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Abstract: In this research, the SWAT+ model was employed to elucidate hydrological dynamics
within the Beas Basin. The primary objectives encompassed the calibration of the SWAT model
for accurate water balance quantification, annual simulation of salient hydrological components,
and a decadal analysis of trends in fluvial discharge and sediment transport. The methodology
encompasses simulating hydrological data with the SWAT+ model, followed by calibration and
validation using flow data from Larji and Mahadev hydroelectric plants. The model’s efficacy in
depicting streamflow and other hydrological components is corroborated by statistical measures
such as the Nash–Sutcliffe efficiency and PBIAS. The water balance analysis delivers insights into
the basin’s hydrological characteristics, including surface flow, water yield, and evapotranspiration.
The temporal analysis exposes intricate seasonal and interannual variability in flow and sediment
discharge, while spatial distribution highlights heterogeneity across the basin. These findings have
practical implications for water resource management, including optimizing water allocation, hy-
droelectric power generation, irrigation, and environmental concerns. Limitations, such as data
quality and model simplifications, are acknowledged, and future data collection and observations are
recommended for improved model performance. In essence, these researches enhance understanding
of the Beas Basin’s hydrology, setting a course for future investigations to integrate more data sources,
refine model parameters, and consider climate and land-use changes for a richer comprehension of
the basin’s hydrological dynamics.

Keywords: modelling; SWAT; hydrology; water regime; river basin

1. Introduction

Water is the lifeline of every ecosystem, with hydrological processes being crucial de-
terminants of ecosystem sustainability and productivity [1]. Understanding these processes
is especially important in river basins, where they regulate ecosystem services, dictate
the regional water balance, and significantly influence local livelihoods [2]. Spanning
diverse topographies, hosting a variety of land use patterns, and being subjected to a broad
spectrum of climatic conditions, the Beas Basin is a confluence of factors that contribute to
a dynamic hydrological regime [3–5].
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Over recent decades, the necessity of efficient water resource management has gained
recognition, especially in complex environments like the Beas Basin [6]. Optimal water
resource management rests heavily on a comprehensive understanding and precise predic-
tion of several key hydrological elements [7,8]. These elements include, but are not limited
to, surface flow, water yield, lateral flow, evapotranspiration, potential evapotranspiration,
and percolation [9]. These parameters are paramount, as they inform water availability,
usage, and conservation strategies, directly affecting the ecosystem’s sustainability and the
livelihoods dependent on it [10].

In this endeavor, hydrological models such as Soil and Water Assessment Tool Plus
(SWAT+) have proven to be indispensable [11]. These models, equipped with the capability
to simulate a variety of hydrological elements, have emerged as potent tools for water
management [12,13]. They not only aid in capturing the present state of hydrological
processes but also facilitate predicting future scenarios under various conditions [14]. These
predictive abilities can guide proactive water management policies and ensure the resilience
of the ecosystem against potential threats such as climate change and anthropogenic
pressures [15].

Considering this, our study aims to calibrate and utilize the SWAT+ model to
estimate the water balance of the Beas Basin. We intend to model and analyze key
hydrological elements annually to understand their spatial and temporal patterns. Our
research focuses on deciphering the interannual variability of these elements, which
are often overshadowed by long-term averages yet can significantly impact the basin’s
hydrological processes. This study’s broader objective is to develop a comprehensive
picture of the hydrological processes in the Beas Basin to contribute to its sustainable
water resource management [16,17].

2. Materials and Methods
2.1. Study Area

The Beas River Basin, the focal point of this study, is embedded in the north-
ern part of India and forms a key part of the Indus River system. Stretching across
an area of roughly 20,303 square kilometers, the basin commences from the towering
Himalayan ranges and courses through the states of Himachal Pradesh and Punjab,
before merging with the Sutlej River [18]. The basin’s topography is characterized by
its remarkable diversity, ranging from altitudes of approximately 450 m in the lower
plains to over 6000 m in the glaciated upper regions [19]. This prominent altitudinal
variation significantly affects the basin’s hydrology, ecology, and climate, engendering
a mosaic of unique microenvironments [20]. The monsoon system predominantly
governs the climate within the Beas Basin. However, it displays substantial variation
due to the significant range in altitude. The upper reaches of the basin, home to the
high-altitude glacial terrain, are subjected to a frigid alpine climate, with heavy snow-
fall commonly observed during winters [21]. This snow is a vital water source, melting
and nourishing the river during the summer months. In contrast, the lower regions of
the basin manifest a subtropical climate typified by hot summers and relatively cooler
winters [22,23]. Rainfall in these regions follows a seasonal pattern, with most of the
precipitation occurring during the Southwest monsoon season, spanning from June to
September. The region also witnesses significant winter rainfall owing to the Western
Disturbances, extratropical storms originating in the Mediterranean region. Figure 1
illustrates the location map of the study area, and Figure 2 shows the methodology
flow chart for this study.
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Figure 1. Location map of the study area. The colours represent the elevations ranging from 200 to 
6000 m asl. More description is provided in Figure 2. 

 
Figure 2. Methodology flowchart. 

Figure 1. Location map of the study area. The colours represent the elevations ranging from 200 to
6000 m asl. More description is provided in Figure 2.

