
by H oscillating around the values for white noise (0.5 +/−0.15). The initial assessment of spatial
clusters of the low flow parameters suggests no strict relationships, although a link to geologic
characteristics and aquifer depth was noticed. At monthly scales, low flow occurrence followed
precipitation patterns, with streamflow droughts first occurring in the Carolinas and along the Gulf
Coast around May and then progressing upstream, reaching maxima around October for central
parts of Mississippi, Alabama and Georgia. The relations for both annual and monthly scales are
better represented with PACF, for which statistically significant lags were found in around 75% of
stream nodes, while ACF explains on average only 20% of cases, indicating that streamflow droughts
in the region occur in regular patterns (e.g., seasonal). This repeatability is of greater importance
to defining patterns of extreme hydrologic events than the occurrence of high magnitude random
events. The results of the research provide useful information about the spatial and temporal patterns
of low flow occurrence across the Southeast US, and verify that the NWM retrospective data are able
to differentiate the time processes for the occurrence of low flows.

Keywords: streamflow drought; low flows; national water model; multiannual patterns; autocorrela-
tion; southeastern united states

1. Introduction

Due to increasing population stress on existing water resources and water quality,
as well as uncertainty associated with current and future climate variability, understand-
ing drought formation and evolution processes has become extremely important. As a
result, the ability to accurately model and predict droughts is a critical step not only for
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maintaining the natural environment, but also for ensuring the needs for human water
resources. The growing importance of droughts, especially in the light of the latest research
showing the intensification of this phenomenon in the coming years [1–6]; Wang et al. [7],
raises questions about forecast accuracy, and more importantly, the scale at which accurate
drought predictions can be produced. The first, and perhaps the most important, problem
in any forecast or analysis process for any natural phenomenon is data availability. For
investigation of hydrological processes, river flow data are usually collected by govern-
mental institutions, such as the United States (US) Geological Survey (USGS). Although the
data collected by these institutions provide accurate and reliable observational datasets,
the length of these datasets is related to the history and ability to perform continuous
measurements at each gauge. This leads to limitations in the possibilities of spatial analysis
of hydrological phenomena in areas with sparse and/or incomplete gauge information,
and further hinders the development of modeling frameworks that allow for realistic
simulations in places for which real data are not available.

Large-scale hydrologic models, in order to maintain computational feasibility and
physical representativeness, must use spatial and temporal resolutions representative of the
larger model domain; therefore, they often cannot accurately reflect local conditions related
to geology, groundwater, heat fluxes, or evapotranspiration, which are important from
the drought perspective [8–13]. On the other hand, complexity of local conditions makes
it difficult to generate and maintain accurate local-scale models, especially when these
conditions themselves evolve over space and time; therefore, some level of generalization
must be introduced to produce a baseline simulation.

In 2016 the US National Oceanic and Atmospheric Administration (NOAA) con-
tributed to the improvement of the accuracy and spatial coverage of data related to the
observation, assessment, and prediction of hydrological extreme events over the conti-
nental United States (CONUS) by developing a hydrologic modelling framework called
the National Water Model (NWM). The NWM is based on the Weather Research and
Forecasting–Hydrological Modeling System (WRF-Hydro), and provides operational sim-
ulations of land surface and hydrologic conditions at a variety of time scales (e.g., short,
medium, and long range). In addition to the operational version of the model, each major
version of the simulation framework is used to produce a historical (also known as, retro-
spective) simulation for research and analysis purposes. These simulations are forced with
the North American Land Data Assimilation (NLDAS) data sets for versions 1.2 and 2.0 and
Office of Water Prediction Analysis of Record for Calibration (AORC) data for version 2.1.
Thanks to this approach, the NWM has become the substrate for the large-scale distributed
simulation of hydrological conditions across the US. Streamflow simulations are dependent
on multiple surface and hydrological parameters, of which precipitation and snowmelt play
major roles. The main limitations of the NWM include the inability to reproduce reservoir
management flows [14,15], especially in previous versions of the model (i.e., v1.2 and v2.0)
although the newer operational version of the model (v2.1) includes new reservoir treat-
ment that leverages River Forecast Center (RFC), USGS and U.S. Army Corps of Engineers
(USACE) data feeds. While this improves the model response for river segments located
below reservoir, some artifacts might still exist [16]. The ability to simulate hydrological
conditions at 2.7 million stream locations nationwide means not only better forecasts of
water resources, but also improved safety and stability of communities, industry, and
protection of life and property [17]. Additionally, retrospective simulation datasets provide
continuous surface and hydrologic records for all computational nodes covered by the
operational version of the NWM, which in turn allows for analysis of historical hydrological
conditions without restrictions related to locations of river observation sites.

