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Abstract: Recent water availability and scarcity problems have highlighted the importance of surface–
groundwater interactions. Thus, groundwater models are coupled with surface water models.
However, this solution is complex, needing code modifications and long computation times. Recently,
a new groundwater module (gwflow) was developed directly inside the SWAT code to tackle these
issues. This research assesses gwflow’s capabilities in representing surface–groundwater system inter-
actions in the Dijle catchment (892.54 km2), a groundwater-driven watershed in Belgium. Additional
developments were made in SWAT+gwflow to represent the interaction between the groundwater and
soil (gwsoil). The model was calibrated for monthly mean streamflow at the catchment outlet (1983
to 1996) and validated for two periods (validation 1: 1975 to 1982 and validation 2: 1997 to 2002).
It was found that the SWAT+gwflow model is better at representing the total flow (NSE of 0.6) than
the standalone SWAT+ (NSE of 0.4). This was confirmed during two validation periods where the
standalone model scored unsatisfactory monthly NSE (0.6 and 0.1), while the new model’s NSE was
0.7 and 0.5. Additionally, the SWAT+gwflow model simulations better depict the groundwater via
baseflow and attain proper water balance values. Thus, in a highly groundwater-driven catchment,
the simplified representation of groundwater systems by the standalone SWAT+ model has pitfalls.
In addition, the modification made to the gwflow module (gwsoil) improved the model’s performance,
which, without such adjustment, overestimates the streamflow via saturation excess flow. When
including the gwsoil mechanism, thereby providing a more accurate representation of water storage
and movement, groundwater is transferred to the soil profile, increasing the overall soil water content
and thereby increasing lateral flow. This novel modification can also have implications for other
distributed hydrological models to consider such exchanges in their modeling scheme.

Keywords: ground–surface water interaction; groundwater–soil interaction; geohydrological modeling;
inter-model comparison; SWAT+; gwflow; Dijle; Belgium

1. Introduction

Geohydrological systems can be modeled using either surface water, groundwater,
or coupled models [1]. However, separate representation of surface and groundwater
processes has limitations, as it neglects the interaction between these vital processes [2].
This interlink is essential for the sustainable existence of surface water bodies [3], and in
some studies it accounts for the vast majority of the hydrological cycle [4]. This led to an
extensive coupling approach to understand the mechanism whereby these two separate
but interlinked systems operate [5–8]. For example, the assessment of surface–groundwater
interaction in an Alpine valley in Italy indicated that the recharge and pumping of water
can be mainly driven by the interaction at the river bed [9]. Therefore, as new challenges
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arise regarding water quantity and quality, together with many other water management
practices, a more holistic approach towards hydrological modeling is necessary [10–15]. For
example, to make accurate forecasts regarding the effects of different drought types [16],
water resources should be quantified by holistic models, including both groundwater (GW)
and surface water (SW) processes, instead of modeling them separately [17]. This results in
modeling concepts where additional modules are implemented in existing code to include
GW–SW exchange processes.

The number of models that have both GW and SW modeling schemes has increased
over the past 20 years. This coupling of surface water and groundwater is often challeng-
ing because of the high spatial and temporal variability between the resulting exchange
fluxes [11,18]. An example of a coupled GW–SW flow model is the GSFLOW model by
Markstrom et al. [19]. This integrated hydrological model links the Precipitation Runoff
Modeling System (PRMS), as the surface water model, with Modular Groundwater Flow
(MODFLOW-2005) as a model for the subsurface processes.

Hydrological models such as the Soil and Water Assessment Tool (SWAT) can account
for the groundwater component of the hydrological system within the aquifer module,
but with important limitations. Like other processes in SWAT, the groundwater head
is calculated at the hydrologic response units (HRU) level; hence, the water table is not
spatially distributed. Hydraulic conductivity and specific yield do not vary spatially, as
each aquifer system is assumed to be homogenous. Therefore, SWAT is not suited to
simulating the spatiotemporal variation of groundwater variables. Another limitation is
that the groundwater head only changes with recharge and return flow, whereas many
other groundwater flows exist (e.g., groundwater extraction through pumping). In addition,
return flow is calculated only for steady-state conditions. This component only occurs when
groundwater storage surpasses a certain threshold, while in reality this is determined by
hydraulic gradients. Also, seepage caused by hydraulic gradients is not simulated [20–22].
Due to these reasons, and since the standalone SWAT model has major limitations for
applications on groundwater-dominated catchments [23–27], there has been an intense
effort to replace this simplified representation of groundwater hydrology in SWAT.

This led to the coupling of SWAT and MODFLOW [17,18,21,28–30]. The coupled
SWAT–MODFLOW framework combines the SWAT software modeling tool with MOD-
FLOW [31], where the latter is embedded as a subroutine, replacing the groundwater
module in SWAT. The main issue with integrating SWAT and MODFLOW is the complex
model code modification and long computation time requirement. Due to this, Bailey
et al. (2020) recently developed a new physical-based groundwater flow module (gwflow)
as part of the SWAT+ modeling code. SWAT+ is the new and restructured version of
SWAT [32]. The gwflow module is based on the Dupuit–Forchheimer assumption of hori-
zontal flow in unconfined aquifers. Therefore, this module should be used in cases where
the groundwater system is composed of an unconfined aquifer. Hence, this module could
replace the current SWAT+ aquifer module for unconfined aquifers and allow for spatially
distributed groundwater simulations such as groundwater head (i.e., water table elevation),
groundwater storage, groundwater discharge to streams, etc.