Water 2023, 15, x FOR PEER REVIEW 3 of 21 
 

 

 
Figure 1. Location map of the study area. The colours represent the elevations ranging from 200 to 
6000 m asl. More description is provided in Figure 2. 

 
Figure 2. Methodology flowchart. Figure 2. Methodology flowchart.



Water 2023, 15, 3338 4 of 20

2.2. Data Collection
2.2.1. Topographic Data

The topographic data for the Beas basin were sourced from the ASTER Global Digital
Elevation Model (GDEM). This dataset has a spatial resolution of 30 m, enabling detailed
mapping of topographical features [24]. The DEM was used to define the slope and
watershed delineation. Figure 3 shows the topography of the Beas basin.

Figure 3. Topography of the Beas basin.

2.2.2. Climate Data

In this research, from 1990 to 2022 daily, climatic variables such as maximum and
minimum temperature, solar radiation, and relative humidity were sourced from the Global
Weather Data for SWAT (GWDS) [25]. This dataset offers comprehensive, high-quality
meteorological data on a global scale. Precipitation data, an essential input for hydrological
modeling, were procured from the India Meteorological Department (IMD), ensuring
an accurate representation of local rainfall conditions.

2.2.3. Land Use and Land Cover Data

The land use and land cover (LULC) data for the Beas basin were sourced from the
European Space Agency Climate Change Initiative (ESA CCI) at a resolution of 10 m. These
data provide a detailed overview of land use distribution across the basin, enabling the
modeling of different land cover effects on hydrological processes. Our study area’s land
use and land cover (LULC) analysis reveals nine significant categories: forest, shrubland,
grassland, cropland, built-up, barren land, snow, water, and wetland. Dominating the
LULC classification, forests cover an expansive area of 8759 sq km, significantly contribut-
ing to local climate regulation, biodiversity, and hydrological balance. In stark contrast,
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shrublands, constituting the smallest LULC class, span merely 67 sq km, yet they might
harbor unique hydrological characteristics. Grasslands and croplands represent notable
proportions of the study area, covering 2334 sq km and 2252 sq km, respectively, indicating
significant roles for these ecosystems in local environmental and agricultural dynamics.
Built-up areas, indicating urban or suburban zones, stretch across 189 sq km, potentially
impacting local environmental conditions and water resources due to human activities.
Barren lands, spanning 613 sq km, are likely characterized by minimal vegetation, impact-
ing their hydrological behavior. The snow category, covering 166 sq km, contributes to
the area’s hydrological balance through processes like meltwater runoff. Water bodies,
represented across 303 sq km, play a crucial role in the region’s water balance. Despite
covering only 8 sq km, wetlands are essential ecosystems for maintaining biodiversity and
water purification. Figure 4 shows the LULC map of the study area and the statistical
distribution of LULC is shown in Table 1.

Figure 4. LULC Map of Beas Basin.

Table 1. Statistical distribution of LULC.

Class Area in sq km

Forest 8759
Shrubland 67
Grassland 2334
Cropland 2252
Built-up 189

Barren land 613
Snow 166
Water 303

Wetland 8
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2.2.4. Soil Data

In our study, an in-depth understanding of the soil composition within the Beas Basin
was of utmost importance due to the pivotal role soil plays in hydrological processes.
Comprehensive soil data for the region were obtained from the Food and Agriculture
Organization’s (FAO) databases, a highly reputable and reliable source for global soil
information [14]. The soil texture analysis revealed various soil types distributed across the
basin, reflecting the area’s diverse topographical and climatic conditions. The observed soil
textures included clay, loam, glacier, sandy loam, and silt.

Clay soils, known for their minimal permeability, can significantly impact water
movement and retention in certain areas. In contrast, sandy loam soils, characterized by
better drainage capabilities, could indicate areas with faster water percolation. Loam soils,
a balanced mixture of sand, silt, and clay, are typically ideal for plant growth and might
suggest areas of significant vegetation [26]. Glacier soil type refers to areas that are or
were recently covered by glaciers, with unique hydrological characteristics and constraints.
Finally, silt soils have intermediate characteristics between sand and clay and could denote
zones with specific water retention and drainage patterns. The soil map of the Beas basin is
shown in Figure 5.
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2.2.5. Flow Data

Monthly streamflow data, sourced from 1994 for Larji and 2002 for Mahadevi hydro-
electric plants, was utilized for model calibration and validation. This dataset accurately
records historical flow patterns and is indispensable for evaluating the fidelity of the
model’s streamflow forecasts.

2.3. Model Setup

The SWAT+ model, which operates as an extension of QGIS, integrates various geospa-
tial datasets to characterize watershed attributes at the hydrologic response unit (HRU)
level instead of a broader subbasin level. The model accounts for spatial variations in
topography, land use, soil properties, and slope effects on a watershed’s hydrology by sub-
dividing the region [27]. The Beas basin was segmented into 33 subbasins, each comprising
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184 distinct landscape units and channels. SWAT+ is an advanced version of the Soil Water
Assessment Tool (SWAT), specifically designed to efficiently evaluate the impacts of climate
change and land use/land cover changes on surface and subsurface hydrologic processes.
It computes and models hydrological components at the HRU level, encompassing varying
land uses, soil types, and slopes. The model mainly utilizes land use and routing units to
simulate hydrologic processes. In SWAT+, the hydrologic cycle and associated processes
are calculated using the following water balance equation.