A primary motivation for the development of the NWM was the improvement of
flood prediction information and dissemination, which are the costliest and deadliest type
of natural disasters in the United States [18]. This approach contributed to an improved
mathematical representation of the upper range of flows over a large spatial extent; however,
due to the increasing importance of droughts in recent years [19], the ability to apply the
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NWM to drought assessment has become an important topic [20,21]. This is especially
true given that due to climate change water resources are more likely to behave in a
non-stationary way [22], requiring the use of comprehensive physical models such as
the NWM to provide meaningful predictions of hydrologic drought conditions. There is
some evidence of NWM performance being linked to river basin size [23,24], or location,
with streams underperforming in semiarid environments [25] or in rivers sensitive to
snowmelt runoff [26]. As a result, the NWM has been shown to perform better in streams
with a precipitation forced regime [21], and in general the NWM is able to capture major
droughts [27] and general streamflow patterns in humid regions such as the Southeastern
United States [20].

The aim of this work is to assess the variability of streamflow droughts at annual and
monthly scales over the Southeastern United States, based on NWM retrospective v2.1 data,
to quantify the spatial and temporal patterns of regional hydrologic drought. The study
area is characterized by abundant water resources affected by stress due to industrial and
agricultural water withdrawals. This stress is further exacerbated by advancing climate
change resulting in changes of water resources and increasing drought risk [28–31]. The four
main research questions posed in this paper are as follows: (i) can NWM retrospective data
represent low flow occurrence patterns at different time scales, and differentiate regional
dependencies, (ii) what are the patterns of hydrologic drought occurrence in terms of annual
and monthly variability, (iii) what are the spatial patterns and associated physical drivers
of streamflow drought generation and progression, and (iv) are these patterns reflected
in the NWM retrospective data, such that machine learning-based occurrence models can
be developed to predict future development of streamflow droughts? Autocorrelation
and partial autocorrelation were used as the primary analysis tools within this study,
providing information about statistically significant periods of streamflow droughts, as
well as quantifying the significance of streamflow drought occurring as an extreme event,
more or less randomly, versus reoccurrence in periods related to seasonality. The difference
between the two occurrence patterns was further measured with the Hurst exponent
statistic, which allows for assessment of so called “process memory”. The analysis of
variability in the hydrologic data will allow for the recognition of fluctuations in low
flow events over time. This, in turn, will allow for the construction of models of the
phenomenon, based on time dependencies, for example using machine learning approaches.
Additionally analysis will provide critical information regarding not only the utility of
the NWM retrospective data to define and represent low flow conditions and associated
characteristics, but will allow for the generation of a baseline dataset that can be used
for subsequent investigations of streamflow drought patterns and processes across the
Southeast US for water resource assessments.

2. Study Area

The study area constitutes the southeastern part of the US, specifically identified in a
hydrologic context as USGS Region 3: South Atlantic-Gulf Region (Figure 1). This region,
which includes all rivers flowing to the Atlantic Ocean and the Gulf of Mexico between
the James River catchment in Virginia and the Lower Mississippi River in Mississippi,
comprises a total area of ~724,000 km2. The area incorporates a diverse array of natu-
ral landscapes, with variable land use/cover, vegetation, meteorological, and geological
characteristics that lead to a range of hydrologic conditions. The Coastal Plain, a major
part of the region that represents around 60% of the total area, is composed mainly of soft
unconsolidated sands, gravels, and clays or consolidated and semi-consolidated limestone.
The northern regions within the Appalachian highlands contain mainly hard, consolidated
rocks, indurated and metamorphosed sedimentary rocks, and crystallin igneous rocks.
Groundwater is associated mainly with Cretaceous and Quaternary deltaic sand and gravel
deposits, with daily groundwater discharge of around 0.3 km3 that moves seaward in a
pattern reflective of the general layout of the regional river networks [32]. Elevation varies
between −25–1589 m.a.s.l. over the area, and average stream density is 0.24 km/km2 (total
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river length is ~175,000 km). Stream density has a high regional variability, with a denser
network in the northern and northeastern areas and a sparse river network in the south.
Approximately 60% of streamflow is contributed by baseflow and 40% by direct runoff [33].
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Figure 1. Southeast US study area with locations of NWM nodes.

