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Abstract: We investigated the potential impact of observation error on the calibration performance
of an integrated watershed model. A three-dimensional integrated model was constructed using
HydroGeoSphere and applied to the Sabgyo watershed in South Korea to assess the groundwater–
surface water interaction process. During the model calibration, three different weighting schemes
that consider observation error variances were applied to the parameter estimation tool (PEST). The
applied weighting schemes were compared with the results from stochastic models, in which obser-
vation errors from surface discharges were considered a random variable. Based on the calibrated
model, the interactions between groundwater and surface water were predicted under different cli-
mate change scenarios (RCP). Comparisons of calibration performance between the different models
showed that the observation-error-based weighting schemes contributed to an improvement in the
model parameterization. Analysis of the exchange flux between groundwater and surface water
highlighted the significance of groundwater in delaying the hydrological response of integrated water
systems. Predictions based on different RCP scenarios suggested the increasing role of groundwater
in watershed dynamics. We concluded that the comparison of different weighting schemes for the
determination of error covariance could contribute to an improved characterization of watershed
processes and reduce the model uncertainty arising from observation errors.

Keywords: integrated model; surface water; groundwater; observation error; climate change

1. Introduction

Climate change impacts on hydrological processes have received increasing attention
in recent decades [1]. Climate change is expected to have a significant impact on the
global water environment, affecting both the quantity and quality of water resources.
The impacts of climate change on the global water environment are complex and varied,
and they have the potential to affect many aspects of human and ecosystem health. In
order to study the potential impact of future climate change, different scenarios were
developed to provide a consistent framework for climate model simulations and to facilitate
the comparison of results across different research groups. The RCP (Representative
Concentration Pathway) scenario is a set of projections of future greenhouse gas (GHG)
emissions and atmospheric concentrations, as well as associated climate changes, used
in climate research [2,3]. Therefore, predicting the integrated water systems’ response
under different climate change scenario is necessary for taking action to better adapt
to the changes and reduce the water-related risks. Numerous studies have shown that
projected climate change is likely to alter regional water cycles and, subsequently, impact
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the spatiotemporal behavior of hydrological systems [4–8]. While climate change can affect
the surface water system directly with a relatively short time lag (~days), the hydrological
response of the subsurface system to the changing climate is slower and more complex.
The role of groundwater as a buffer to environmental changes has, thus, been widely
acknowledged and investigated [9,10].

Surface water and groundwater bodies comprise integral parts of the hydrologic
cycle, with a strong influence on their water budgets [11,12]. This indicates that a more
realistic evaluation of climate change impacts on surface water resources should con-
sider the changes in groundwater bodies, and vice versa. Several studies have focused
on this interlinkage and, in particular, examined the role of groundwater in surface wa-
ter systems [13–17]. Despite the increasing attention focused on the feedbacks between
groundwater–surface water systems, only a limited number of studies have been con-
ducted to evaluate the contribution of groundwater in altering hydrological responses with
different climate change scenarios [9,18–20].

Integrated models provide a valuable tool for examining complex watershed processes
and predicting future hydrological changes. Physically-based three-dimensional (3D)
numerical models can be used to represent the complexity of watershed characteristics
by fully encompassing various hydrological feedbacks between groundwater and surface
water [21]. A successful representation of a complex hydrological process into an integrated
model mainly depends on the proper characterizations of the model parameters. Inverse
models, such as PEST (Parameter Estimation Tool) [22], have provided an efficient tool for
identifying the set of model parameters by minimizing the weighted difference between
measured and simulated observations.

Although the PEST model has provided an efficient method to obtain the parameters
that can best represent a watershed system [23–25], uncertainties associated with the
model prediction still exist. Most hydrological/hydrogeological models contain two types
of error: observation and structural errors [22]. Observation errors are caused by the
accompanying noise during the measurements of the system state, whereas structural
errors mainly occur when the simplified model fails to capture the complexity of the
real-world system. Although the second term is known as the dominant contributor to
prediction errors [26,27], measurement errors still play a significant role in determining
the uncertainty of the integrated model. For example, a considerable level of observation
errors in the surface water discharge—an observation type controlling the water balance of
the integrated model—stems from the stage–discharge rating curve approximation and the
accompanying errors during measurements of stream velocity and stage.

To consider observation errors, parameter inversion models such as PEST use a
weight matrix, an element of which is calculated as the inverse of the observation er-
ror (co)variance [28–30]. The approach has been proven to provide the smallest possible
variances of the estimated parameters [31]. The key assumption underlying this approach
is that the relation between the model inputs and outputs could be approximated as having
linear behavior. Another approach used to represent the variability of the observation error
is stochastic characterization [32,33]. This method generates multiple sets of observations
using a probability distribution function of measurement error and calculates the corre-
sponding model outputs for each random realization. The latter is conceptually simple and
can better reflect complex (nonlinear) watershed processes. The practical application of the
stochastic approach, however, has been limited to rather simple hydrological models due
to its intensive computational requirement; thus, few studies have adopted the approach
for complex 3D integrated models.

The objective of this study was to predict the future hydrological response of the
watershed system and evaluate the interactions between groundwater and surface water
under different climate change scenarios using a 3D integrated groundwater–surface water
flow model. The constructed model was applied to the Sabgyo watershed and calibrated
using the parameter inversion tool PEST. In this study, we focused on exploring the potential
impact of observation errors on parameter inversion processes. Three different weighting
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schemes that consider observation error variances were suggested and applied to PEST.
The applied weighting schemes were compared with the results from stochastic models, in
which observation errors from the principal observation points—a set of observation points
that mainly controls inversion process—were considered as a random variable. Based on
the calibrated model setup and error analysis, the interactions between groundwater and
surface water were analyzed, and the future variations in the integrated flow system under
the impact of climate change were investigated. The results of this study can provide new
insights on addressing observation errors within complex watershed models and reduce
the predictive uncertainties arising from observation errors.

2. Materials and Methods
2.1. Study Site

The Sabgyo watershed is located in the northwestern part of South Korea (Figure 1a).
The Sabgyo-cheon (stream) originates from the Oseo-san (Mountain) in the southern part
of the watershed and then flows approximately 65 km to the north until it meets the West
Sea. The watershed drains an area of approximately 1650 km2. The surface topography
relief ranges from zero in the northern part to 650 m in the southeastern part (amsl).
The measured rainfall and temperature at Cheonan station (Figure 1b) from 2000 to 2019
were 1203.1 ± 126.3 mm/year and 12.1 ± 9.8 ◦C, respectively [34]. Seasonal variations in
rainfall and temperature range from 560.1 ± 45.8 mm/year (dry season, October to May) to
2528.4 ± 158.7 mm/year (wet season, June to September) and from 6.5 ± 7.0 (dry season)
to 23.1 ± 2.3 ◦C (wet season), respectively.
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Figure 1. (a) Location of the study site; (b) monitoring stations and stream network within the
watershed; and (c) 3D subsurface model and dominant hydrostratigraphy/soil types of the study site.