SWt = SWo + ∑ t(Rday, i − Qsurf, i − Ea, i − Wseep, i − Qgw, i) (1)

In this equation [28], several variables are defined to capture various aspects of the
water cycle, where SWt is the final soil water content (mm H2O), SWo is the initial soil
water content on day i (mm H2O), t is the time (days), Rday is the amount of precipitation
on day i (mm H2O), Qsurf is the amount of surface runoff on day i (mm H2O), Ea is the
amount of evapotranspiration on day i (mm H2O), Wseep is the amount of water entering
the vadose zone from the soil profile on day i (mm H2O), and Qgw is the amount of return
flow on day i (mm H2O). This equation, in effect, captures the intricate dynamics of the
hydrologic cycle in the context of a specific catchment or area, allowing for the simulation
and understanding of critical processes that constitute the hydrologic framework.

2.4. Sensitivity Analysis, Calibration and Validation
Calibration and Validation Using SWAT Toolbox

For calibration and validation, the SWAT Toolbox was employed. This is a graphical
user interface for SWAT that simplifies the model calibration process. The calibration
process involved adjusting parameters to improve the agreement between simulated and
observed streamflow data [29]. Streamflow data from the Larji hydroelectric plant were
used for calibration, while the dataset from the Mahadev hydroelectric plant was used
for validation to test the model’s predictive capability. The performance of the model was
evaluated using standard statistical criteria, including the Nash–Sutcliffe efficiency (NSE),
the coefficient of determination (R2), and the percent bias (PBIAS), as proposed by Moriasi,
listed in Table 2.

Table 2. Evaluation metrics employed for gauging the performance of the SWAT model on a monthly
time scale.

Performance PBIAS NS

Very good PBIAS < ±10 0.75 < NS ≤ 1.00
Good ±10 ≤ PBIAS < ±15 0.65 < NS ≤ 0.75

Satisfactory ±15 ≤ PBIAS < ±25 0.50 < NS ≤ 0.65
Unsatisfactory PBIAS ≥ ±25 NS ≤ 0.50

One key statistical metric, the percent bias (PBIAS), demonstrates the extent to which
the simulated values deviate from the observed data. Lower PBIAS values are indicative of
satisfactory model performance [15]. The formula used to compute PBIAS is presented in
Equation (2):

PBIAS =
[
∑(obs_i − sim_i)/ ∑ obs_i

]
× 100 (2)

In this equation, obs signifies the observed or ground truth value, and sim denotes the
simulated value. Another important performance metric is the Nash–Sutcliffe coefficient
(NS), a normalized statistic that captures the proportional change in simulated data relative
to observed data variance. It ranges from negative infinity to 1 [30,31]. The formula to calcu-
late NS is depicted in Equation (3). These statistical metrics allow us to evaluate and compare
the performance of the SWAT model in accurately simulating hydrological processes.

S = 1 − [∑(obs_i − sim_i)2/ ∑(obs_i − mean_obs)2] (3)
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3. Results
3.1. Model Calibration, Validations and Sensitive Analysis

The SWAT+ model can calibrate streamflow and assign priorities to parameters that
influence flow, water balances, and primary hydrological components. The simulated
water balance components like surface runoff, lateral flow, percolation rate, return flow,
precipitation, and evapotranspiration are adjusted when observed flow is calibrated with
simulated flow to assess the model’s performance. This suggests that sensitive parameters
potentially influencing hydrological processes need to be prioritized and fitted accordingly.

The SWAT+ model was calibrated using recorded streamflow at the Larji Hydroelectric
Project outlet, identifying 12 parameters as the most sensitive ones affecting hydrological
simulations. The calibrated streamflow and simulated flow in Figure 6 closely align the
data with the observed flow throughout the period. Model performance was evaluated
using statistical indices, demonstrating good agreement with an NSE of 0.88 and BIAS
of 21.
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The model validation revealed that the simulated and recorded data were closely
aligned (NSE = 0.82, BIAS = 24).

The calibration process involved calibrating streamflow for monthly conditions through
a trial-and-error method by adjusting the SWAT+ parameters’ values within their acceptable
ranges to optimize the model. The calibration and validation process was conducted to pre-
dict annual water balance components like surface runoff, water yield, evapotranspiration,
percolation rate, lateral flow, return flow, and daily precipitation.

The calibration and validation of the SWAT+ model for the Larji Hydroelectric Project
have been significantly influenced by the sensitive parameters listed in Table 3. With the
model yielding an NSE of 0.88 and 0.82 for calibration and validation, respectively, and
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BIAS values of 21 and 24, the importance of accurately determining sensitive parameters
becomes evident. For instance, the surface runoff lag coefficient (SURLAG) stands at 0.74
within a range of 0–10, hinting at the watershed’s response time post-rainfall. Meanwhile,
the groundwater revap coefficient (GW_REVAP) is 0.17, within its 0.02–0.2 range, offer-
ing insights into groundwater behavior. While not explicitly detailed in the table, other
parameters, such as ALPHA_BF, CN2, CH N2, and CH K2, play fundamental roles in cali-
brating the hydrological behaviors. The alignment of observed and simulated data, shaped
significantly by these sensitive parameters, emphasizes the SWAT+ model’s reliability for
forecasting hydrological dynamics in the Larji Hydroelectric Project region.