The climate over the majority of the area is subtropical, with hot and humid summers.
Mean annual temperature is between 14 ◦C–25 ◦C, depending on the region [25], and
annual precipitation varies between 1000 to 2000 mm/year. The relation between water
resources and climate variability is strong [34,35], and longer-term changes in precipitation,
evaporation, and runoff are caused mainly by the El Niño-Southern Oscillation (ENSO),
which affects terrestrial water storage and associated anomalies as well as streamflow dis-
charges [35–38]. Occurrence of La Niña is connected with higher maximal temperatures and
lower precipitation, mainly noticeable in June [29], with some evidence showing varying
links to dry winters with La Niña in the past, that now depends purely on internal atmo-
spheric variability [31,39]. Decreasing streamflow trends are observed during water-year
and spring-summer periods, with strong evidence of abrupt step changes being of greater
importance than gradual changes over past years [40]. Constant decrease in streamflow
of rivers over the study area is linked to increasing sea surface temperatures [38,41]. Due
to the specific environmental conditions of the region, increasing population, growing
agriculture needs as well as changes in local climate patterns, Alabama, Mississippi and
Florida are identified as regions facing water supply shortages in the future [42]. Further
evidence also shows that the entire region faces a substantial drought threat both now
and in the future, mainly due to increasing water demands, limited storage capacity, and
agricultural dependance on precipitation [43–45], as local water supply regulations were
often developed during wetter periods in the region [46].
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3. Data and Methods
3.1. Hydrometeorological Data

Streamflow information for this study comes from the NWM retrospective v2.1 dataset,
which contains 338,037 unique retrospective stream nodes (hereafter referred to as nodes)
with a period of record of February 1979–December 2020. After data quality evaluation a
decision was made to include only nodes of Strahler order 3 and higher, since lower orders
contained over 80% zero values, which from the perspective of drought analysis introduces
the risk of non-representative threshold levels and drought event statistics. This decision
also relates to a general limitation of the NWM, such that the model underperforms in lower
order streams [23,24]. Additional criteria of no more than 5% of zero or null data were
introduced to avoid computational errors, and an additional 1198 nodes were characterized
by almost unchanging minimum flow values, which led to the defined low flow threshold
(see below for method details) being the same value as the minimum flow. These nodes
were excluded from the study, leading to the inclusion of 60,750 nodes with hourly mean
streamflow values, which were converted to daily mean flow values representing 00–
00 UTC. The final dataset constituted daily flows for a period from 1 February 1979–31
December 2020, which equates to 2,551,500 stream years.

Precipitation data, which was used for analysis of low flow processes, was obtained
from the U.S. Federal Government Climate Resilience Toolkit [47] for monthly and an-
nual scales.

3.2. Low Flow Conditions Definition

In this study, low flow definition is based on the widely adopted threshold level
method (TLM; [48]), whereby stream discharge is considered low flow if it is equal to or
lower than a defined threshold level. There are many ways of calculating a threshold;
however, this study adopts an objective breakpoint method to define unique threshold
levels at each node. In this approach, the lower part of the flow duration curve (FDC) is
considered as a series with a breakpoint that serves as the indicator of the moment of change
from atmospheric supply to groundwater supply, which constitutes a natural marker for
the beginning of low flow conditions. This method is described in detail by Raczynski
and Dyer [49]. To accurately measure the seasonal and annual outflow deficits, no pooling
method and no additional minimal time criteria were applied. In this study the term low
flow refers to discharge values identified as lower or equal to a threshold discharge level,
while low flow event/conditions are considered the same as streamflow drought—a series
of low flows that occur over some period that lead to formation of hydrologic drought.

3.3. Statistical Analysis

A basic parameter used in this study is a low flow volume (V) which is calculated as
a difference between the defined streamflow threshold and the flow hydrograph during
drought episode:

V =
∫ t2

t1

(Qt −Q)dt (1)

where: V—volume (m3), Qt—threshold flow (m3 s−1), and Q—outflow (m3 s−1).
To describe changes in episodes occurrence, autocorrelation functions (ACF) were

calculated for event volumes aggregated to monthly and annual scales. Autocorrelation
allows for examination of seasonal or multi-annual variations in low flow conditions by
estimating the degree of correlation between element with element shifted by k [50], where
the length of this shift (also referred to as lag) may vary:

ρk =
sk
s0

(2)
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where s0 is variance of the time series at t and sk is covariance at k lag:

sk =
1
n ∑n−k

i=1 (yi − y)(yi+k − y) =
1
n ∑n

i=k+1(yi − y)(yi−k − y) (3)

For this study, a time series constitutes of low flow volumes in a single node aggregated
to monthly or annual scale.