The surficial geology of the study site is mostly covered by Precambrian granite-biotite
gneiss, Mesozoic granite, and Quaternary alluvial deposits [35]. The surface soil of the site
is categorized into eight different types, including sand (50.9%), sandy clay loam (26.3%),
sandy loam (12.8%), silt loam (4.8%), etc. [36]. The dominant land-use types within the
watershed were forest (44.5%) and agricultural land (42.9%), followed by urban area (4.7%)
and grassland (2.9%) as of 2010 [37].

The estimated total groundwater extraction rate of the study area from 2000 to 2019
was approximately 255,000 ± 21,000 m3/day [38]. Two dams (Yedang and Sabyo) within
the watershed have been operated for the purpose of agricultural water supply (Figure 1b).
In addition to the water supply, the Sabgyo Dam, located at the outlet of the watershed,
controls water flow and downstream flooding.
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2.2. Numerical Model

A 3D integrated HydroGeoSphere (HGS) model was developed to simulate integrated
groundwater and surface water flows [39]. HGS calculates surface and subsurface water
flow based on the two-dimensional (2D) diffusion-wave approximation of the Saint Venant
equation [40] and the Richards’ equation for variably saturated flow, respectively.

The surface domain was generated into 2D triangular meshes using AlgoMesh [41].
The grid sizes are uniformly distributed along the entire domain with a mean length of
420 m. Based on the geological logging database [38], the subsurface domain was vertically
discretized into four divisions (surface soil, alluvial deposits, weathered rock zone, and
basement rock), the depths of which were determined using inverse distance weighting
interpolation [42]. These vertical geological units were then divided into 10 sublayers to
increase the vertical resolution of the model. The total numbers of 3D nodes and elements
are 89,530 and 156,420, respectively (Figure 1c).

In the surface domain, a rainfall boundary was assigned using the observed monthly
means at the Cheonan weather station (Figure 1b). A critical depth boundary condition
was given along the perimeter of the surface domain, while a no flow boundary condition
was applied to those of the subsurface domain. The hydraulic structure of the Yedang
dam was represented using a mesh cutoff and boundary condition linking scheme [43].
The water discharge rate from the dam was expressed by varying the flux boundary in
which the discharge rate was determined depending on the dam stage and the reservoir
capacity. At the subsurface domain, constant pumping boundaries were assigned. Since
the location of each pumping well cannot be properly represented in the model domain
due to the limited pumping well database and grid size, we assumed that groundwater
pumping wells were uniformly distributed within the watershed, thus assigning constant
pumping boundaries to all nodes (except the nodes beneath the streams) that lie between
alluvial deposits and weathered rock layers (major aquifers). The watershed includes parts
of six different counties that have different groundwater utilization rates. Accordingly,
different groundwater pumping rates were given for each administrative unit by dividing
the total groundwater usage rate by the total number of 2D nodes for each district.

Evapotranspiration (ET) processes were described using the relation suggested by
Kristensen and Jensen [44] and Wigmosta et al. [45]. The potential evapotranspiration (PET)
was calculated using the simplified FAO Penman–Monteith equation [46]. Meteorological
data (minimum and maximum temperature, humidity, wind speed, and solar radiation)
observed at the Cheonan station from 2000 to 2019 were used to obtain monthly varying
PET. The monthly extraterrestrial radiation values were retrieved from [47]. The leaf area
index (LAI) was obtained from the MODIS Data [48]. Different monthly averaged LAI
curves were assigned (2000–2019) for each vegetation type by averaging cell-by-cell LAIs
(500 m in resolution) for each zone.

Tables 1–3 display the model parameters used for simulation. Among these param-
eters, hydraulic conductivities, transpiration limiting saturation index (oxic limit, anoxic
limit), and minimum and maximum evaporation-limiting saturation index were chosen as
the model calibration parameters. Whereas the hydraulic conductivities of alluvial deposits
and weathered rock were represented as lumped values (homogeneous conditions), the
top soil was subdivided into eight zones based on the soil types; thus, different hydraulic
conductivities were assigned for each zone. Other model parameters were referred from
the literature. A total of 19 national groundwater monitoring wells and 15 gauge stations
were used as observation targets [38,49,50]. For each observation station, available monthly
data since 2000 to 2019 were used for model calibration.
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Table 1. Evapotranspiration (ET) parameters used for simulation.

Parameter Values Sources/Notes

Evaporation depth 1(Urban)–3 m (Mixed trees) Cubic decay with depth [51]

Root depth 0.1 (Urban)–3.5 (Mixed trees) Cubic decay with depth [51,52]

LAI From 0.26–2.9 (Vegetation) to
0.45–4.1 (Deciduous)

Monthly averages used for
simulation [48]

Transpiration limiting
saturation

Wilting point 0.19 [53]
Field capacity 0.3 [53]

Oxic limit Calibration target (toxl01) 1 -
Anoxic limit Calibration target (taxl01) 1 -

Evaporation limiting
saturation

Minimum Calibration target (emin01) 1 -
Maximum data Calibration target (emax01) 1 -

Note: 1 Symbols indicate parameter names used for model calibration.

Table 2. Surface flow parameters used for simulation.

Parameter Values Sources/Notes

Manning’s Roughness Coefficients 0.0016 (Urban)–0.03 (Forest) [54]
Rill Storage Height 2.0 × 10−5 (urban)–5.0 × 10−3 (Wetland) [38,51]

Obstruction Storage Height 1.0 × 10−5 (Urban)–5.0 × 10−3 (Wetland) [38,51]
Coupling Length 0.01 m [55]

Table 3. Subsurface flow parameters used for simulation.