Table 3. Sensitive parameters.

Parameter Abbreviation Value Range

Base flow alpha factor ALPHA_BF 0.74 0–1
SCS runoff curve number for moisture condition II CN2 19.3% 35–95

Manning’s coefficient for channel CH N2 0.18 −0.01–0.3
Effective hydraulic conductivity in main channel CH K2 215 −0.01–500

Plant uptake compensation factor EPCO 0.80 0.01–1
Soil evaporation compensation factor ESCO 0.89 0.01–1

Surface runoff lag coefficient SURLAG 0.20 0–10

Groundwater revap coefficient GW_REVAP

The sensitivity analysis of the SWAT model based on the provided parameter data
reveals valuable insights into the influence of each parameter on the model outputs. Among
the parameters evaluated, the base flow alpha factor (ALPHA_BF) and the SCS runoff curve
number for moisture condition II (CN2) show that significant sensitivity plays a crucial role
in simulating base flow and affects the overall streamflow dynamics. The CN2 parameter
exhibits sensitivity in the runoff simulation, reflecting the varying runoff potential for
different moisture conditions.

Furthermore, the Manning’s coefficient for the channel (CH_N2), effective hydraulic
conductivity in the main channel (CH_K2), plant uptake compensation factor (EPCO), soil
evaporation compensation factor (ESCO), surface runoff lag coefficient (SURLAG), and
groundwater revap coefficient (GW_REVAP) also contribute to the sensitivity of the SWAT
model. These parameters, with their respective values falling within the specified ranges,
impact the representation of channel roughness, hydraulic conductivity, plant water uptake,
soil evaporation, surface runoff generation, and groundwater–surface water interactions.
Table 4 shows simulated water balance components.

Table 4. Simulated water balance components.

Hydrological Component Annual Average

Surface Flow 231
Water Yield 236

Evapotranspiration 506
Potential Evapotranspiration 1839

Lateral Flow 4.95

The Beas Basin, a crucial watershed area, is characterized by an intricate network
of hydrological components. The simulation results highlight key features of the basin’s
annual average hydrological behaviors. Surface flow emerges as a key component within
the hydrological cycle of the basin, averaging 231 mm annually. This metric indicates the
volume of water rapidly transported over the land surface to the nearest stream channel
following a rainfall event. The significant surface flow is a testimony to the prevalent
runoff-generating mechanisms within the watershed.
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The water yield, another crucial element in the hydrological balance, is an annual
average of 236 mm. Water yield represents the total amount of water the basin produces,
including surface flow, groundwater flow, and any contribution from precipitation. This
value reflects the capacity of the Beas Basin to provide water for various needs, including
hydroelectric generation, irrigation, and ecological sustenance. Lateral flow, accounting
for an average of 4.95 mm annually, suggests the presence of subsurface hydrological
pathways. These subsurface flows can contribute significantly to streamflow, especially
during dry periods.

Evapotranspiration (ET), which quantifies the amount of water transferred from the
land to the atmosphere, averages 506 mm annually. This value encompasses water evap-
orated from the soil surface and transpired by plants, a significant component given the
basin’s vegetative cover. This high ET value indicates the basin’s large demand for atmo-
spheric moisture. Lastly, the potential evapotranspiration (PET), which signifies the amount
of evaporation that would occur if a sufficient water source were available, is calculated to
be 1839 mm annually. This value represents the climatic demand for water and underscores
the important role of climatic factors in governing the basin’s hydrological processes.

3.2. Simulated Time Series of Flow Discharge and Sediment Flow
3.2.1. Flow Discharge

The temporal analysis of flow discharge in the Beas Basin (Figure 7), stretching from
January 2010 to December 2022, reveals a complex interplay of seasonality and interan-
nual variability. The analysis underlines a consistent pattern marked by pronounced
seasonal oscillations.
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During each year under review, the discharge pattern adheres to an annual rhythm.
It is typically characterized by lower volumes during winter, particularly January and
February. This is followed by a moderate increment in the spring months, notably in March
and April. From May to August, the summer months witness a significant discharge surge
due to the combined effect of snowmelt and monsoon precipitation, reaching an annual
peak. Post-peak, the autumn months of September and October observe a reduction in
discharge, which reaches its nadir during the subsequent winter months.

Certain years such as 2014 and 2020 showcased extreme discharge events. In June
2014, an unprecedented discharge value of 632 m3/s was recorded, potentially driven
by exceptional precipitation or accelerated snowmelt. Similarly, July 2020 experienced
a substantial peak discharge of 436 m3/s.
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3.2.2. Sediment Discharge

Parallel to the flow discharge, the sediment discharge (Figure 8) also follows a similar
annual rhythm. The sediment volumes tend to be lower during winter, followed by
a gradual increase during spring. The summer months see a considerable increase in
sediment discharge, primarily due to enhanced runoff from snowmelt and monsoon rains,
marking the annual peak. The autumn months, however, witness a decline in sediment
discharge, reaching the lowest point during the winter season.
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In 2010, the sediment discharge initiated at a minimal 85.50 tons in January, and
increased significantly, peaking at 68,100 tons in July. Following this peak, there was
a consistent reduction, reaching a value of 334 tons by December. Comparable annual
trends were observed in subsequent years, highlighting the consistent erosion–deposition
cycle within the basin.