However, one critical limitation of the gwflow module is that groundwater–soil inter-
actions are not represented, leading to incorrect water balance at the HRU level. These
are vital interactions whenever the water table is higher than the bottom of the soil profile.
Hence, in this paper, this limitation/research gap is assessed, the source code of the coupled
SWAT+gwflow model is modified, and a comparison before and after applying this modifi-
cation is presented. Furthermore, we aimed to apply the coupled model (SWAT+gwflow) to
a groundwater-influenced catchment located in a temperate climate and investigate how
the baseflow is represented. Subsequently, a model output comparison was performed
between the standalone SWAT+ and the one modified with the gwflow module.



Water 2023, 15, 3249 3 of 18

2. Materials and Methods
2.1. Study Area

Located in the center of Belgium, the Dijle catchment (Figure 1) has an average length
of 86 km and an area of 892.54 km2. It is a part of the larger Scheldt Basin (21,863 km2),
situated in Belgium, France, and the Netherlands. The Dijle River springs near Houtain-
Le-Val in Wallonia and flows towards the northeast. In Court-Saint-Etienne, the Thyle
and Orne Rivers are added to its river flow. In addition, the Train River originating from
Wallonia ends up in the Dijle. At the border between Flanders and Wallonia, the Dijle has
an average flow rate of 4.5 m3/s.
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Figure 2. The elevation of the impermeable layer base was taken as a reference for the unconfined
aquifer. It can be found at https://www.dov.vlaanderen.be/portaal/, accessed on 30 September 2021.
The other colors correspond to different geological units; however, the focus of this study lies on the
impermeable layer and the yellow unit (Brussel sand), which corresponds to the unconfined aquifer.
The dotted line corresponds to mTAW = National Topographic Reference). The plot is not to scale,
and the transect is for A-A, as seen in Figure 2.
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In general, the catchment is homogeneous in terms of soil type, with more than 90%
covered by silt-textured Luvisols [33]. Substantial soil textures that can be found in the
Dijle catchment include silt, sandy loam, and loamy sand. The area is known to have
a spatial transition in texture from northwest to southeast, giving a pattern of sand and
sandy loam in the northern part and silt regions in the southwestern part. The sandy
aquifer (traditionally known as “Brussels sand”) is dominant, with a lower impermeable
layer called Kortrijk, which acts as the base of the unconfined aquifer (Figure 2). The Dijle
catchment has a mean elevation of 40 m and an average slope of 2% [34].

The weather data were obtained from the Royal Meteorological Institute of Belgium
(RMI) for variables such as precipitation (mm), relative humidity (decimal fraction), solar
radiation (MJ/m2), temperature (◦C), and wind speed (m/s) from 1970 until 2011 at the
Uccle gauging station. Although this weather station is not situated inside the catchment
area, the weather data could be used for this study, as the weather variables are approxi-
mately constant spatially across Belgium (refer to Supplementary Materials Figure S1). The
average precipitation from a gridded dataset (10 points inside the watershed) indicated
similar daily average precipitation values to those measured at the Uccle station (this is
also shown on a scatterplot). By the time this research was conducted, the gridded dataset
was not available; hence, the Uccle station weather data were used. The other inputs for
developing the SWAT+ model were soil and land-use maps obtained from the Food and
Agriculture Organization (FAO, Rome, Italy, 2010) and the European Space Agency (ESA,
Paris, France, 2020, resolution: 200 m), respectively. Finally, a digital elevation model
(DEM) of 50 m by 50 m was reassembled from a 90 m by 90 m DEM acquired from the
USGS (https://earthexplorer.usgs.gov/, last accessed on 30 September 2021) and used to
delineate the catchment. The streamflow data run from 1975 to 2002 for both the catchment
outlet (Wilsele) and the Sint-Joris-Weert (SJW) gauging station.

2.2. Methodology

The methodology comprised two main parts: the first was modeling the catchment
with the standard SWAT+ model, and the second was to use the new “gwflow” mod-
ule as a replacement for the simplistic representation of the groundwater module in the
SWAT+ model. This enabled us to assess the potential of the new module (gwflow) to simu-
late the groundwater hydrology of the Dijle catchment better than the standalone model.

2.2.1. SWAT+ Model Setup

SWAT+ is an entirely revised version of the Soil and Water Assessment Tool [35],
which has been under continuous development since the early 1990s [32]. It is open-source
software that was developed to solve water resource management issues [35]. The model
is a continuous, semi-distributed, physical-based model that divides the watershed into
sub-basins, which are identified based on a topographic map. Each sub-basin can be further
subdivided into landscape units (LSUs), which is one of the principal improvements in the
development of SWAT+ from SWAT [36]. This option facilitates the inclusion of riparian and
floodplain components and improves the runoff-routing capabilities within the landscape.
Other adjustments include the flow and pollutant routing throughout the landscape.