Parameter Values Sources/Notes

Hydraulic
conductivity (m/s)

Basement rock 1.0 × 10−10

[56]Weathered rock Calibration target (kx001) 1

Alluvial layer Calibration target (kx002) 1

Surface soil Calibration target (kx003-kx010) 2

Anisotropy (Kv/Kh)

Basement rock 1

[56]
Weathered rock 1
Alluvial layer 1

Surface soil 0.1

Specific Storage Ss 1 × 10−4–5.0 × 10−4 [56]

Porosity n 0.05 (basement rock)–0.35 (Soil) [56]

Van Genuchten
parameters

α 2.25
[57]β 1.89

Residual saturation 0.18

Notes: 1 Symbols indicate parameter names used for model calibration. 2 kx0003 to kx010 represent sand to clay
loam in Figure 1.

2.3. Model Calibration Process Considering Observation Errors

In this study, we calibrated the constructed model using the monthly normal con-
cept, which can represent the monthly mean hydrological behavior of the water system
under varying metrological and water-use conditions. The monthly normal inputs of the
integrated model was developed by averaging the weather forcing data (precipitation,
potential evapotranspiration, and temperature) of each month over the target period. These
monthly normal models are considered to represent the long-term average seasonal cy-
cle. A similar approach was adopted by [17] for the effective employment of large-scale
integrated models in climate change impact studies. The applied target period for the
monthly normal calibration was from 2000 to 2019. Since the goal of this work was to
predict a long-term hydrological response (until 2100), we chose the calibrated model setup
to properly reflect a long period of meteorological and hydrological characteristics of the
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study site. Simulation with the meteorological inputs at daily scale was not considered in
this study because the daily scale model requires intensive computational resources. The
calibration targets of the constructed model consisted of the groundwater level (GWL) and
surface discharges. Similar to input datasets, the calibration target datasets from 2000 to
2019 were processed for the monthly normal format. Model calibrations were performed by
combining HGS with PEST. The effect of observation errors on the PEST model was tested
with two different approaches: (1) adjustment of the weight matrix considering observation
errors and (2) stochastic realization of observation sets using observation error functions.
Figure 2 shows the conceptual flow chart of this study for incorporating observation errors
in PEST simulation.
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2.3.1. Estimation of Observation Error Weight Matrix for PEST

In PEST, a set of target parameters was obtained by minimizing the objective function:

S =
(
y− y′(b)

)T
ω
(
y− y′(b)

)
(1)
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where S is the objective function, y is the observation vector, y′(b) is the simulated equiva-
lent vector, b is the parameter vector, and ω is the observation weight matrix [30]. Assuming
that the observation errors are uncorrelated, ω can be approximated as a diagonal matrix
as follows:

ωii =
αi
σ2

yi

i = 1, . . . , n, . . . nd (2)

where nd is the number of total observations (including n observations from GWL and nd-n
observations from surface discharges), αi is the weight adjustment factor to ensure that no
subobjective functions dominate the inversion process [28], and σ2

yi
is the observation error

variance [30]. In this study, we assumed that the observation error variance stemmed from
two sources:

σ2
yi
= σ2

ymi
+ σ2

ysi
i = 1, . . . , n, . . . nd (3)

where σ2
ymi

is the measurement error variance and σ2
ysi

is the sampling error variance of
the ith observation. The measurement error variance indicates the accompanying errors
during the observation data acquisition. Previous studies that measured stream discharges
at the study site reported that the error ranges of the stream discharges varied from 8 to
29% of their average depending on the location [58,59]. Following the suggestion by [33],
we assumed that the measurement error probability function for stream discharge followed
the truncated Gaussian distribution:

Qi,measured
∝ N(Qi,True, σ2

ymi
) where

∣∣Qi,measured −Qi, True
∣∣ < 1.96σymi

= 0 where
∣∣Qi,measured −Qi, True

∣∣ ≥ 1.96σymi i = n + 1, . . . , nd
(4)

where Qi,measured is the measured discharge taking into account both the true river discharge
(Qi, True) and measurement error. The variance of each discharge observation was chosen
to give a 95% confidence interval at the error ranges (8~29%) of the measured discharges
(i.e.,σymi = (0.04 ∼ 0.15)×Qi,measured, i = n+ 1, . . . , nd). The measurement error variance
of GWL was relatively small compared to stream discharge and, thus, was not considered
in this work σ2

ymi
≈ 0, i = 1, . . . , n).

The sampling error was defined as the potential variance of the observation caused
by the limited number of data acquisitions. Because the constructed model was calibrated
using the monthly normal state, all model inputs (rainfall, temperature, etc.) and obser-
vations were processed as the monthly normal means for the period from 2000 to 2019.
Some observations, however, did not possess full data during the target period for different
reasons (some data were lost due to device malfunction, while some observation stations
were installed recently). In such cases, the true monthly normal observations covering
the whole duration of the target period could be statistically inferred from the sampled
observations. Assuming a normal approximation of the distribution of the sample mean,
the difference between the true mean and the sample mean of the ith observation lies within
[−σysi , σysi ] at a 95% confidence level:

Qi,measured ∝ N(Qi,True, σ2
ysi
) (5)

σysi = 1.96
σyoi√

mi
(6)

where σysi is the 95% standard error taking into account the uncertainty of observation
errors, σyoi is the standard deviation of sampled values corresponding to the ith observation,
and mi is the size of samples (number of available data) for the ith observation during the
target period. Next, the weight adjustment factor, αi, was estimated from the preliminary
calibration process to ensure that the contributions from multiple subobjective functions
were almost equal. Finally, the estimated ωii ranged from 0.002 to 265.9 for surface dis-
charges and from 0.001 to 12.77 for GWLs. In terms of the weight for surface discharge, we
observed that smaller values of weights were assigned for surface peak flows because the
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σ2
ymi

in Equation (4) was proportional to the magnitude of surface discharges. With smaller
values of weight for the peak flow, the calibrated model might tend to fit the hydrograph
preferably to the low-flow conditions [60]. Accordingly, we introduced a log-transformed
weight factor ωsii to reduce the difference between the maximum and minimum weight
factors using the following equation:

ωsii = ln

(
1 +

αi
σ2

yi

)
(7)

The estimated ωsii ranged from 0.61 to 18.26 for surface discharges and from 0.005 to
2.0 for GWLs. Next, PEST was operated with three different weighting schemes: (1) weights
assigned equally for all observations (Case 1); (2) weights assigned using Equation (2)
(Case 2); and (3) weights assigned using Equation (7) (Case 3).

