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Abstract: Climate change (CC) and land-use change (LUC) will alter a basin’s hydrological processes
and water balance. Quantifying their significance is imperative in formulating appropriate counter-
measures and management plans. This study assesses projected changes in hydrological variables
under CC and LUC scenarios to provide multi-dimensional insight into water balance relevant to
an agricultural watershed in Northeast Thailand. The soil and water assessment tool (SWAT) is
utilized to simulate hydrological variables (evapotranspiration, soil moisture, surface runoff, and
water yield) for the baseline (1981–2010) and the near-future (2021–2050) after calibrating the model.
CC projections considering the CMIP6 model ensemble for the high-emission scenario (SSP5-8.5)
show the annual rainfall may not change significantly (0.5% increase compared to baseline). However,
the surface runoff will likely increase by 33% due to the projected increase in rainfall intensity and
extremes. The increase in urban areas due to LUC for the business as usual (BAU) scenario is also
expected to boost surface runoff by 38–87%. Similarly, the LUC scenario with forest expansion will
increase evapotranspiration by up to 1.3%. While CC is anticipated to raise water yield by 11%, LUC
may reduce it by 6%. Under the combined scenario, the yield is expected to increase by 8%, indicating
CC as the dominating driver. The results show that although CC governs the runoff from the basin,
land-use change will also impact flows at a monthly scale. Importantly, soil moisture in the future
will decrease (8–9%) under both stressors, which will reverberate in the basin’s agricultural livelihood
and socioeconomic settings unless the appropriate adaptation measures are implemented.

Keywords: hydrological modeling; water balance; agricultural basin; climate change; land-use
change; Northeast Thailand

1. Introduction

Climate change and land-use change are the critical drivers that alter various hydro-
logical processes [1–5]. Climate change impacts the water cycle by altering elements like
precipitation, evapotranspiration, soil moisture, groundwater, and the scale and timing
of runoff, while a land-use change can modify factors such as canopy interception, sur-
face roughness, soil characteristics, albedo, etc., ultimately affecting evapotranspiration
(ET), soil moisture (SM), and runoff [6,7]. Climate change has been perceived as the top
global risk to humankind for the short and long term [8]. Almost all regions in the world
have been experiencing the adverse manifestation of climate change in terms of extreme
weather, floods, droughts, loss of biodiversity, etc. Human-induced global warming is set to
transform the global climate structure, primarily by influencing the expansive atmospheric
circulation that governs the movement of moisture and energy, changes in the large-scale
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hydrological cycles, and precipitation patterns, which will lead to an increased occurrence
of floods and droughts [9,10]. Research shows climate change will enhance the dynamics
of the hydrological cycle, increase the magnitude and frequency of extreme events, and
redistribute water resources at various temporal and spatial scales in Southeast Asia [11].

Land-use change ranges from seasonal variation in the land cover characteristics and
natural maturation of forest to long-term changes resulting from various human activities
such as urbanization, deforestation, and conversion to agricultural lands and forest manage-
ment practices [3]. Generally, forest covers have higher evapotranspiration demands and
lower runoff than other land use such as urban areas, pastures, and agricultural land. On
the other hand, urbanization drastically reduces the infiltration, and the runoff is enhanced
in magnitude and timing [12].

Several hydrological modeling tools such as the soil and water assessment tool (SWAT),
MIKE Système Hydrologique Européen (SHE), Precipitation-Runoff Modeling System
(PRMS), Water Balance Simulation Model (WaSim)-ETH, and Hydrologiska Byråns Vat-
tenbalansavdelning (HBV) have been developed and applied to various types of water-
sheds [13–18]. SWAT has been extensively used to assess the impacts of climate change and
land-use change on hydrological variables [2,5,19–21]. SWAT is a conceptual, continuous,
and semi-distributed hydrological model developed in the 1990s to assess the impacts of
land use, management practices, and climate on water supplies [22,23]. Borah and Bera [24]
compared 11 hydrological models and found that SWAT is more suitable for continuous
simulations in agricultural watersheds. Under intermediate- and high-emission scenarios,
Visweshwaran et al. [4] found that the rainfall, ET, soil moisture, and surface runoff will
increase in the late century (2071–2100) in the Bharathapuzha River Basin, India. A study
by Sharma et al. [25] using the SWAT model in the Dharoi catchment of the Sabarmati River
Basin, India, found that climate change is the primary driver of the streamflow compared
to land-use change. Similar findings were also reported by Iqbal et al. [26] in the source
region of the Yellow River, China. Application of SWAT in the tropical watershed in Brazil
by Lucas-Borja et al. [27] shows that the replacement of the forest with crops or pasture
does not significantly impact the hydrological response. In contrast, complete deforestation
would increase the surface runoff. Using SWAT, Son et al. [28] found in Northwest Vietnam
that land-use change (deforestation and expansion of field crops and paddy) between 1992
and 2015 increased the ET by 1.8% whereas surface runoff decreased by 4.3%. Climate
change has decreased ET (2.3%) and surface runoff (11.5%), mainly due to decreased rainfall.
These studies show that the SWAT model can simulate hydrological processes under cli-
mate and land-use change scenarios. Integrating the crop growth module (Environmental
Policy Integrated Climate—EPIC) within the SWAT has also enhanced its ability to reflect
the impacts of land-use change on hydrology.