However, certain years, such as 2014 and 2020, demonstrated exceptional sediment dis-
charge events. In June 2014, the sediment discharge reached an all-time high of 81,800 tons,
potentially triggered by excessive precipitation or accelerated erosion. Similarly, July 2020
saw a substantial sediment discharge of 68,500 tons. In stark contrast, November 2021 regis-
tered virtually null sediment discharge, possibly due to reduced precipitation or erosion.

3.3. Spatial Distribution of Hydrological Component
3.3.1. Surface Runoff

Surface runoff is the water flow that occurs when excess stormwater, meltwater, or
other sources of water flow over the Earth’s surface. The annual mean surface runoff
for the entire basin reveals significant hydrological diversity inherent within this basin.
A significant segment of the basin, accounting for a vast 7657 sq km and involving subbasins
7, 8, 9, 11, and 12, displays an annual mean surface runoff within the 44–128 mm range.
This range suggests a relative consistency in the hydrological processes across this major
part of the basin. Subbasins 3, 4, and 6 constitute another notable category, covering
an area of 2799 sq km. In this region, the annual mean surface runoff rises, moving within
a higher range of 129–471 mm. Subbasin 2 is particularly noteworthy due to its distinctive
characteristics. Covering an area of 1419 sq km, this subbasin records a significantly higher
annual mean surface runoff within the substantial range of 472–911 mm. The fact that this
subbasin alone falls within this category indicates unique hydrological dynamics at work.
Subbasins 1, 10, and 13 exhibit the least surface runoff on the other end. Spanning an area
of 1619 sq km, these subbasins fall within the lowest range of 9–33 mm for the annual mean
surface runoff.
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The surface flow shown in Table 5, the direct water runoff on the surface, varies
significantly across the subbasins. Subbasin 2 takes the lead with the highest surface
flow, recording 1164.47 mm, signifying substantial surface runoff in this region. Subbasin
6 also demonstrates noteworthy surface flow, amounting to 471.12 mm, indicating its
significant contribution to the hydrological dynamics of the watershed. Subbasin 3 follows
closely with a surface flow of 225.16 mm, highlighting the importance of surface runoff
in its hydrological processes. In contrast, Subbasin 10 exhibits the lowest surface flow
among the subbasins, with a minimal 8.82 mm, emphasizing its limited role in surface
runoff generation.

Table 5. Surface flow.

Subbasin Surface Flow (in mm)

1 29.09
2 1164.47
3 225.16
4 258.84
5 43.16
6 471.12
7 82.96
8 67.22
9 74.57
10 8.82
11 88.46
12 127.83
13 9.23

3.3.2. Water Yield

Water yield, a crucial component of the hydrological cycle, refers to the total amount
of water that is produced from a catchment area. This typically includes all forms of surface
and subsurface water flow that reach a particular point in a water body, often described as
streamflow or runoff. Water yield is particularly significant for water resource management,
as it provides essential information for applications such as irrigation planning, flood
control, and the maintenance of ecological water requirements.

The analysis of water yield among the studied subbasins reveals significant varia-
tions. Subbasin 2 stands out with the highest water yield, recording a substantial runoff of
1182.32 mm, which suggests a region with significant surface water availability. Following
closely is Subbasin 6, characterized by a water yield of 492.22 mm, reflecting its hydrologi-
cally active nature. Subbasin 3 also demonstrates a relatively high water yield of 229.27 mm,
indicating its contribution to the overall runoff within the watershed. Conversely, Subbasin
10 exhibits the lowest water yield among the studied subbasins, with a mere 8.83 mm,
indicating minimal surface runoff. This finding underscores potential water availability
challenges in this particular area.

The spatial distribution of annual water yield shown in Table 6 in the Beas Basin
exhibits marked variation, falling within five distinct categories. The initial category ranges
from 9 to 33 mm. This section, covering an area of 2799 sq km, records the minimum
annual water yield among all categories. A significantly larger segment of the basin,
spanning 7657 sq km, falls within the second category, which records an annual water yield
of 33 to 139 mm. The third category is characterized by an annual water yield ranging from
140 to 260 mm. Collectively, these subbasins occupy an area of 1963 sq km, highlighting
a moderate enhancement in the water yield. The fourth category is distinguished by
an annual water yield ranging from 261 to 492 mm, which covers an area of 836 sq km.
Lastly, the fifth category, spanning an area of 1419 sq km, presents a striking deviation from
the rest of the basin, registering the highest annual water yield within the range of 493 to
1182 mm. The unique hydrological dynamics in this region underscore the potential for
intensive water resource management.
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Table 6. Water yield (in mm).