2.3.2. Stochastic Realization of Observation Sets Considering Measurement Uncertainty

We applied a stochastic random generation approach to reflect potential uncertainty
arising from the measurement errors. Among the two observation types used for the model
calibration, stream discharges were chosen as the random variable considering the larger
uncertainty of its measurements compared to GWL. Since the stochastic model combined
with the 3D integrated model requires intensive computational resources and simulation
time, we introduced principal component analysis (PCA) of the sensitivity matrix to identify
a subset of key observations that controlled the parameter inversion process. The adopted
method can effectively reduce the number of target variables while minimizing information
loss stemming from limited simulation cases.

A lumped sensitivity matrix (S) was first estimated, the element of which was defined
as follows:

sij =
∂ ∑

u(i)
o=1 y(b)i,o

∂bj
i = 1, . . . , k, j = 1, . . . , l (8)

where bj is the jth calibration parameter; y(b)i,o is the simulated stream discharge at the ith
observation point and oth time; u(i) is the number of observations at the ith location during
the calibration period (∑

i
u(i) = nd− n in this case); k is the number of observation points

(gauge stations); and l is the number of calibration parameters. The covariance matrix of S,
V(y(b)), can be described as follows:

V(y(b)) = E
[
(S− µ)T(S− µ)

]
(9)

Using PCA of the covariance matrix, eigenvectors explaining more than 90% of its
variance were identified, and the observations comprising those eigenvectors were chosen
as the principal observations. Among the 15 gauge stations, 7 stations (stations 3, 4,
6, 7, 13, 15, and 16 in Figure 1b) were identified as a subset of observation points that
mainly controlled the inversion process. Accepting the assumption that the measurement
probability distribution function followed a multidimensional Gaussian distribution, the
variances of which were defined as in Equation (4), random samples may be drawn from the
distribution to give river discharge at each gauge station. Using a Monte Carlo approach,
multiple sample sets of river discharge (100 possible cases) were taken to approximate
the true joint distribution of the gauging points, and each sample was considered as a
possible observation of river discharge [33]. The PEST algorithm was then applied to the
integrated model with each random scenario. During the stochastic simulations, the initial
parameters were assumed to be equal for all simulation cases, and ω was given as an
identification matrix. Based on the results from the stochastic experiments, the distributions
of the inversion parameter sets were approximated using a Monte Carlo approach.
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2.4. Prediction of Future Variability of Watershed Processes with Different RCP Scenarios

Based on the calibrated model setup, the watershed response to changing climate
forcing was examined with different RCP scenarios [2,3]. Among four different RCP
scenarios (RCPs 2.6, 4.5, 6.0, and 8.5), this study used RCPs 2.6 and 8.5 to predict future
water system with the best (RCP 2.6: assuming the strong decrease in greenhouse gas
(GHG) emissions) and the most extreme (RCPs 8.5: assuming high GHG emissions and
little mitigation efforts) scenarios. The downscaled climate models from HadGEM3-RA
were then chosen for analysis [34]. The projected climate data over the study site were
processed to monthly means and applied to prediction models. The simulation period was
from 2011 to 2100. A statistical summary of projected climate information over the study
site is provided in Supplementary Table S1 and Supplementary Figure S1.

3. Results
3.1. Comparisons of PEST Performance between Different Weighting Schemes

Table 4 summarizes the PEST performance results under different weighting schemes
(Cases 1, 2, and 3). Four efficiency criteria were selected to estimate the model calibration
performance, including the root mean square error (RMSE), the weighted residual sum of
squares (RSS) normalized by the sum of weights, the coefficient of determination (R2), and
the Nash–Sutcliffe efficiency (NSE). The RMSE and weighted RSS measure the discrepancy
between the data and an estimation model, and a smaller value of these criteria indicates
a better fit of the model to the data. The R2 and NSE, which are widely used to evaluate
the goodness-of-fit of modeled surface discharges, range from 0.0 to 1.0 and −∞ to 1.0,
respectively. For flow evaluation, R2 and NSE values closer to 1.0 indicate a better fit
between the simulation and the observations [61].

Table 4. Comparisons of calibration performance between different weighting schemes.

Model Performance Criteria Components Case 1 Case 2 Case 3

RMSE *
Surface flow [m3/s] 3.5 3.6 3.1

GWL [m] 3.9 3.8 4.0

Weighted RSS * Surface flow [m3/s] 12.2 0.5 1.4
GWL [m] 15.3 9.7 4.5

R2 * Surface flow [m3/s] 0.83 0.84 0.83

NSE * Surface flow [m3/s] 0.83 0.82 0.83

Notes: * RMSE =
[

1
N ∑

i
(Obi − Simi)

2
]0.5

; Weighted RSS = ∑i(Obi−Simi)
2wi

∑i wi
; R2 ={

∑(Qob,i−Qob)(Qsim,i−Qsim)[
∑ (Qob,i−Qob)

2
]0.5[

∑ (Qsim,i−Qsim)
2
]0.5

}0.5

; NSE = 1 − ∑(Qob,i−Qsim,i)
2

∑(Qob,i−Qob)
2 where obi: ith observation; simi: simu-

lation at ith observation; N: number of total observations; wi: weights assigned for ith observation; Qob,i: observed
surface flow at ith observation; Qob: mean of observed surface flow inclusive of all surface observations; Qsim :
mean of simulated surface flow inclusive of all surface observations, and Qsim,i: simulated surface flow at
ith observation.

Comparisons of the three different weighting schemes revealed that the total error
of the modeled system was the smallest in Case 3 (case using log-transformed weight
factors) for both the RMSE and the weighted RSS (Table 4). Model performance efficiency
was analyzed for each calibration type (surface flow and GWL) and showed that Case 2
and Case 3 slightly outperformed Case 1, but the differences between the models were
minor. The R2 and NSE did not show significant variation among the three test cases.
These results indicate that the observation error-based weighting schemes used in this
study could slightly increase the inversion model performance in terms of error analysis,
although their effect was small. The one-to-one plots between observed and simulated
variables (Figure 3) also showed that the differences in the simulation results among the
three weighting schemes were not significant.
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Figure 3. Comparisons of observed and simulated (a) surface flow (m3/s) and (b) GWL (m; amsl)
under different simulation cases.

Compared to the error evaluation (Table 4), the estimated model parameters showed
a more scattered pattern depending on the applied weighting schemes (Figure 4a). Dis-
crepancies in estimated hydraulic conductivity were noticeable in weathered rock (kx001),
loam (kx006), and silty clay loam (kx009), whereas those from the remaining subsurface
zones were similar for all cases. Figure 3 also reveals that the effect of the applied weight-
ing scheme on the parameterization was more prominent for ET-related properties. In
particular, the estimated toxl01, taxl01, and emax01 exhibited largely scattered distribu-
tions for each test case. Despite similar error values obtained from different simulation
cases (Table 4), the estimated parameters could be considerably different depending on the
applied weighting schemes.
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Figure 4. Comparisons of (a) estimated model parameters and (b) parameter sensitivities between
different weighting schemes.