These LSUs are further separated into unique combinations of land use, soil, and
slope called hydrologic response units (HRUs). At this level, most SWAT+ processes
take place (i.e., hydrology, erosion, nutrient cycling, pesticide dynamics, and agricultural
management). Flow at the HRU level is summed at the LSU level and then routed to other
spatial objects, such as an LSU, channel, wetland, pond, reservoir, or aquifer.

As precipitation reaches the soil surface, it may infiltrate and percolate through it,
while evaporation losses occur simultaneously. Part of the water will percolate into the soil
and become recharge for the shallow aquifer, further contributing to the streamflow [37].
When the water seeps deeper, it becomes recharge for the deep aquifer and is assumed to
contribute to streams outside the watershed. Different methods have been implemented in

https://earthexplorer.usgs.gov/
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SWAT+ to calculate these fluxes [38]. Flow from the shallow aquifer that ends up in streams
is referred to as groundwater flow, baseflow, or return flow.

As mentioned above, the groundwater system in SWAT+ can be divided into shallow
and deep aquifers. Recharge results from percolation moving through the vadose zone
towards the shallow and/or deep aquifer. An exponential decay weighting function
(Equation (1)) accounts for the time delay caused by the time needed for the water to leave
the soil profile and penetrate the shallow or deep aquifer (Equation (2)). The recharge on a
specific day can be estimated with

wrchrg, i =

[
1− exp

(
−1
δgw

)]
× wseep + exp

(
−1
δgw

)
× wrchrg, i−1 (1)

where wrchrg,i is the recharge volume moving into the aquifer on day i, δgw is the delay time
(days), wseep is the total volume of water leaving the soil profile on day i, and wrchrg,i−1 is
the recharge volume entering the aquifer on day i− 1. It is not possible to directly measure
δgw; therefore, it should be calibrated. The fraction of water recharging the deep aquifer on
a specific day can be calculated by

wdeep,i = βdeep × wrchrg,i (2)

where wdeep is the volume of water flowing to the deep aquifer on day i, βdeep is the aquifer
percolation coefficient, and wrchrg is the recharge volume entering the shallow and deep
aquifer on day i.

The relation used to estimate the baseflow is a function of recharge and the baseflow
recession constant αgw, which is a direct index of the groundwater flow’s response to
changes in recharge. Values between 0.1 and 0.3 indicate a slow response, while values of
0.9–1.0 characterize a fast response. Baseflow can only enter the stream if a threshold of
water present in the shallow aquifer is exceeded, and this threshold is user-defined [38].
Another flow, Revap, moves from the shallow aquifer towards the covering unsaturated
layer during dry periods. In such periods, water from the capillary fringe will evaporate
and be replaced by water from the underlying aquifer. Revap can only occur at baseflow
when the water present in the shallow aquifer exceeds a user-defined threshold [38].

The SWAT+ model setup started by delineating the catchment, where the Wilsele
gauging station was taken as the catchment outlet, and this resulted in a total catchment
area of 892.54 km2, with 1496 HRUs, 21 sub-basins, and 162 channels. The streamflow
data at Wilsele were downloaded from Waterinfo (https://www.waterinfo.be/, last ac-
cessed on 21 September 2022) for the same time window as the other weather inputs. The
Penman–Monteith equation was chosen as the potential evapotranspiration (PET) calcu-
lation method, whereas the Muskingum method was selected for flow routing. We used
SWAT+ version 60.5.2 for the model setup.

2.2.2. SWAT+ Model with the gwflow Module Setup

The original gwflow module [20] simulates groundwater fluxes, including lateral flow
within the aquifer, recharge for HRUs, evapotranspiration (ET) from shallow groundwater,
pumping, interactions between groundwater and surface water through the streambed (i.e.,
groundwater discharge to streams and seepage to the aquifer), and saturation excess flow.
To use the gwflow module, the model domain is discretized horizontally in square grid
cells (for this research, we used 200 m by 200 m), with each cell representing a volume of
aquifer. The module calculates a water balance equation for each grid cell through a control
volume method based on mass conservation. For each simulation timestep, Equation (4) is
solved for the groundwater volume and correlated groundwater head. These values are
calculated explicitly, based on the head values of neighboring grid cells, along with flow
from sources and sinks at the preceding timestep. Necessary data for each grid cell include
ground surface elevation, aquifer thickness, hydraulic conductivity (m/day), and specific

https://www.waterinfo.be/
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yield (refer to Supplementary Materials Tables S1 and S2 for the parameters used for the
model setup). Each cell must also be analyzed spatially for interactions with streams.