In order to assess the possibility of applying data from NWM to occurrence models
based on machine learning techniques, the number of lags needed to obtain statistically
significant result should be estimated. Based on the information about the significance of
the lags (q) of the autocorrelation functions, the usefulness of potential seasonal models
can be estimated. The model based on the seasonality resulting from the autocorrelation
relationship is the moving average (MA(q)) model, which is expressed by the number of
statistically significant correlations of lags in ACF. For example, the MA(7) model means
that the modeled dependence has statistically significant relationships up to the 7th lag
(seven periods back—depending on the resolution of the tested series, e.g., months or
years). In addition to ACF, partial autocorrelation functions (PACF) were calcualted to
introduce the control of all lags. PACF explains partial correlation between the series and
lags of itself. Significance of PACF lags (p) provides valuable information on potential lag
steps in seasonal modeling using autoregressive models (AR(p)), as significant PACF lags
(p) correspond to lags in AR(p) models on the same basis as ACF lags (q) are used for the
MA(q) models [51,52]. Therefore, estimating whether and at which lag there are statistically
significant relationships in ACF and PACF distributions constitute the basis for assessing
whether the studied relationships can, at a later stage, be modeled using machine learning
techniques, using the AR and/or MA seasonality models.

Summability or non-summability of the autocorrelation function is an indicator of
the process memory length, which describes the tendency for grouping of natural extreme
events into sequences. So-called “process memory” was first observed in hydrologic data
by Hurst [53], which led to the development of the Hurst exponent (H) that describes the
process memory length within a hydrologic data series. The detailed methodology for
determining the value of the exponent was described by Koutsoyiannis [54]. Values of H
close to 0.5 reflect white noise processes, where consecutive values are random, while H
values closer to 1 reflect long process memory, understood as a tendency for similar events
to group in longer sequences (large values are followed by large values, and vice versa).
Although in natural processes the range of H is usually 0.5–1 [54], it is possible for H to
range from 0–0.5, where values H < 0.5 means an anti-persistent series where high and low
values appear alternately.

To classify spatial relations between groups of nodes with similar process memory,
an unsupervised machine learning algorithm of K-means clustering was applied. The
algorithm is used to group similar data into clusters by minimizing the objective function
J(z,A) with updating cluster centers [55]:

J(z, A) = ∑n
i=1 ∑c

k=1 zik||xi − ak||2 (4)

where c is number of clusters, xi is the data point, ak is cluster center, and zik is a binary
variable that indicates if the data point is considered within the cluster.

All statistics were performed for two-tailed α = 0.05.

4. Results and Discussion
4.1. Annual Distribution

To determine annual patterns of streamflow droughts, the daily water outflow de-
ficiencies (volumes) were aggregated to the annual scale. It was expected that at least
two different ACF shapes would be obtained as indicated in other works [56,57], and
analysis confirmed that these patterns are present in the dataset. In the first case the pattern
of low flow occurrence is close to random and the majority of the ACFs are statistically
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insignificant, with autocorrelation values shifting every year or so. H for these rivers is
close to white noise with a mean of 0.59 (Figure 2), and 26% of the analyzed nodes were
classified in this group. These patterns are usually described as related to meteorological
conditions, and are easy to predict [10,58]. An example of this type of process is presented
in Figure 2, where low flows occurred in around half of the 42-year study period (average
of 18.5 years with low flow and 23.5 without low flow). On average there were 15 shifts
between years with and without low flows, and episodes occur in two to three consecutive
years and then disappear for a similar period.
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white noise process, dash line–Hurst-Kolmogorov process.

The second, and at the same time the largest group (65% of nodes), were rivers with
low flows occurring in about 6–7 year intervals with 1–2 year breaks in occurrence (Figure 2).
Similar to the first group, an average of 14 shifts were observed during the study period.
In total, low flows occurred during 32 of the 42 years in the study period. H for this
group is 0.70 and ACFs show higher repeatability, indicating that groundwater is of greater
importance in these types of rivers, especially when multi-annual streamflow drought
occurrence is present [11,59,60].