Other past studies of the impacts of climate change and land-use change on hydrology
have mixed findings based on the geographical location of the study area. Under climate
change, the annual average flow from the basin in southern Italy is projected to decrease
by 20% in 2030–2059 [29]. Similar projections (28 to 52% decrease in flow in 2070–2100)
are reported in a northern Spain catchment [30]. The Eerste River in South Africa will
also observe a decrease in water availability by 8–18% by the end of the century [31].
In contrast, monsoon flow in the Chaliyar River Basin, India, is projected to increase by
8.1–25.4% in 2070–2099 [32]. Water yield is also projected to increase (25–82%) in the
Taehwa River Watershed, Korea, in 2070–2100 [33]. Similarly, increases in annual flows
under climate change are also reported in catchments in Nepal (in 2020–2059) [34]; Thailand
(in 2071–2100) [35]; Southeast Asia (in 2075–2099) [36]; etc. Similarly, in a land-use change
study in the Periyar River Watershed, India, Sadhwani et al. [12] shows that with the
projected increase in the urban area (by 16.45%) and decrease in the plantation and forest
area (13.7%), the runoff at the basin outlet might not be affected, but at the sub-basin level,
the surface runoff will increase up to 56.6% by 2100. In the Bartin spring catchment located
in northwestern Turkey, a land-use change scenario considering conversion of agricultural
land to forest by 2026 shows an increase in evapotranspiration by 5% and a decrease in
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annual flow by 9%, while the reciprocal changes had an insignificant impact [3]. A study in
the upper Bhima River Basin, India, shows that a scenario considering an increase in urban
area by more than 5% has an evidential change in the runoff with an increase of 8–12% in
highly urbanized sub-basins [37].

Studies have also explored the combined impacts of climate change and land-use
change in basin runoff. The individual impacts of both drivers may vary temporally [7] and
cannot be considered linearly cumulative [38]. In the Songkhram River Basin in Northeast
Thailand, climate change significantly impacts flow more than land-use change [39]. Similar
findings are also reported in North Carolina, USA [40]; Hoeya River Basin, Korea [41];
Neka River Basin, Iran [42]; Dongjiang River, China [43]; etc. A study in the Cahaba
River in Alabama, USA, found that low flows are more sensitive to land-use change than
climate change [44]. Although several studies have explored alteration in river flows due
to individual and combined impacts of climate change and land-use change, few studies
have estimated the impacts on other hydrological components such as evapotranspiration,
soil moisture, etc. These are also critical hydrological variables, particularly for agriculture-
dominated watersheds, which can considerably affect crop productivity. Our primary
hypothesis is that both climate change and land-use change have significant impacts not
only on the streamflow but also on evapotranspiration and soil moisture. By assessing these
hydrological variables, we aim to provide multi-dimensional insights into hydrological
water balance due to these two stressors in Northeast Thailand in the near future. To
the authors’ knowledge, this research is the first of its kind in the region and employs
a comprehensive water balance hydrological model to dissect various components. The
study’s findings help formulate measures to tackle climate change and devise land-use
plans for sustainable agriculture management in the basin.

2. Materials and Methods
2.1. Study Area

Located in the Korat plateau in Northeast Thailand (Figure 1), the study area of the
Mun River has an agriculture-dominated catchment where about 75% of the area is under
cultivation. It is one of the major sub-basins of the Mekong River. The basin experiences a
tropical climate and is heavily influenced by the southwest monsoonal system from the
Indian Ocean. The annual average maximum and minimum temperatures vary spatially
between 32.3 ◦C to 33.3 ◦C and 21.9 ◦C to 23.0 ◦C in the basin, while the annual rainfall has
a distinct pattern showing increments from west to east in the basin (800 mm to 1700 mm)
(Figure 2). June to October is the rainy season during which the southwest monsoon
from the Indian Ocean brings 80% of the annual rainfall in the basin. From November to
February, the northeast monsoon brings little or no rain in the basin. March to May is the
pre-rainy and a transitional from the northeast to the southwest monsoon [45].
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Figure 1. Location map of the Mun River Basin in Northeast Thailand showing topography, river 
lines, and hydro-meteorological stations. 