A sensitivity analysis of observations (including both GWL and surface discharge from
all observation points in the watershed) to changes in the calibration parameters indicated
that kx002, kx003, kx005, and kx007 were major properties dominating the observation
sensitivity (Figure 4b). In general, observations were more sensitive to the model properties
in Case 2, with the exception of the ET parameters. The high sensitivities of Case 2 and Case
3 compared to Case 1 could be associated with the larger weights applied to those models.

Figure 5 compares the measured monthly averaged surface discharges and GWL with
the simulation results (Case 3). The figure shows that the constructed model reasonably
matched the measured surface discharges. The time-series plot revealed that the surface
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water system of the study site was significantly affected by seasonal forcing, whereas the
temporal variation in GWL was comparatively small. The simulation results from Cases 1
and 2 also exhibited similar distributions to that of Case 3 with minor variations.
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Figure 5. (a,b) Monthly variations in surface discharges (m3/s) from (a) Gauge02, 03, 05, 06; (b) Gauge09,
10, 12, 13, and GWL (m; amsl) observed from (c) GW06, 07, 08; (d) GW03,05,10 of the study site.

3.2. Results of Stochastic Simulations

Figure 6 shows the histograms of the log-transformed hydraulic conductivities ob-
tained from the stochastic models and PEST inversion. We observed that the histogram of
each calibration target had different distribution shapes. The distributions for kx002, kx004,
kx005, and kx006, for example, resembled a skewed pattern, whereas those from other
calibration targets had normal (kx001), uniform (kx003), or bimodal (kx007 and kx008)
shapes. Some calibration targets (kx002 and kx005) showed relatively high peak values
(>0.8) in their modes (the most frequently predicted value), with minor variations in their
predicted values. Other calibration targets exhibited a more dispersed distribution with
reduced probability at the peak. For example, the models predicted that log-transformed
kx001 could be present between [−8.5, −6] (over two orders of magnitude difference) with
a peak value of 0.6 at the interval of [−7.5, −7].
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Figure 6. Histograms of estimated hydraulic conductivities from the stochastic models and compar-
isons with the results from the weighting tests (Cases 1, 2, and 3).

The histograms for ET-related parameters (Figure 7) could be interpreted as having
bimodal (toxl001 and taxl001) or skewed (emin001 and emax001) distributions. The ET
parameters exhibited a more dispersed distribution than did the hydraulic conductivities.
In the cases of toxl001 and emax001, the peak values were lower than 0.5 and, even in the
case with a peak over 0.5 (taxl001), its histogram showed a distinct bimodal shape.
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The symbols in Figures 6 and 7 indicate the values of the calibration parameters
predicted from the different weighting scenarios. Graphical comparison indicates that,
among the three tested weighting schemes, predictions from Case 3 were closest to the mode
of stochastic simulations for most of the calibration targets. For some parameters (kx007),
however, all tested weighting schemes failed to capture the mode value. Comparisons
with the mean value from the stochastic simulations (Table 5) revealed that predictions
from Case 3 reasonably matched the averages of calibration targets without significant
discrepancy to each other (except for kx003, kx007, kx008, toxl001, and emin001).

Table 5. Estimated values of calibration targets under different weighting schemes and comparison
with the result from the stochastic model.

Parameter
PEST with Different Weights Stochastic Model

Case 1
(Difference Ratio) *

Case 2
(Difference Ratio)

Case 3
(Difference Ratio) Mean Standard

Deviation

log(K) (m/s)

kx001 1.00 × 10−6

(4.43)
6.60 × 10−10

(1.00)
1.39 × 10−7

(0.24) 1.84 × 10−7 2.86 × 10−7

kx002 2.80 × 10−7

(0.33)
6.04 × 10−8

(0.85)
2.04 × 10−7

(0.51) 4.16 × 10−7 8.61 × 10−8

kx003 2.59 × 10−2

(0.20)
5.86 × 10−3

(0.82)
8.97 × 10−3

(0.72) 3.23 × 10−2 3.42 × 10−3

kx004 2.26 × 10−4

(4.50)
5.17 × 10−5

(0.26)
5.76 × 10−5

(0.40) 4.11 × 10−5 2.74 × 10−5

kx005 2.00 × 10−2

(0.34)
1.14 × 10−2

(0.23)
2.00 × 10−2

(0.34) 1.49 × 10−2 4.93 × 10−3

kx006 1.14 × 10−5

(1.79)
1.27 × 10−4

(30.13)
4.32 × 10−6

(0.06) 4.08 × 10−6 2.88 × 10−6

kx007 1.00 × 10−3

(3.41)
1.00 × 10−3

(3.41)
1.00 × 10−3

(3.41) 2.27 × 10−4 3.42 × 10−4

kx008 4.74 × 10−7

(0.72)
1.82 × 10−6

(0.08)
6.39 × 10−7

(0.62) 1.69 × 10−6 1.79 × 10−6

kx009 4.19 × 10−7

(0.78)
1.39 × 10−5

(6.20)
1.11 × 10−6

(0.42) 1.93 × 10−6 9.80 × 10−7

kx010 1.05 × 10−4

(0.77)
1.26 × 10−4

(1.13)
7.16 × 10−5

(0.21) 5.92 × 10−5 4.02 × 10−5

ET
Properties

toxl001 0.50
(0.18)

0.59
(0.03)

0.75
(0.23) 0.61 0.14

taxl001 0.75
(0.16)

0.75
(0.16)

0.95
(0.07) 0.89 0.08

emin001 0.34
(0.21)

0.24
(0.14)

0.22
(0.21) 0.28 0.09

emax001 0.80
(0.05)

0.40
(0.47)

0.80
(0.05) 0.76 0.16

Note: * Difference ratio was defined as |predicted value f rom each Case−mean o f stochastic models|
mean o f stochastic models .