There is also a third group that constituted less than 9% of the analyzed nodes, and
included rivers where low flow occurred almost annually (mean of 40 years with low
flow over the study period; Figure 2). The average H is closer to representing white noise
than for the second group, having a mean value of 0.63, which is most likely due to the
high irregularity of shifts in occurrence along with the relatively short period (on average
one year).

Analysis of the spatial distribution of the clusters showed no statistically significant
correlation between the type of low flow occurrence and stream order, and in fact there
are some rivers along which the cluster changes along the stream. Most nodes with low
flow patterns that fall within the third group are located in North Carolina, especially in
the Cape Fear and Pee Dee River systems, as well as in the upper Pearl River watershed
in Mississippi. The lowest frequency of low flow occurs in central parts of Mississippi,
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Alabama and Georgia, below the Appalachian piedmont, as well as in northern parts
of the Carolinas in upstream river sections (Figures 3 and 4). The former relation might
be explained by groundwater inflow to rivers located at the base of the Appalachian
Mountains, while deeply allocated aquifers in the piedmont region of the Carolinas may
explain the high magnitude of low flows in that area.
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High values of H are observed in both North and South Carolina, where over 80% of
nodes are characterized by H higher than 0.6 and around half of nodes with H higher than
0.7. This suggests that longer process memory occurs in this region; however, defined ACF
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clusters do not accurately reflect spatial relations for part of study area. While Virginia
and the Carolinas show relatively high values of H, suggesting strong seasonality, ACF
clustering finds most of these rivers belong to the Cluster 1 (Figure 3). Additionally, sta-
tistically significant decreasing trends are observed in the Carolinas, meaning low flows
are in general becoming more severe [61,62]. Multiyear droughts with high magnitudes
were also identified in this region [62], which is confirmed by high H values found in this
study. High magnitude, recurring streamflow droughts in the Carolinas with increasing
trends are associated with decreased precipitation and increased potential evapotranspi-
ration, especially in the July-September warm-season period, as the changes correspond
to variations in meteorological factors [59,63]. This dependence is further intensified by
long recovery times after dry conditions are gone [64] and agricultural practices such as
irrigation that affect negatively water supplies in the region [65].

High values of H (>0.7) are also observed for central and southern parts of Alabama
and Georgia (Figure 3B), where ACFs alter every 2–3 years. This is in contrast to clustering
results, as H values suggest relatively easy to predict processes taking place in this region,
while the cluster average was close to white noise. However, evidence of seasonality of low
flows is seen from central Mississippi to north central Georgia, where increases in H are
related to intervals of ACF Cluster 2. This might be due to high repeatability of 2–3-year
patterns in these nodes while ACF functions were variable, resulting in a shape reminiscent
of random processes. This relation is likely affected to some degree by ENSO, as during
these conditions over the southeast US intense groundwater withdrawals for irrigation
are observed that act to decrease baseflow and lower low flows [66]. Decreasing values
of low flows in this region, however, might be also linked to additional human-induced
influences [67], related mainly to land-use, population growth, and agriculture [66,68,69].

For less than half of the studied nodes in Alabama and Georgia, first, second and third
lags were statistically significant. This relation is visible for other regions in the study area
as well, where only a fraction of nodes with high H values yield significant autocorrelations.
In total, 83.8% of all nodes do not have any significant lag (of the first 20 lags) and only
7.9% have the first lag significant (Table 1). These results indicate that there is no constant,
univariate process that could be quantified by averaged seasonal models as residuals are
not linearly dependent on current and past values. PACF distribution (Figure 4) in most
nodes contains some statistically significant lags, and from all studied nodes, around 27%
do not contain statistically significant p lags (Table 1). This dependence suggests that
models based on seasonal repeatability defined by the autoregressive component (AR(p))
might reflect the actual changes in the annual occurrence of low flows better than moving
average (MA(q)) models.

Table 1. Percent of nodes with statistically significant lags of annual ACF and PACF.