Subbasin Water Yield (in mm)

1 29.62
2 1182.32
3 229.27
4 259.89
5 43.18
6 492.22
7 84.60
8 67.37
9 74.57
10 8.83
11 123.34
12 139.29
13 11.69

3.3.3. Evapotranspiration

Evapotranspiration (ET) is the process through which water is transferred from the
land to the atmosphere by evaporation from the soil and other surfaces and by transpiration
from plants. Analyzing the spatial distribution of annual mean ET (Table 7) across our
study area reveals distinct patterns reflecting the diverse hydrological phenomena within
the basin.

Table 7. Spatial distribution of mean annual ET.

Subbasin Evapotranspiration (in mm)

1 679.48
2 273.17
3 710.57
4 614.64
5 641.13
6 440.62
7 460.15
8 418.10
9 656.40
10 621.65
11 519.55
12 478.12
13 431.59

The analysis of evapotranspiration, representing the combined water loss through
evaporation and transpiration, reveals notable differences among the subbasins. Subbasin
2 reports the lowest evapotranspiration at 273.17 mm, indicating a substantial demand for
water by both atmospheric and vegetative processes. Following closely, Subbasin 3 demon-
strates significant evapotranspiration of 710.57 mm, underlining the area’s considerable
water consumption by evapotranspiration. Subbasin 5 also experiences high evapotran-
spiration at 641.13 mm despite its relatively lower water yield, emphasizing the area’s
significant atmospheric and vegetative water demand. In contrast, Subbasin 10 exhibits the
lowest evapotranspiration among the studied subbasins, totaling 621.65 mm, suggesting
a relatively lower demand for water by atmospheric and vegetative processes.

The analysis categorizes the basin into five primary groups based on the observed
ET levels. One section of the basin, stretching over 6302 sq km and encapsulating a major
part of our study area, shows an annual mean ET between 284 and 460 mm. This span
suggests a steady level of evapotranspiration across this significant area. Meanwhile, the
area spanning 1419 sq km presents an ET range of 273–283 mm. Although it covers a smaller
section of the basin, this area holds a distinct hydrological character, manifesting relatively
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lower ET rates than other regions. In contrast, a high ET range of 657–711 mm is observed
in the 2063 sq km area. This region, although not the largest, demonstrates significant
evapotranspiration dynamics, potentially due to unique climatic and environmental condi-
tions. An intermediate ET level, ranging from 461–520 mm, is observed in a 1283 sq km
area, while a 3607 sq km section shows an ET range of 521–656 mm. These regions suggest
different intensities of ET processes, highlighting the heterogeneity in the hydrological
processes across the basin.

3.3.4. Lateral Flow

Lateral flow, or subsurface runoff, is a crucial aspect of the hydrological cycle. It
denotes the horizontal movement of water in the soil layer, significantly shaping soil
moisture distribution, nutrient transport, and the health of the wider watershed. Factors
including rainfall intensity, soil properties, and land use patterns considerably influence
lateral flow.

Spatial distribution of mean annual lateral flow (Table 8) reveals that lateral flow
values are notably minimal in an area spanning 8438 sq km, ranging from 0 to 1 mm. This
largest section of the studied region exhibits remarkable hydrological stability, which might
result from factors such as lower rainfall intensity, high infiltration rates, or effective land
management strategies that curtail excessive surface runoff. The next category is an area
covering 2698 sq km, which exhibits slightly increased lateral flow rates, ranging from
2 to 4 mm. This increase may hint at distinct soil characteristics or heightened rainfall
incidents. A region occupying 933 sq km presents lateral flow rates between 5 and 11 mm.
This area might harbor specific hydrological attributes, such as denser vegetation cover or
more clayey soil types, which tend to enhance lateral flows. A significantly larger lateral
flow rate, falling between 12 and 21 mm, is observed in an area covering 2255 sq km. This
increased rate might indicate higher rainfall or less permeable soil properties, favoring
more horizontal water movement. The highest lateral flow levels, ranging from 22 to
35 mm, are evident in a smaller region of 350 sq km. Despite this region’s smaller size,
its high lateral flow rate could be attributed to unique hydrogeological factors or regular
occurrences of high-intensity rain events.

Table 8. Spatial distribution of mean annual lateral flow.

Subbasin Lateral Flow (in mm)

1 3.52
2 17.85
3 4.12
4 3.06
5 2.02
6 21.10
7 1.64
8 1.15
9 0.06
10 1.03
11 34.89
12 11.46
13 2.45

Lateral flow, the lateral movement of water within a subbasin, varies significantly
among the subbasins. Subbasin 11 exhibits the highest lateral flow at 34.89 mm, indicating
a significant lateral water movement within the subbasin. Subbasin 6 also shows consider-
able lateral flow at 21.10 mm, contributing to its hydrological complexity. Subbasin 1 has
a moderate lateral flow of 3.52 mm, playing a minor role in its hydrological processes. In
contrast, Subbasin 9 has the lowest lateral flow, with a mere 0.06 mm, suggesting limited
lateral water movement within this region.
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3.3.5. Soil Percolation

Percolation, the process by which water infiltrates the soil profile and replenishes
groundwater resources, plays an essential role in the hydrological cycle. It influences soil
moisture content and determines water availability for plant uptake and maintaining the
water balance in a watershed. The spatial distribution of percolation (Table 9) within the
study area showcases substantial hydrological diversity. An area of 2878 sq km experiences
minimal percolation rates, ranging from 0 to 3 mm. The limited percolation could be due to
the prevalence of impermeable soils or minimal rainfall events, suggesting a hydrological
balance in favor of surface or lateral flows over percolation.