As gwflow is embedded as a subroutine within the SWAT+ Fortran code, the inputs
for the standalone SWAT+ model are also inputs for the gwflow model setup. For the
SWAT+gwflow module, SWAT+ version 60.5.2 is coupled with the gwflow module. In
addition, an aquifer thickness raster (vertical distance from the ground surface to bedrock,
i.e., the thickness of unconsolidated sediments) was downloaded from https://data.isric.
org/ (Shangguan et al. [39], last accessed on 21 September 2022). To check the validity of the
global dataset, the depth to the impermeable layer, called the Kortrijk layer (Figure 2), was
also taken from a previous study conducted by Wossenyeleh, (2021) [40]. The permeability
of the aquifer material was obtained from https://dataverse.scholarsportal.info/ (Huscroft
et al., 2018 [41], last accessed on 21 September 2022). This helped us to classify the aquifer
into distinct zones, where each zone has its own corresponding hydraulic conductivity
(Kaqu) and specific yield (Sy) values [20].

It is worth noting that the global datasets that we used to prepare the gwflow inputs
have a mismatch with the locally available data. Hence, we made simplifications to ease
the sensitivity and calibration process. For instance, the number of different hydraulic
conductivity zones according to the global dataset is 24; however, previous studies on
this catchment [42] have shown the dominance of one zone (called “Brussels sand”), and
we also noticed from the global dataset that the hydraulic conductivity values for most
zones were similar (refer to Supplementary Materials Table S3). Hence, we calibrated
only the dominant zones (Figure 3). If we take the 24 zones as independent zones, we
would need to perform sensitivity analysis for 24 zones (a total of 48 parameters: 24 for
hydraulic conductivity and 24 for specific yield). Note that this number does not account
for the other model parameters. This would increase the computation time, create difficulty
when calibrating the model at the latter stages, and may lead to overfitting. However,
this simplification would not reduce the model’s performance, which is checked at later
stages, as described in the Results section. This type of simplification is well-known in
hydrological modeling as a parsimonious representation [43–46].
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2.2.3. Modification to the gwflow Module

In the original water balance equation of the gwflow module [20], the interaction
between SWAT+ HRU soil profiles and gwflow grid cells occurs only through the passing of
deep percolation from the soil profile to groundwater, i.e., the water table elevation—and
corresponding groundwater storage—simulated for each grid cell does not interact with or
affect the hydrological processes of the soil profile. This could lead to situations where the
gwflow module simulates a water table within the soil profile, with all inherent groundwater
calculations (such as lateral flow), while at the same time, the HRU in the same vicinity
as the grid cell is simulating percolation and soil lateral flow. This leads to duplicate
processes, but by different equations. To remedy this flaw, in this study, we modified
the gwflow module to allow the transfer of groundwater to the soil profile for grid cells
where the water table rises into the soil profile (Equation (3)). This is particularly important
for groundwater-dominated catchments (i.e., high-baseflow fractions) where the water
table is shallow. For each cell, for each timestep, the simulated water table elevation (i.e.,
groundwater head) is compared to the elevation of the soil profile bottom of the HRU to
which it is connected spatially. If the water table elevation wtelev (m) is above the elevation
of the soil profile’s bottom soilelev (m), then the volume of groundwater to transfer to the
soil profile Qgw→soil can be calculated as follows:

Qgw→soil = (wtelev − soilelev)× Ahru × Sy (3)

where Ahru is the area (m2) of the HRU within the spatial area of the grid cell, and Sy is the
specific yield of the aquifer. This volume of water is added to the HRU soil layers that are
at or below the elevation of the water table. The inclusion of this transfer term can yield
higher rates of recharge during a model simulation, due to water added to the soil profile
that can subsequently move downward to the water table. Therefore, when presenting
and discussing model results or estimating recharge rates for a watershed or portion of a
watershed, the “net” recharge should be estimated by subtracting the transfer volume from
the simulated recharge volume, i.e., true recharge = Qrech − Qgw→soil.

We further modified the module to include municipal pumping, which was added
as another sink term in the water balance equation. The start and end dates of pumping
and the daily pumping rate are inputs for wells located inside any case study area, with
any number of pumping periods possible for each well. For this study, the number was
considered to be zero.

Including groundwater transfer to soil and municipal groundwater pumping Qpump
yields the following new water balance equation for the gwflow module:

∆V
∆t

=
(
Qrech + Qsw→gw

)
−

(
Qgwet + Qgw→sw + Qgw→soil + Qsatex + Qpump

)
±Qnorth±Qsouth ±Qwest ±Qeast (4)

where Qrech (1) is the recharge, Qsw→gw (2) is the flow from streams to groundwater, Qgwet (3)
is evapotranspiration from the shallow groundwater, Qgw→sw (4) is the flow from the
groundwater to the streams, Qgw→soil (5) is water transferred from the aquifer to the soil
profile, Qsatex (6) is the saturated excess flow, Qpump is pumping (7) and Qnorth, Qsouth, Qeast,
and Qwest are incoming or outgoing flows from the boundary cells (Figure 4). Within this
new scheme, since any groundwater in the soil profile is transferred from the gwflow cell
to the HRU soil layers, the water table simulated for the cell rarely reaches the ground
surface; hence, Qsatex should be zero. Note that agricultural water drainage via tiles [47] is
also possible to simulate using the gwflow module.
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2.2.4. Sensitivity, Calibration, and Water Balance Analysis