No
Lag 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th 19th 20th

ACF 83.82 7.92 0.86 0.96 0.72 2.02 0.17 0.80 0.09 0.28 0.32 0.22 1.56 0.15 0.01 0.04 0.01 0.02 0.01 0.00 0.02

PACF 26.77 8.86 3.96 1.17 3.95 4.66 1.92 2.35 3.54 2.64 3.63 2.11 2.56 3.05 2.23 3.35 3.12 4.50 5.80 3.26 6.59

4.2. Monthly Distribution

Although annual distributions of low flow occurrences show some spatial depen-
dencies, the monthly distribution provides a better understanding of the processes. In
general, the distribution of monthly streamflow droughts follows precipitation patterns,
which was also confirmed in other studies [5,63]. The relations are strongest along the
Atlantic coast, where sandy soils lead to relatively rapid hydrologic response of river levels
to rainfall. January low flow frequency is at or near zero in 64% of nodes over the study
period, with mainly low magnitude events in Florida and southern Georgia; however,
evidence suggests some relation to precipitation is also present in Virginia. In subsequent
months, low flows continue to disappear in the majority of the study area except Florida,
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where winter precipitation is on average around 40 mm/month and there is a clear, strong
relation with streamflow drought characteristics and precipitation through April, measured
by the Spearman rank correlation (Figure 5). This pattern matches general climatic features,
with subtropical regions north of Florida having a wet winter, while Florida has a relatively
drier winter as it reflects a tropical climate.
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of process memory, p—number of periods with streamflow drought, v—mean monthly volume,
t—mean duration.

During spring (April–June) there is also increased risk of flash droughts in northern
and western Florida as well as south Georgia, which was observed by [70]. Starting from
May the precipitation patterns begin to change due to the difference in climate patterns
between Florida and the Gulf Coast and areas to the north, when sums of precipitation
increase over Florida (tropical climate) and decrease through the central and northern study
area (sub-tropical climate, Figure 6). In May and June low flows occur mainly over Florida
and southern Georgia, while over the following months low flows continue to develop from
the Gulf Coast toward central and western parts of the study region (Figure 6). During this
time the relation of low flows to precipitation weakens (Figure 5), likely due to increased
potential evaporation [59]. At the same time Florida’s low flows disappear due to increased
precipitation. This spatial direction is consistent with patterns in development of flash
droughts found by Chen et al. [70]. In general, droughts related to climatic forcings are
regionally specific, with a clear relation between increases in drought with precipitation
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decreases and potential evaporation increases, especially for north Florida, North Carolina,
and Virginia [28,71].
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monthly precipitation (mm).

The highest periodicity of low flows changes by region, with the most intense low
flows occurring in July in North Carolina (also annual maxima), in September and October
in Mississippi and northern Alabama, and November in the piedmont region (Figure 6).
The region of north-central Alabama was also found to be most prone to drought persistence
within the study region [72]. The summer period (July–October) is also characterized by
high periodicity, reaching 25–30 repeats with low flow each month over the study period,
especially in the central and northern parts of the study region. This dependence is opposite
to the precipitation distribution, where the Carolinas are characterized by high monthly
mean precipitation reaching 175 mm in Coast area, while at the same time the periodicity is
highest (Figure 6), emphasizing the role of lowering groundwater levels due to pumping
presented by [59]. During late winter and spring a substantial number of nodes had no
streamflow droughts during the entire study period, with the total percentage of nodes
showing no low flows being 13% in February, 32% in March, 34% in April, and 16% in May.

Similar to annual observations, PACFs generally provide more information than ACFs.
The latter on average were statistically significant for around 20% of nodes, with mostly
insignificant functions in all 20 lags for April (85.3%) and the lowest values over the winter
period (December–February, on average 79%). In most cases, significant ACF lags were
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related to lag 1 or 12, which follows seasonal and annual patterns. When considering PACFs,
on average 60% of nodes contain statistically significant lags, with the highest number for
November (79%) and lowest for March (33%). In general, ACFs and PACFs provide the
same pattern as described before, with the lowest explanatory power during March and
April due to lowest number of drought episodes, and then increasing in lag significance
from May over the Carolinas and Gulf Coast before progressing inland. Around June and
July the highest concentration of significant lags is found in eastern parts of the study
region, while during late summer and fall the western regions are better explained by both
ACFs and PACFs (Figures 7 and 8). This pattern is confirmed in monthly precipitation
distributions as well as H values (Figure 9). Florida is characterized by the lowest number
of significant ACF and PACF lags and varying H values, which could be attributable to
the high number of drought episodes interrupted by precipitation from tropical cyclones,
which for Florida is the case for over 30% of episodes [73]. This might also explain the
relations for south Georgia and the Carolinas, where tropical cyclone precipitation accounts
for the cessation of between 20–30% of droughts, while for the Appalachian region this is
less than 10% [73].
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5. Conclusions

This article assesses the variability of streamflow droughts at annual and monthly
scales over the Southeastern United States and quantifies temporal and spatial patterns
of hydrologic droughts in the region. As hydrologic input data the NWM retrospective
v2.1 daily flows for period February 1979–December 2020 for 60,750 nodes was used.
Streamflow droughts were identified using an objective threshold approach [49] and the
ACF and PACF were calculated based on aggregated annual and monthly flow series.