3.3. Analysis of Seasonal Hydrologic Variation in Groundwater-Surface Water Integrated System

Based on the calibrated model setup, we analyzed and compared seasonal hydrological
variations in the integrated flow system for three tested simulation cases. Table 6 summa-
rizes the hydrological water balance of the study site. The surface discharge showed sig-
nificant seasonal variations, characterized by high discharge rates (129 to 146 mm/month)
during the rainy season (June to September) and low flow rates (35 to 46 mm/month)
during the dry season (December to May). During the rainy season, surface discharge com-
prises approximately 61 to 72% of the total rainfall, whereas actual evapotranspiration (AET)
accounts for approximately 12 to 15% of the rainfall. With a substantial decline in rainfall
during the dry season, however, the contribution of AET to the water balance increases (32
to 40% of the total rainfall) while the amount of surface discharge significantly decreases.



Water 2023, 15, 1880 14 of 23

Table 6. Simulated hydrological balance of the study site with groundwater and dam contributions
to stream discharge (2000~2019).

Hydrologic Component
Amount (mm/Month)

Case 1 Case 2 Case 3

Rainy
Season

Rain
AET

Surface Discharge

203.4
25.3

146.3

203.4
31.5

123.2

203.4
31.1

129.1

Groundwater Seepage 1

Stream Water Infiltration 1

Dam Discharge

3.3
22.8
24.4

4.9
34.0
20.8

8.1
38.0
22.0

Dry
Season

Rain
AET

Surface Discharge

49.1
15.9
45.8

49.1
19.6
34.7

49.1
18.7
37.9

Groundwater Seepage 1

Stream Water Infiltration 1

Dam Discharge

19.1
7.0
4.7

17.1
11.9
4.8

27.0
14.3
4.6

Note: 1 Components indicate groundwater seepage/infiltration to/from the streambed.

The exchange flux between aquifers and streams also showed strong seasonal varia-
tions. The direction of the water exchange flux during the rainy season could be charac-
terized by net surface water infiltration into the aquifer, whereas, during the dry season,
groundwater seepage mainly feeds the surface discharge (Table 6). During the rainy season,
for example, the total amount of infiltrated stream water accounted for 13 to 24% of the
total surface discharge. The contribution of groundwater to surface discharge was greater
in the dry season, as the net groundwater discharge comprised 15 to 34% of the total surface
discharge. Details on the seasonal variations in groundwater-stream dynamics can also
be found in Figure 8. The seepage-dominated exchange flux during the dry season and
infiltration-dominated water exchange during the rainy season demonstrated the direct
contribution of groundwater to surface discharges.
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Figure 8. Hydrograph separation results for stream discharges, groundwater infiltration, groundwa-
ter seepage, and dam discharge for (a) Case 1, (b) Case 2, and (c) Case 3.

The dynamic interaction between groundwater and streams was also demonstrated
by comparing hydrographs between the integrated model and the surface flow model
that excluded the groundwater flow system. In Figure 9, solid lines indicate the predicted
hydrographs at different gauge stations without groundwater components and dashed lines
indicate those from the integrated model. The comparison of hydrographs revealed that
groundwater storage, which was filled during the rainy season and then slowly released
during the dry season, supported the stream system and contributed to the buffering of
temporal variations in stream discharge.
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210.3 
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Figure 9. Monthly varying hydrographs at the selected gauge stations (a) Gauge04, (b) Gauge05,
(c) Gauge06, (d) Gauge10, (e) Gauge13, and (f) Gauge16. Solid lines indicate hydrographs ob-
tained from the surface flow model, and dashed lines show the hydrograph from the surface water–
groundwater integrated models.

In summary, the comparisons of seasonal hydrological variations among the three
different weighting schemes showed that differences existed for both water balance and
hydrographs. Among the three tested cases, Case 3 predicted a more dynamic interaction
between groundwater and streams. In Case 2, the groundwater seepage contribution
to stream discharge was smaller than that in Cases 1 and 3, resulting in a decrease in
estimated surface discharge. Despite the differences observed from the model predictions,
however, all tested models exhibited similar seasonal variations for both water budget and
groundwater–surface water interaction processes.

3.4. Predictions of Hydrological Responses and Groundwater–Surface Water Interactions under
Different Climate Change Forcings

Tables 7 and 8 show the predicted hydrologic balance of the study site under the
RCP2.6 and RCP8.5 scenarios, respectively. Climate change impacts were mainly analyzed
using the Case 3 integrated model because the parameters obtained from Case 3 were
closest to the mode of stochastic simulations for most calibration targets (Figures 6 and 7).
The results from Case 1 and Case 2 also showed similar trends, with minor variations
in their estimated values. The prediction model showed a general increasing trend of
AET for both the RCP2.6 and RCP8.5 scenarios, which was likely to be associated with
increasing temperature. Surface discharges also exhibited decadal variations, but their
varying magnitudes were relatively small compared to the temporal variations in rainfall.
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Table 7. Predicted hydrological balance of the study site with groundwater and predicted dam
contributions to stream discharge under the RCP2.6 scenario (Case 3).

Hydrologic Component
Amount (mm/Month)

2020s
(2011–2040)

2050s
(2041–2070)

2080s
(2071–2100)

Rainy
Season

Rain
AET

Surface Discharge

210.3
36.5

118.4

187.5
37.2

106.3

206.5
36.8

114.8

Groundwater Seepage
Stream Water Infiltration

Dam Discharge

34.3
62.3
20.4

38.3
57.8
18.5

38.3
59.7
19.6

Dry
Season

Rain
AET

Surface Discharge

70.4
21.3
42.9

73.5
21.6
42.9

68.0
21.7
39.5

Groundwater Seepage
Stream Water Infiltration

Dam Discharge

45.2
25.5
6.0

44.5
27.2
5.8

44.7
26.6
5.2

Table 8. Predicted hydrological balance of the study site with groundwater and predicted dam
contributions to stream discharge under the RCP8.5 scenario (Case 3).