The sensitivity and calibration analysis for the SWAT+gwflow model setup was carried
out using the Parameter Estimation Tool (PEST) [49]. For the standalone SWAT+ modeling
work, sensitivity and calibration analysis was carried out based on two approaches: The
first uses the SWAT+ toolbox developed by Celray James Chawanda (https://swat.tamu.
edu/software/plus/, last accessed on 21 February 2022). This tool uses the variance-based
Sobol method with an estimator described by Saltelli and Annoni, [50]. Secondly, the
standalone SWAT+ model was also calibrated with the PEST tool to compare the two model
setups based on a similar calibration methodology. The time window from 1983 to 1996
was taken as a calibration period, where the first three years were taken as a warming-up
period. The rest of the data were divided into two validation periods where, from this point
onwards, 1975 to 1982 was called “Validation 1”, and 1997 to 2002 was called “Validation
2”. Sensitivity and calibration were analyzed using monthly streamflow data at the outlet
of the catchment.

A comparison was made between the daily and monthly simulated and measured
streamflow data at the catchment outlet. In addition, the calibrated model was tested using
another gauging station’s streamflow data at Sint-Joris-Weert (SJW), located around 14 km
upstream of the catchment outlet. Although sensitivity and calibration go in parallel when
using PEST, we preferred to use fewer parameters to guarantee comparability with the
standalone SWAT+ model.

The soil water balance for the standalone SWAT+ model (Equation (5)) output was
calculated using the precipitation (P), surface runoff (Surq), lateral discharge (Latq), per-
colation (Pr), and evapotranspiration (ET). As for SWAT+gwflow, the same variables were
considered (Equation (6)), with the inclusion of the water transferred from the aquifer to
the soil in gwsoil for the case of the water table within the soil profile:

Change in soil moisture storageSWAT+ = P− Surq− Latq− Pr− ET + error (5)

Change in soil moisture storageSWAT+gw f low
= P + gwsoil − Surq− Latq− Pr− ET + error

(6)

The groundwater balance was calculated (Equation (7)) for SWAT+gwflow using
recharge (rech) (i.e., equal to percolation Pr), groundwater evapotranspiration (gwet),
groundwater flow to streams (gwsw), stream seepage to groundwater (swgw), saturation
excess flow (satex), groundwater transferred to the soil (gwsoil), groundwater pumping
(pump), and flow across the boundary of the catchment (bound).

Change in groundwater storage
= rech− gwet− gwsw + swgw− satex− gwsoil − pump
+bound + error

(7)

https://swat.tamu.edu/software/plus/
https://swat.tamu.edu/software/plus/
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The sum of GW balance at each daily timestep was compared with the difference
in the volume of groundwater before and after each day, to verify that a complete water
balance for the aquifer system was achieved

While using the SWAT+ toolbox, Nash–Sutcliffe efficiency (NSE) [51] was used as an
objective function. On the other hand, PEST tries to reduce the sum of squared residuals
(SSR). The conventional statistics, the Nash–Sutcliffe efficiency (NSE), and the percent bias
(PBIAS) [52] were used to assess the performance of the models in simulating the streamflow
at the catchment outlet and SJW gauging station. Furthermore, the water balance closure
was also checked. The closer the NSE (Equation (8)) and PBIAS (Equation (9)) are to 1 and
0, respectively, the better the model simulation.

NSE = 1− ∑T
t=1

(
Qt

m −Qt
o
)2

∑T
t=1

(
Qt

o −Qo
)2 (8)

PBIAS =
∑T

t=1
(
Qt

o −Qt
m
)
× 100

∑T
t=1 Qt

o
(9)

where Qt
m is the simulated streamflow at time t, and Qt

o is the observed stream discharge at
time t, while Qo is the mean observed streamflow.

3. Results
3.1. Sensitivity Analysis

The sensitivity analysis based on both the SWAT+ toolbox and PEST revealed that
the curve number, which usually the most sensitive parameter in the SWAT+ model,
was not sensitive. Instead, the percolation coefficient (perco), which is a coefficient that
adjusts the soil moisture for percolation to take place, was the most sensitive one (this
result is included in the Supplementary Materials Figure S2). This is evident, as the
catchment is more groundwater-driven. The sensitivity analysis hides the importance of
the other parameters due to the supersensitive nature of perco. However, when the other
parameters except perco are compared, it can be seen that the other groundwater-related
parameters also play a role that indicates the importance of appropriate representation
of the groundwater hydrology to simulate the general hydrological processes in highly
groundwater-dominated catchments.

The sensitivity analysis found similar results to those of Wossenyeleh et al. [40], where
the hydraulic conductivity of the “Brussels sand” (Kaqu19) was a very sensitive parameter.
Nevertheless, according to their results, river conductance, which is equivalent to streambed
conductivity (bed_k) in SWAT+gwflow, was not sensitive, contrary to the results of our
sensitivity analysis. However, the study by Wossenyeleh et al. [40] covered only a tiny part
of the catchment (only the Doode Bemde wetland area), while our study area encompasses
the whole catchment.