Table 9. Spatial distribution of mean annual soil percolation.

Subbasin Percolation (in mm)

1 12.46
2 573.28
3 171.35
4 22.68
5 0.74
6 46.57
7 15.52
8 14.97
9 3.30
10 0.39
11 202.05
12 149.18
13 28.67

The largest part of the study region, encompassing 7024 sq km, presents percolation
rates between 4 and 29 mm. This substantial area could be characterized by soils with
medium permeability or average rainfall events, balancing between runoff and percolation.
A smaller region, covering 836 sq km, indicates elevated percolation rates within the range
of 30 to 47 mm. Such a pattern might be a consequence of soil types with higher permeability
or greater precipitation, potentially leading to increased groundwater recharge in this area.
An area of 2517 sq km shows significantly higher percolation rates, between 48 and 202 mm.
The highest percolation rates, ranging from 203 to 573 mm, are observed in a smaller area
of 1419 sq km. These rates could suggest the presence of highly permeable soils or frequent
intense rainfall events, leading to a predominance of percolation. The understanding of
spatial percolation patterns is crucial in the management of soil water content, groundwater
recharge, and overall watershed management. Such insights also offer significant value in
predicting and mitigating the impacts of climate change on water availability.

Percolation, indicating the downward movement of water through the soil, exhibits
variability among the subbasins. Subbasin 2 stands out with the highest percolation of
573.28 mm, suggesting substantial potential for groundwater recharge. Subbasin 4 also
shows noteworthy percolation at 22.68 mm, contributing to groundwater replenishment in
the area. Subbasin 6 demonstrates a substantial percolation of 46.57 mm, highlighting the
role of subsurface water movement in its hydrological dynamics. In contrast, Subbasin 5 has
the lowest percolation among the studied subbasins, with a minimal 0.74 mm, suggesting
limited groundwater recharge potential in this region.

3.3.6. Potential Evapotranspiration

Potential evapotranspiration (PET) is a critical hydrological parameter that signifies the
ability of the atmosphere to remove water from the surface through evaporation and plant
transpiration processes. Variations in PET are influenced by factors such as temperature,
humidity, wind speed, and solar radiation [7].

In the study area, the spatial distribution of PET (Table 10) is characterized by sig-
nificant diversity, highlighting the different climatic and biophysical conditions present.
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A segment of the area, accounting for 2255 sq km, manifests a PET within the 401–625 mm
range. This suggests an environment with relatively moderate atmospheric demand for
water, likely driven by temperate climate conditions or specific vegetation characteristics.
Another area, spanning 1283 sq km, exhibits a PET ranging from 626 to 1216 mm. This
increase indicates a stronger atmospheric demand for water, possibly resulting from higher
temperatures or lower humidity levels. The third category, covering an area of 1454 sq km,
shows a PET within the range of 1217 to 1634 mm. Such elevated values suggest the
presence of warm and dry climatic conditions, leading to a high demand for evaporation
and transpiration. A significantly large portion of the study area, amounting to 7580 sq km,
records a PET ranging from 1635 to 2265 mm. These high values indicate particularly
warm and dry conditions, likely leading to intense evaporation and transpiration pro-
cesses. Finally, an area of 2092 sq km exhibits the highest PET values, ranging from 2266 to
2457 mm. These exceptionally high values suggest extreme climatic conditions with a very
high atmospheric demand for water.

Table 10. Spatial distribution of mean annual PET.

Subbasin Potential Evapotranspiration (in mm)

1 2332.70
2 401.14
3 2192.26
4 2207.53
5 2389.30
6 624.84
7 1628.74
8 2264.62
9 2170.10
10 2456.67
11 1052.30
12 1216.18
13 1634.20

The potential evapotranspiration, representing the maximum potential water loss to
evaporation and transpiration under ideal conditions, varies notably among the subbasins.
Subbasin 10 records the highest potential evapotranspiration, totaling 2456.67 mm, high-
lighting the area’s susceptibility to high water loss under ideal environmental conditions.
In contrast, Subbasin 1 displays a substantial difference between actual evapotranspiration
(679.48 mm) and potential evapotranspiration (2332.70 mm), signifying potential water
stress conditions. Subbasin 3 demonstrates significant potential evapotranspiration of
2192.26 mm, underscoring the need to consider actual evapotranspiration to assess water
availability accurately.