Hydrologic Component
Amount (mm/Month)

2020s
(2011–2040)

2050s
(2041–2070)

2080s
(2071–2100)

Rainy
Season

Rain
AET

Surface Discharge

211.3
36.7

106.2

206.8
38.2

106.3

249.9
39.9

126.3

Groundwater Seepage
Stream Water Infiltration

Dam Discharge

17.6
45.7
18.3

17.8
43.9
18.5

17.4
50.3
22.0

Dry
Season

Rain
AET

Surface Discharge

68.7
20.7
41.9

61.3
22.1
42.9

62.4
23.1
44.3

Groundwater Seepage
Stream Water Infiltration

Dam Discharge

36.5
16.7
5.6

39.8
18.4
5.8

43.1
19.3
6.7

The models predicted that groundwater infiltration and seepage would play a signifi-
cant role in reducing stream discharge during the rainy season and maintaining it during
the dry season. The predicted net infiltration of stream water during the rainy season
accounted for 18 to 24% and 25 to 26% of the total surface discharge under RCP2.6 and
RCP8.5, respectively. Additionally, the net groundwater seepage during the dry season
contributed 40 to 46% and 47 to 54% of the surface discharge under the RCP2.6 and RCP8.5
scenarios, respectively. It is notable that, compared to the current state model (Table 6),
the total amount of both groundwater seepage and stream infiltration tended to increase
under the projected climate conditions, suggesting a more dynamic interaction between
groundwater and streams. Increasing feedbacks between groundwater and streams could
also be observed in Figure 10, as shown by the higher infiltration and seepage flux, espe-
cially during the dry season. Similarly, the predicted hydrographs at several gauge stations
under the RCP8.5 scenario suggested that groundwater would attenuate the hydrological
response of the integrated system under changing climate forcing (Figure 11).
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Figure 11. Monthly varying hydrographs at the selected gauge stations of the study site. Solid lines
indicate hydrographs obtained from the surface flow model and dashed lines show the hydrograph
from the surface water–groundwater integrated models.
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4. Discussions
4.1. Effect of the Different Observation-Error Weighting Schemes on the Parametrization of the
Integrated Model

In this study, we applied three different weighting schemes to analyze the potential
impact of observation error in the parameterization processes of the 3D integrated model
using PEST. The observation error considered in this work includes measurement error
and sampling error. The measurement error was used to describe the difference between a
measured quantity and its true value. The sampling error was defined as the difference
between the true monthly means (i.e., population means) for the whole duration of the
simulation period and the monthly averages estimated from the available sample data (i.e.,
sample means) from each observation point. Although the statistics that defined sampling
error in this study were associated only with the temporal mean, the error could be used
to represent the difference in areal mean between the observations and a true value. For
example, Linsley and Kholer [62] reported that areal rainfall estimates could have standard
errors exceeding 30% of their average if the gauge network is sparse [63].

The observation weight matrix was formulated to consider the potential variances in
the observation error. Assuming that the variance in the observation error followed the
truncated Gaussian distribution and that both measurement and sampling errors were
uncorrelated and independent, we estimated the error covariance and the corresponding
weight for each observation (Case 2). Furthermore, we introduced a log-transformed
weight matrix to reduce the difference between the maximum and minimum weights to
avoid larger weights dominating the parametrization process (Case 3). Comparisons of
calibration performance between different weighting schemes showed that, in terms of
error analysis, Case 2 and Case 3 slightly outperformed the case with equal weights (Case 1).
This result demonstrates that the observation weight matrix applied in this work performed
properly and contributed to a minor improvement in the model parameterization.

In terms of estimated parameter values, the estimated parameter values could be
different depending on the applied weighting scheme. A comparison of the estimated
parameter value with its sensitivity revealed that the calibration targets that had lower
sensitivities to the observations showed larger variations in their predicted values. This
result could be associated with the relatively small contribution of these parameters to the
model calibration. PEST seeks the solutions of Equation (1) by minimizing the weighted
least square between the observation and the simulation. Accordingly, for the parameters
whose variation results in significant changes in the objective function, the numerical model
can readily determine the steepest gradient; therefore, the solution of the matrix is likely
to converge to the same optimized values if the initial condition is equal. However, for
the other set of parameters that have a minor effect on the observation, the numerical
model could have difficulty searching for the unique solution, thus leading to considerable
variations in its solutions depending on the model condition.

4.2. Potential Implication of Observation Error to the Model Parameterization and Performance

The results of the stochastic model showed that the potential uncertainty of observation
error could affect the parameterization process of the integrated model. We observed that
the histogram of each calibration target showed a different pattern, implying that the effect
of observation error on model calibration varied depending on the calibration targets.
The comparison of the histogram with sensitivity analysis showed that, similar to the
results from the weighting scheme test (Section 4.1), the calibration targets that had lower
sensitivities to the observations tended to have large intervals in their predicted values.

In terms of ET parameters, the histograms of these parameters showed large variations;
thus, it was difficult to estimate the ‘representative values’ of these parameters. This result
indicates that the model constructed for use in this study may not fully capture varying
dynamics of the ET process of the study site. This could arise from the lack of structural
representation of the watershed system, particularly due to the limited discretization of the
surface zone associated with ET dynamics. Additionally, the observation type used in this
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study (GWL and surface discharge) may not be enough to represent the spatiotemporal ET
processes of the study site. This result demonstrates that the inclusion of different types
of observations, such as soil moisture and measured ET rate, could improve the model
calibration performance and site characterization.

The observation error-based weighting schemes used in this study were shown to be
suitable for obtaining the optimized values of the calibration targets. Among the three test
cases, predictions from Case 3 were closest to the “representative value” from the stochastic
simulations for most calibration targets. The total error between the simulation and the
observations was also the smallest in Case 3. For Case 2, some of the calibrated parameters
were out of the ranges of those estimated from the stochastic model. This result implies that
the error function applied in this study (Gaussian distribution with variances obtained from
the measurement error) may not be the best option to derive the error covariance. Because
our chosen error covariance was proportional to the magnitude of surface discharge, it
assigned a smaller weight to the peak flow and a larger weight to the low-flow condition.
Under metrological conditions with distinct seasonal variations, such as those in our study
site, this could result in large variations in the observation weights with seasons, creating
a subset of the observation period that dominates the calibration process. The improved
calibration performance of Case 3 also demonstrates that reducing the weight difference
between observations would be more suitable for our study site. This result implies that
the proper choice of weighting scheme could be important in the model calibration process,
particularly when the observation errors show large variations. Therefore, additional
investigation of the error covariance evaluation for surface discharge would be necessary
for the proper selection of the observation error function and the improved parametrization
of the integrated model of the study site.

We used the PCA of the sensitivity matrix to identify a subset of key observations that
controlled the parameter inversion process. The stochastic models were then generated
using the chosen observations as random variables. A similar approach was adopted
by previous studies to identify super-parameters corresponding to pilot point values of
a highly parameterized inversion problem [24] or to reduce computational efficiency in
highly parameterized inversion problems [64]. Although the variable chosen for PCA in
this study was the observation sensitivity rather than the calibration parameters, it was
shown that the adopted approach could reasonably generate different random outputs
with a limited number of simulations while saving the computational requirements of the
models. The approach, in particular, could be useful for large-scale integrated models that
require intensive computational resources. Additionally, a comparison with predictive error
analysis and uncertainty analysis in PEST could provide new information to understand
the model behavior associated with observation errors and the parameterization process.