3.2. Calibration, Validation, and Water Balance

The calibrated model parameters’ values closely matched with the findings of
Wossenyeleh et al. [40]; according to SWAT+gwflow, the “Brussels sand (zone 19)” hy-
draulic conductivity is 9.6 m/day, while they estimated it to be 8 m/day (refer to Supple-
mentary Materials Table S2). These values are within the range of values suggested by
Possemiers et al. [53] and Vandersteen et al. [54]. In addition, the hydraulic conductivity of
the river valley represented as zone 24 is 3.1 m/day, while Wossenyeleh et al. [40] estimated
it to be 3 m/day. As for the specific yield, the results indicated that the “Brussels sand” has
a specific yield of 0.4, which is a difference of 0.25 compared with Wossenyeleh et al. [40].
According to [55–57], the specific yield of sandy aquifers can reach up to 0.385; hence, our
result shows a 0.005 difference from their suggestion, and the specific yield is within an
acceptable range.
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For the Quaternary formation (the river valley), the specific yield is 0.026 and 0.03
according to SWAT+gwflow and Wossenyeleh et al. [40], respectively. Here, it is vital to
mention that in the study of Wossenyeleh et al. [40], the model setup used MODFLOW
forced with recharge obtained from another hydrological model (WetSpaSS). However, for
the SWAT+gwflow model setup, the recharge is directly transferred from the soil profile,
which does not require setup, calibration, and validation of other hydrological models to
obtain the recharge values. This is one added value of the new coupled model compared to
independently developed models.

The calibration resulted in an NSE of 0.4 and 0.6 for the standalone SWAT+ model
and the SWAT+gwflow model, respectively. The SWAT+gwflow simulation results were
satisfactory, according to Moriasi et al. [58]. This indicates that the simplified representation
of the groundwater system by the standalone SWAT+ model reduces the performance
of simulating geohydrological water balance components in groundwater-dominated
catchments. The daily streamflow simulation using SWAT+gwflow also resulted in a high
NSE (0.5) during the calibration period (Figure 5).
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The results of the first validation period (1975 to 1982) suggested that the standalone
SWAT+ model has a lower NSE (unsatisfactory), while the SWAT+gwflow simulation
managed to show a higher similarity between the measured and simulated streamflow
data, with an NSE of 0.7 (Table 1 and Figure S3 in the Supplementary Materials), which
is good according to Moriasi et al. [58]. The SWAT+gwflow model was also successfully
applied to research conducted by Bailey et al. [20], Bailey et al. [59], and Yimer et al. [48].
The results indicated that the SWAT+ model could not adequately represent the Dijle
catchment, while the SWAT+gwflow model improved the hydrological simulation. It should
be noted that the calibration using either PEST or the global optimization tool (SWAT+
toolbox) resulted in an NSE of 0.4 for the standalone model’s setup.

The modeled streamflow at the SJW gauging stations mimicked the measured monthly
mean streamflow, where the NSE was 0.5, 0.7, and 0.4 for the calibration period and
the first and second validation periods, respectively. The respective PBIAS values were
11.16%, 6.12%, and 15.41%. Hence, the calibrated model managed to accurately estimate
the streamflow in another location (inside the catchment). The plots showing the simulated
streamflow values can be found in the Supplementary Materials (Figure S4). It should
be noted that when gwsoil interaction was not considered, the streamflow simulation
deteriorated, with an NSE of 0.1. This result shows the importance of accounting for such
exchanges in the modeling scheme.
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Table 1. The NSE, PBIAS, and water balance closure measures for the standalone SWAT+ and
SWAT+gwflow modeling setups. These results are for the catchment outlet. The change in
soil/groundwater storage and change in soil/groundwater storage, based on inflows and outflows,
are reported along with their difference (error).

Time
Step NSE PBIAS (%) Watershed Soil Water

Balance

Groundwater
Balance

Error (mm)

SWAT+ SWAT+
gwflow SWAT+ SWAT+

gwflow SWAT+ SWAT+
gwflow

SWAT+
gwflow

Calibration
(1983 to 1996)

Daily −0.1 0.5 1.7 −0.9
21.94− 5.32 = 16.62 mm 4.73 − 4.04 = 0.69 mm −2 − (−3.12) =

1.12 mmMonthly 0.4 0.6 1.6 −1.0

Validation 1
(1975 to 1982)

Daily 0.1 0.5 −5.6 −11.0 25.4 − (−102.6) = 127.92 mm 5.42 − 11.95 = −6.53 mm 78.3 − 80 =
−1.7 mmMonthly 0.6 0.7 −5.6 −10.9

Validation 2
(1997 to 2002)

Daily −0.3 0.4 11.0 6.4
104.7 − 93.02 = 11.68 mm 4.56 − 6.54 = 1.98 mm 36.8 − 38 =

−1.2 mmMonthly 0.1 0.5 11.0 4.9

The water balance closed for both the watershed as a whole and the groundwater
system. It closed with less than 11.4% error for both SWAT+ and SWAT+gwflow during
the calibration and validation periods. There were numerous error-producing aspects
in the water balance components. For example, model structural issues, model parame-
ters, calibration procedures, model inputs, rounding off, etc., were the major sources of
errors [60–62]. Mainly, the groundwater balance error was due to the rounding off, where
currently, the code only prints out four digits (note that it was less than 2 mm for all periods
we assessed).