As shown in Figure 3, land use in the basin is dominated with agriculture, where rice 
is cultivated in about 55% of the entire area. Other major crops grown in the basin are 
cassava and sugarcane (sparsely distributed in the basin) and maize (mainly in the west-
ern part of the Nakhon Ratchasima province). Irrigation facilities reach only a fraction of 
the cultivation area in Northeast Thailand [46]. Most of the basin has sandy, loamy soil 
with a low fertility grade because of its limited ability to hold water and nutrients [47]. 

Figure 1. Location map of the Mun River Basin in Northeast Thailand showing topography, river
lines, and hydro-meteorological stations.

As shown in Figure 3, land use in the basin is dominated with agriculture, where rice
is cultivated in about 55% of the entire area. Other major crops grown in the basin are
cassava and sugarcane (sparsely distributed in the basin) and maize (mainly in the western
part of the Nakhon Ratchasima province). Irrigation facilities reach only a fraction of the
cultivation area in Northeast Thailand [46]. Most of the basin has sandy, loamy soil with a
low fertility grade because of its limited ability to hold water and nutrients [47].



Water 2023, 15, 3672 5 of 22
Water 2023, 15, x FOR PEER REVIEW 5 of 23 
 

 

 
Figure 2. The spatial patterns of annual average (a) maximum temperature, (b) minimum tempera-
ture, and (c) rainfall of the basin during the baseline period (1981–2010). Figure 2. The spatial patterns of annual average (a) maximum temperature, (b) minimum tempera-
ture, and (c) rainfall of the basin during the baseline period (1981–2010).

Water 2023, 15, x FOR PEER REVIEW 6 of 23 
 

 

 
Figure 3. The spatial patterns of (a) land-use of 2000, (b) land-use of 2008, and (c) soil map of the basin. 
(Source: Land Development Department, Thailand). 

2.2. Data Used 
2.2.1. Hydro-Meteorological Data 

Observed rainfall data at 43 stations within the basin for 1981–2010 were utilized to 
generate gridded data at the spatial resolution of 0.25 degrees using the inverse distance 
weighting method [48]. The data are consistent with regional/global datasets (CPC, 
CHIRPS APHRODITE, etc.). As the observed temperature data are available in limited 
stations, data from the Climate Prediction Center (CPC) Global Land Surface Air Temper-
ature Analysis [49], available at a 0.5-degree spatial resolution, were used. Within the ba-
sin, CPC data closely match observed station data with an average correlation coefficient 
above 0.95 and a root-mean-square error of about 0.8 °C [50]. Using spatially interpolated 
gridded climatic data has been found to improve streamflow simulation [51]. The daily 
river flow data (1996–2017) were collected from the Royal Irrigation Department (RID) of 
Thailand for nine gauging stations at the mainstream and tributaries of the Mun River 
Basin. 

Future climate projections of daily maximum temperature, minimum temperature, 
and rainfall were acquired from Khadka et al. [48], who used eight climate models from 
the HighResMIPs [52] of Coupled Model Intercomparison Project phase 6 (CMIP6). Data 
are available for the near-future period (2021–2050) for the high-emission scenario of 
SSP5-8.5. The projection data were bias-corrected using the quantile mapping method. A 
study by Maneechot et al. [53] found that use of interpolation and bias correction of cli-
mate data improved their accuracy for extreme climate projections in the Chao Phraya 
River Basin, Thailand. Khadka et al. [48] found that compared to the baseline period 
(1981–2010), maximum and minimum temperatures are projected to increase by 1.29 °C 
and 1.37 °C, respectively, in the basin. Annual rainfall is projected to increase by 0.5% in 
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2.2. Data Used
2.2.1. Hydro-Meteorological Data

Observed rainfall data at 43 stations within the basin for 1981–2010 were utilized
to generate gridded data at the spatial resolution of 0.25 degrees using the inverse dis-
tance weighting method [48]. The data are consistent with regional/global datasets (CPC,
CHIRPS APHRODITE, etc.). As the observed temperature data are available in limited sta-
tions, data from the Climate Prediction Center (CPC) Global Land Surface Air Temperature
Analysis [49], available at a 0.5-degree spatial resolution, were used. Within the basin, CPC
data closely match observed station data with an average correlation coefficient above 0.95
and a root-mean-square error of about 0.8 ◦C [50]. Using spatially interpolated gridded
climatic data has been found to improve streamflow simulation [51]. The daily river flow
data (1996–2017) were collected from the Royal Irrigation Department (RID) of Thailand
for nine gauging stations at the mainstream and tributaries of the Mun River Basin.