4. Discussion

The results presented in the previous sections provide valuable insights into the
hydrological characteristics of the Beas Basin, as simulated by the SWAT+ model. The
calibration and validation processes have demonstrated the model’s ability to accurately
represent streamflow and other hydrological components, indicating a good performance.
The statistical indices, such as the Nash–Sutcliffe efficiency (NSE) and BIAS, further confirm
the model’s reliability in reproducing observed data. The sensitivity analysis of the model
identified several key parameters that significantly influence the hydrological processes in
the Beas Basin. Parameters related to base flow, runoff, channel characteristics, plant water
uptake, soil evaporation, surface runoff lag, and groundwater–surface water interactions
were particularly sensitive [32]. These findings highlight the importance of accurately
estimating and prioritizing these parameters during model calibration to improve the
representation of hydrological dynamics.
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The detailed simulations and analysis of the SWAT+ model have unveiled the intricate
hydrological dynamics prevailing within the Beas Basin. One of the standout aspects of
this study is the model’s calibration using recorded streamflow at the Larji Hydroelectric
Project outlet. This calibration has showcased the model’s precision and adaptability in
recognizing and adjusting to sensitive parameters. Specifically, parameters such as the
surface runoff lag coefficient (SURLAG) and groundwater revap coefficient (GW_REVAP)
with values of 0.74 and 0.17, respectively, reveal the basin’s nuanced response mechanisms
to various hydrological events, particularly precipitation [33].

We can quantitatively dissect the basin’s hydrological behavior by diving into the
water balance components. For instance, the annual average surface flow of 231 mm,
juxtaposed against the water yield of 236 mm, paints a quantitative picture of the balance
between surface runoff and the total water available from the basin. This balance is
paramount, serving various needs, from hydroelectric power generation to maintaining
the basin’s ecological vitality. The lateral flow, albeit a smaller value of 4.95 mm, should
not be overlooked, as it suggests potential subsurface pathways, crucial during periods of
lower precipitation.

Evapotranspiration, a pivotal component in the water cycle, stands at an annual
average of 506 mm in the Beas Basin. When we place this value against the potential evapo-
transpiration of 1839 mm, it becomes evident that the region has a massive climatic demand
for water. This dynamic is further shaped by the basin’s vegetative cover, topography, and
soil characteristics [34].

The temporal analysis, spanning 2010 to 2022, provides insights into the basin’s
hydrological rhythm. While the seasonal oscillations are evident, anomalies like the extreme
discharge events of 2014 and 2020 truly test the model’s predictive capabilities. These
events, marked by discharges of 632 m3/s and 436 m3/s, respectively, suggest the model’s
aptitude for capturing significant hydrological events based on historical data and sensitive
parameter adjustments [35].

The spatial analysis further delves into the heterogeneity of the basin. Different
subbasins, like subbasin 2 with its high surface flow of 1164.47 mm and water yield of
1182.32 mm, contrast starkly with subbasin 10, which exhibits minimal values. These
variations are emblematic of the diverse hydrological, geological, and climatic conditions
inherent within the basin. Furthermore, potential evapotranspiration values, such as the
2456.67 mm in subbasin 10, emphasize areas with pronounced atmospheric water demand.
These insights are invaluable for future water resource planning, especially in the face of
potential climatic shifts.

5. Conclusions

This study presents an in-depth exploration of the hydrological dynamics within the
Beas Basin using the Soil and Water Assessment Tool (SWAT+), aiming to improve our
understanding of the region’s hydrological characteristics and their implications for water
resource management. The calibration and validation of the SWAT+ model demonstrated
reliable performance in simulating the hydrological processes within the Beas Basin. The
high Nash–Sutcliffe efficiency (NSE) values (0.88 for calibration and 0.82 for validation)
and acceptable biases affirm the model’s robustness in reflecting the basin’s hydrologi-
cal dynamics. The calibrated SWAT+ model facilitated an accurate simulation of crucial
hydrological components, including surface runoff, water yield, evapotranspiration, po-
tential evapotranspiration, and lateral flow. The annual averages of these components
underline the Beas Basin’s intricate hydrological network and its responsiveness to cli-
matic factors and terrain attributes. The temporal analyses of flow and sediment discharge
revealed a predictable yet complex interplay of seasonality and interannual variability,
emphasizing the basin’s susceptibility to extreme discharge events due to precipitation and
snowmelt anomalies. The spatial distribution of surface runoff and water yield highlights
the significant hydrological diversity within the Beas Basin. These spatial patterns can be
associated with various factors, such as vegetation, soil properties, topography, and climatic
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conditions, which shape the hydrological behaviors in different basin parts. This study
provides valuable insights into the hydrological regime of the Beas Basin, contributing to
the broader understanding of the region’s water resource potential and sustainability. The
findings could significantly influence water resource planning, flood control, agricultural
management, and ecological conservation within the basin. This study also underscores
the utility of tools like SWAT+ in hydrological assessment and water management strate-
gies. The implications of this modeling exercise hold significant weight for water resource
managers, especially in climate change. Through an in-depth analysis of the Beas Basin’s
hydrological components using the SWAT+ model, calibrated and validated with sensi-
tivity considerations, this study offers a nuanced comprehension of its intricate dynamics.
This understanding translates into actionable benefits for managers, as it unveils tailored
insights for resource allocation and management strategies in various subbasins. It also
enhances decision-making accuracy through the spatial distribution of key water balance
components. In the face of climate uncertainty, the model’s parameter sensitivity ensures
continued reliability, enabling managers to formulate adaptive strategies that account for
evolving climatic conditions. Ultimately, this modeling effort advances knowledge of the
basin’s hydrology and equips managers with a potent tool to navigate climate-induced
challenges, securing water resource sustainability and basin resilience. Future research can
build upon this work to further explore other water cycle components, such as groundwater
dynamics, soil moisture patterns, and their linkages with climate change scenarios.
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