At annual scales the Carolinas are characterized by a high periodicity of streamflow
droughts with occurrence almost every year. The presence of high process memory is
further confirmed by high H values both over the Carolinas as well as central parts of
Alabama and Georgia. ACFs values, however, are mostly insignificant over the study
region, with around 80% of nodes showing no significant relationship. At the same time,
PACFs explained around 75% of temporal relations, with monthly aggregated data showing
clearer spatial patterns. Except for Florida, which exhibits a tropical climate pattern with a
dry winter, streamflow droughts rarely occur during spring and then begin to increase in
frequency around May over the Carolinas and Gulf of Mexico regions before progression
inland which reflects general precipitation patterns. Eastern parts of the study area are
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characterized by droughts during late spring/early summer, with western parts showing
increased drought by late summer/early fall. This coincides with the progression of
decreased warm-season rainfall over the study area north of Florida, reflecting the sub-
tropical climate patterns, while Florida streamflow droughts occur mainly during winter, as
reflected by the drier winter representative of the tropical climate. Monthly ACF and PACF
dependences are confirmed by H values, with highest values (reaching H = 0.8) for June-
July over the Carolinas and September for the Gulf Coast area. Major parts of Mississippi,
Alabama and Georgia have H close to 0.2 for the March-April period, which suggests an
alternating character of events. This is also found in ACF annual functions, where only
around half of studied years had low flow episodes. Overall, PACFs are better adjusted to
spatio-temporal relations, and yield more statistically significant results than ACFs.

Since PACF yields more statistically significant results than ACF over the study area
for both annual and monthly series, autoregressive models (AR(p)) will be better adjusted
to capture seasonality, than moving average (MA(q)) based models. This in turn implies
that repeatability (represented by AR models) is of greater importance in the region with
respect to drought occurrence than extreme events occurrence (represented by MA models).

The results of this study are refl”ctiv’ of the NWM retrospective dataset (v2.1.); how-
ever, this study does not assess the accuracy of the model data against observations. Some
artifacts and/or differences in model performance over the study region may be present
in the results; therefore further research should focus on exploring spatial patterns and
tendencies in extreme hydrologic events using available observed data over the South-
eastern US study region. Using the results from this work as a baseline, a comparison of
results using similar methods applied to observed data will help to determine whether the
NWM retrospective dataset sufficiently reflects patterns and trends in extreme hydrologic
events. Additionally, as this work indicates the potential usefulness in application of AR(p)
machine learning models to quantify schemes and future predictions based on detected
significant lags, such an approach could be considered future applications using either
simulated or measured datasets.
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49. Raczyński, K.; Dyer, J. Development of an Objective Low Flow Identification Method Using Breakpoint Analysis. Water 2022,

14, 2212. [CrossRef]
50. Box, G.E.P.; Jenkins, G.M.; Reinsel, G.C.; Ljung, G.M. Time Series Analysis: Forecasting and Control; John Wiley & Sons: Hoboken,

NJ, USA, 2015.
51. Brockwell, P.J.; Davis, R.A. Time Series: Theory and Methods; Springer Science & Business Media: Berlin, Germany, 2009.
52. Box, G.E.; Jenkins, G.M. Time Series Analysis: Forecasting and Control, 3rd ed.; Prentice Hall: Englewood Cliffs, NJ, USA, 1994.
53. Hurst, H.E. Long-Term Storage Capacity of Reservoirs. Trans. Am. Soc. Civ. Eng. 1951, 116, 770–808. [CrossRef]
54. Koutsoyiannis, D. Hydrology and change. Hydrol. Sci. J. 2013, 58, 1177–1197. [CrossRef]
55. Sinaga, K.P.; Yang, M.-S. Unsupervised K-Means Clustering Algorithm. IEEE Access 2020, 8, 80716–80727. [CrossRef]
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