Daily hydrological fluxes of watershed inputs and outputs (Figure 6) show seasonal
patterns of ET, runoff, and soil lateral flow. The components of water yield (e.g., surface
runoff, soil lateral flow, saturation excess flow) are shown in Figure 7A, with the saturation
excess flow being zero due to the inclusion of the gwsoil term; hence, the groundwater
head as simulated by the gwflow module is not allowed to rise to the ground surface and
induce saturation excess flow, but instead, groundwater is incorporated into the soil profile
and managed by the HRU soil processes of runoff and soil lateral flow. For this condition,
therefore, soil lateral flow acts as a pathway for groundwater to reach the stream network
and, hence, can be considered to be baseflow. This allows for an accurate depiction of
baseflow, as shown by the streamflow comparison in Figure 7A. The inclusion of the
gwsoil mechanisms results in net recharge (Figure 7C) that, when averaged over the entire
watershed, is usually positive but can be negative when groundwater is transferred to the
soil profile but no recharge occurs.
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The average annual hydrological fluxes (mm/year) within the watershed system and
precipitation fractions are listed in Table 2. For the simulation period, on average, ET
accounts for 67% of precipitation, and surface runoff, soil lateral flow, and net recharge
account for 10%, 5%, and 12%, respectively. When neglecting the gwsoil mechanism (i.e.,
turning off this feature in the SWAT+ code), the hydrological flux rates change dramatically
(Table 2). This condition yields a very high rate of saturation excess flow (164 mm), as the
groundwater head is allowed to rise to the ground surface, i.e., there is no interaction with
the soil profiles of the HRUs. This high rate of saturation excess flow, when combined
with surface runoff (66.4 mm) and soil lateral flow (10.6 mm), and accounting for stream
seepage to groundwater (4.5 mm), results in a total water yield of 237 mm, which greatly
overestimates streamflow at the gauging site. Net recharge (Figure 7D) is also much higher
in this condition (204 mm), as groundwater is not removed from the aquifer and placed in
the soil profile. The high recharge rates result in a high groundwater head, which in many
places of the watershed reaches the ground surface, resulting in saturation excess flow.

In contrast, when including the gwsoil mechanism, thereby providing a more accurate
representation of water storage and movement, groundwater is transferred to the soil
profile, increasing the overall soil water content and thereby increasing surface runoff
and soil lateral flow to 83.6 mm and 43.2 mm, respectively (increases of 26% and 300%,
respectively). ET also increases (from 544 mm to 559 mm) as more water is stored in the soil
layers. The net recharge is now 103 mm, or approximately half of the volume simulated
when the gwsoil mechanism is excluded from the model, as groundwater is transferred to
the soil profile.

These results indicate the importance of including the gwsoil mechanism in the SWAT+
modeling code, and of generally including groundwater–soil interactions in integrated
hydrologic models. This mechanism provides a realistic movement of water in the shallow
subsurface, allowing water in the soil profile, whether percolating from above or resulting
from high groundwater levels, to be subject to the appropriate hydrological process (e.g.,
recharge, soil lateral flow, ET, runoff) within the watershed system.
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Table 2. The water balance components (in mm) with and without applying groundwater–soil
interactions in the SWAT+gwflow model setup.

Inputs to Watershed
Without gwsoil With gwsoil

Precipitation 838.9 838.9
Boundary Inflow −5.5 −26.5

Lake seepage to groundwater 0.4 0.3

Outputs from Watershed
Percentage of Precipitation (%)

Without gwsoil With gwsoil

Surface ET 544.4 559 65 67
Surface runoff 66.4 83.6 8 10

Soil lateral flow 10.6 43.2 1 5
Stream seepage to groundwater −4.5 −4.4 - -

Saturation excess flow 164.2 0 20 0
Groundwater ET 0.2 0 - -

Internal Flow
Percentage of Precipitation (%)

Without gwsoil With gwsoil

Recharge to the water table 204.8 837.2 - -
Groundwater transfer to soil 0 733.9 0 87

Net recharge 204.8 103.3 24 12

3.3. Groundwater Model Outputs

The module’s spatially distributed nature helps assess groundwater variables that vary
in space. For example, groundwater recharge, groundwater hydraulic head, groundwater–
soil flux, etc., are the main outputs of the module. As depicted in Table 2, the groundwater
balance mainly comprises the recharge and groundwater–soil interaction fluxes. Both
have yearly and seasonal variations, where if one exhibits peaks/low conditions, the other
also follows the same trend. Due to the groundwater–soil interactions, the soil becomes
wet in most years, which is also attributed to the recharge—a dominant feature in the
groundwater balance.

Furthermore, the groundwater volume that is calculated per grid cell can be summed
up to estimate the amount of groundwater available in a given catchment. For the cal-
ibration period, the groundwater volume peaked in the late 1980s, while it decreased
considerably in the early 1990s. This is vital information for managing sustainable aquifer
systems and applying necessary mitigation measures to curb decreasing groundwater
volume trends (Figure 8).
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Figure 8. Groundwater volume evolution for the calibration period (model output from SWAT+gwflow
where gwsoil interaction was included in the model scheme).