We demonstrated that, despite the abovementioned limitations, the observation error
weighting scheme applied in this work reasonably generated the hydrological dynamics of
the study site and provided some insights to better understand the parametrization process
of the integrated models. Although the adopted weighting schemes may possess local
characteristics and might not properly work for other integrated water systems, our study
showed that the application and comparison of different weighting schemes for the deter-
mination of error covariance could contribute to assessing the stability of the constructed
models and to reducing the model uncertainty arising from the observation error.

4.3. Effect of Groundwater–Surface Water Feedbacks on the Integrated Water System and
Implications for Integrated Water System Management

In this study, we analyzed feedbacks between groundwater and surface water con-
sidering the potential uncertainty of observation errors. We observed that all three tested
models with different error-weighting schemes predicted dynamic interactions between
groundwater and surface water systems. The models also showed that groundwater seep-
age that was filled in the high-flow season and then released in the dry season served as a
major water source for the stream network of the study site. Such a direct groundwater
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contribution to stream flow highlights the significance of groundwater for preserving ripar-
ian ecology, especially during the low-flow season, implying that the spatial and temporal
dynamics of groundwater–surface water interactions need to be considered during the
assessment and management of the ecohydrological system of the study site.

Because this study adopted a 3D integrated model in a basin scale, some important
aspects in groundwater–surface-water interaction study, such as local-scale variability or
consideration of vertical forces at the groundwater–surface-water interface interaction,
were not analyzed in this work. Furthermore, in order to gain a better understanding of the
integrated water system and improve integrated water system management, it would be
necessary to conduct an analysis on the potential effects of riverbed geography, seasonal
inputs, and geological variability on the calibration performance of the integrated model.

The predictions based on different RCP scenarios all suggested the increasing role
of groundwater in watershed dynamics, as demonstrated by increasing water infiltration
and seepage fluxes. With an increasing frequency of extreme weather events such as
droughts and heavy rainfall, the contribution of groundwater as a buffer for attenuating
the hydrological response of integrated water systems would become more significant.
It is notable that, although hydrological structures such as the Yedang dam also play a
significant role in regulating stream discharges, the influence of groundwater could be
more important for integrated water management because the latter has a more positive
contribution to reducing seasonal and interannual variations in both the stream stages and
the stream discharges. The comparison of the predicted hydrological balance between RCPs
2.6 and 8.5 scenarios highlights the larger temporal variations in rainfall and AET in RCP
8.5. This indicates that extreme weather events such as heavy rainfall or drought, which are
expected to occur more frequently under the extreme RCP scenarios, would pose a greater
threat to water environment and sustainability. Given these circumstances, groundwater is
expected to play an increasingly important role in attenuating the hydrological response
of the integrated system under changing climate forcing. Therefore, a sustainable water
management strategy that successfully adapts to climate change should incorporate the
integrated water management strategy that considers the connection between groundwater
and surface water systems.

Among the three tested model cases using different weighting schemes, we observed
that Case 2 predicted the least groundwater–surface water interaction and smallest ground-
water seepage rate. Accordingly, the predicted surface discharges were the lowest in Case
2. The relatively low peak flow predicted in Case 2 could be associated with small weights
assigned to high surface discharge data during the model calibration process. Due to
the larger measurement errors related to the observed peak flow, model calibration was
performed assuming greater uncertainty for the high-flow season and, consequently, the
model suggested that the measured stream discharge during the peak flow might prefer-
ably overestimate the actual surface discharges. Despite these differences, however, the
simulated seasonal hydrologic behaviors of the watershed were similar to all tested models,
suggesting that groundwater of the study site is of critical importance for preservation of
the surface water and hydro-ecosystem under the varying projected climate conditions.

5. Summary and Conclusions

In this study, we investigated the potential impact of observation error on the model
calibration performance of an integrated watershed-scale model. Three different weighting
schemes that consider observation error variances were suggested and applied to the PEST
model. The applied weighting schemes were compared with the results from stochastic
models, in which observation errors from surface discharges were considered a random
variable. Comparisons of the calibration performances between different models showed
that the applied weighting schemes in this work performed properly and contributed to a
minor improvement in the model parameterization. Among the three test cases, predictions
from Case 3 were closest to the “representative value” from stochastic simulations for
most calibration targets. This result implies that the proper choice of weighting scheme
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is important in the model calibration process, particularly when the observation error
variances show large seasonal variations. Additional investigation of the error estimation
would, thus, be necessary to improve the calibration performance of the integrated model.
The inclusion of different observation types and a detailed characterization of the study
site through a highly parameterized problem approach or regularized inversion could
be useful to improve the calibration performance and better characterize the spatially
varying dynamics of integrated water systems [19,65]. Additionally, incorporation of
better performing metaheuristic evolutionary algorithms would be necessary for improved
performance of stochastic models.

The analysis of the feedbacks between groundwater and surface water revealed that
groundwater plays a key role in attenuating the hydrological response of integrated water
systems and sustaining surface flows under seasonally varying metrological conditions.
Predictions using different RCP scenarios suggested the increasing role of groundwater
in watershed dynamics. This result clearly highlights the significance of groundwater for
preserving riparian ecology, indicating that the varying dynamics of groundwater–surface
water interactions need to be considered for the management of the ecohydrological system
of the study site.

The predicted hydrological behaviors of the study site showed variations depend-
ing on the applied weighting scheme. Among the three tested cases, Case 3 predicted a
more dynamic interaction between groundwater and streams, whereas Case 2 suggested
a decreased contribution of groundwater to the watershed system. Despite the differ-
ences observed from the model predictions, however, all tested models exhibited similar
seasonal variations in both water budget and groundwater–surface water interaction pro-
cesses. Finally, we concluded that the application and comparison of different weighting
schemes for the determination of error covariance could contribute to a better understand-
ing of integrated water dynamics and to reducing the model uncertainty arising from the
observation error.
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www.mdpi.com/article/10.3390/w15101880/s1. Figure S1: Projected monthly variation of monthly
rainfall under RCP2.6 and 8.5 scenarios during (a) the 2020s (b) the 2050s, and (c) the 2080s over the
study area; Table S1: Summary of predicted climate change scenarios over the study site.
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