The delayed net groundwater recharge is around 9 mm in most parts of the catchment,
leading to higher groundwater heads in those regions (Figure 9). The groundwater reaching
the soil profile whenever the water table is above the soil profile is dominant in this
catchment (Figure 9), with annual average values reaching up to ~70 mm in 1990. Due
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to the higher gwsoil flux, saturation of the soil profile can occur, leading to a quick flow
routing towards the streams via surface runoff and/or lateral flow. There are instances
where the groundwater flux reaching the soil profile dominates more than the recharge (i.e.,
negative net recharge).
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4. Conclusions

Coupled geohydrological models are required to investigate groundwater–surface
water interactions. However, due to the difficulties in code modification and computation
time, several approaches have been made. For example, recently, a new module (called
gwflow) was developed to replace the simplified representation of the groundwater system
in SWAT. This paper aimed to assess whether a groundwater-driven catchment (Dijle)
could be better represented with either the “standard” SWAT+ model or the newly devel-
oped SWAT+gwflow model. In addition, the gwflow module was modified to account for
groundwater–soil interactions (gwsoil). Consequently, the effects on water balance values
and total and baseflow representation were investigated.

First, we modeled the catchment using the standalone SWAT+ model, and during the
calibration period (1983 to 1996) the NSE was 0.4, while this decreased considerably (less
than zero) during the two validation periods (1975 to 1982 and 1997 to 2002). From this,
it is apparent that the standalone model could not adequately represent the hydrology of
this groundwater-driven catchment. This can be attributed to the simplified representation
of the groundwater component of the SWAT+ model. Contrary to this, the simulation
improved considerably when we modeled the catchment using SWAT+gwflow. For instance,
the NSE increased to 0.6, 0.7, and 0.5 during the calibration and the first and second
validation periods, respectively. Furthermore, we compared the streamflow model output
at another gauging station (Sint-Joris-Weert), and it was captured with an NSE of 0.5, 0.7,
and 0.4 during the calibration and the first and second validation periods, respectively.

Comparisons before and after modifying the module (accounting for gwsoil) revealed
that the streamflow simulation deteriorated when gwsoil interaction was neglected (NSE
of 0.1), while the NSE improved (NSE = 0.6) when such exchanges were included in the
modeling scheme. This was due to overestimation of streamflow, which occurs when
groundwater is allowed to rise to the ground surface, resulting in high rates of saturation
excess flow (164 mm). In contrast, when the gwsoil mechanism is operational, shallow
groundwater is transferred to the soil profile, wherein the additional water is subject to ET,
surface runoff, and soil lateral flow (increased by 300%). On top of this, the comparison also
indicated significant differences among the water balance variables and baseflow values,
suggesting the importance of including gwsoil interaction in the hydrological modeling.
This has implications for other coupled models to consider adding this interaction in their
modeling scheme.

In general, the new groundwater module (gwflow) has an advantage over the stan-
dalone SWAT+ groundwater module. This is important for highly groundwater-driven
catchments where the baseflow plays a significant role. The new coupled model, along
with the modification we made, has four major advantages: a better representation of the
baseflow, appropriate soil water (water balance) and streamflow values, detailed ground-
water model output mapping and, finally, the coupled model does not require recharge
from another surface water model to force the groundwater system, in contrast to inde-
pendent surface and groundwater modeling approaches. To conclude, this coupled model
has implications for other geohydrological models that have simplified representations
of groundwater systems, which could be replaced with physical-based and spatially dis-
tributed modules to better capture the geohydrology. Furthermore, the coupled model has
importance for proper aquifer management in an integrated (coupled) scheme. However,
further research is required to represent wetlands in SWAT+gwflow and identify and assess
tile drain units. We believe that the latter may play a significant role in improving models
for groundwater-dominated catchments where groundwater is likely to enter near the root
zone, driving the application of tile drains.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/w15183249/s1, Table S1: Parameters, their description, initial,
maximum, and minimum values, Figure S1: The comparison of average daily rainfall from 10 grid
points and Uccle station (A and B). The long-term average rainfall for the 10 locations and Uccle
station is also shown in the table, Figure S2: The sensitivity of model parameters where perco (left)
is included in the plot. The sensitivity of other parameters (especially groundwater-related) is seen
(right) when perco is removed from the plot, Table S2: The calibrated model parameter values for the
SWAT+gwflow and the standalone SWAT+ model, Table S3: The final aquifer parameters used for the
simulation (calibrated for zone 19 and 24 and uncalibrated for the rest), Figure S3: The comparison
between measured and simulated monthly streamflow (top) and flow duration curve for daily time
step (bottom). All plots are for the first validation period for the catchment outlet (1975 to 1982),
Figure S4: The comparison between measured and simulated monthly streamflow (top) and flow
duration curve for daily time step (bottom). All plots are for the first validation period for the
Sint-Joris-Weert gauging station (1975 to 1982).
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