Future climate projections of daily maximum temperature, minimum temperature,
and rainfall were acquired from Khadka et al. [48], who used eight climate models from the
HighResMIPs [52] of Coupled Model Intercomparison Project phase 6 (CMIP6). Data are
available for the near-future period (2021–2050) for the high-emission scenario of SSP5-8.5.
The projection data were bias-corrected using the quantile mapping method. A study
by Maneechot et al. [53] found that use of interpolation and bias correction of climate
data improved their accuracy for extreme climate projections in the Chao Phraya River
Basin, Thailand. Khadka et al. [48] found that compared to the baseline period (1981–2010),
maximum and minimum temperatures are projected to increase by 1.29 ◦C and 1.37 ◦C,
respectively, in the basin. Annual rainfall is projected to increase by 0.5% in the near-future;
however, temporal variability will be higher with an increase in rainfall during the rainy
season (by 2–8%) and a decrease in other months (by 6–11%). Details of the climate models
from CMIP6 are provided in Table S1, and the spatial pattern of the projected climate in the
near-future is presented in Figure S1.

2.2.2. Land-Use and Soil Data

Land-use maps for 2000 and 2008 were acquired from Thailand’s Land Development
Department (LDD). Table 1 shows that areas under rice and field crops (cassava, sugarcane,
maize) decreased in 2008 while perennials and orchards, other agriculture (vegetables),
and urban areas have increased. Forest occupies about slightly over 12% of areas during
both years. The decreasing trend of rice fields is also attributable to the government’s crop
diversification policy since the Seventh National Economic and Social Development Plan
(NESDP), 1992–1996, to promote high-value and higher-value-added products [54]. Also,
commercial crops like para rubber are expanding in Northeast Thailand with government
support and economic reasons [55].

Table 1. Percentage of the basin area under various land uses in 2000 and 2008.

S.N. Land-Use Class
% of the Basin Area

The Year 2000 The Year 2008

1 Rice 60.2% 55.5%
2 Field Crop 18.2% 14.3%

3 Perennials and Orchards
(Rubber) 1.7% 4.9%

4 Agriculture (Others) 0.1% 0.9%
5 Forest 12.2% 12.5%
6 Water Bodies 1.5% 2.7%
7 Marsh and Swamp Land 0.4% 0.7%
8 Urban 4.8% 6.1%
9 Miscellaneous (Rangeland) 0.9% 2.5%
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The future land use developed by Penny et al. [56] using the Future Land Use Simula-
tion (FLUS) model is used in the study. Two scenarios, namely (i) business as usual (BAU)
and (ii) combination of forest conservation and urban growth (CCU), are considered. The
BAU scenario was developed based on past land-use trends between 2000 and 2017. CCU
is a multi-objective scenario considering increased urban growth [57] and conservation [39].
Urban and forest extent were targeted at 12% and 25% of the total catchment area by 2060.
Future land-use maps are available for 2025, 2035, and 2045, assuming each to represent a
decade in the near-future. This integration of dynamic land-use change in hydrological
simulation is found to be more accurate, particularly in the agricultural watershed [58].
Projected land use in the basin under both scenarios in 2045 is presented in Figure S2.
Compared to 2008, rice fields are projected to decrease from 55.5% of the basin area to 45.6%
under BAU and 39.3% under CCU. Similarly, the area under field crops will increase to
20.6% and 15.6% under BAU and CCU, respectively. Forest will be reduced to 11.2% under
BAU, and an increase to 22.3% under CCU. Perennials and orchards will increase to about
7.5% under both scenarios and urban to 7.2% and 9.5% under BAU and CCU, respectively.

2.3. Methodology

The overall methodology of the study is presented in Figure 4. The details on the hy-
drological modeling and simulations under climate change and land-use change scenarios
are presented in following sub-sections.

Water 2023, 15, x FOR PEER REVIEW 8 of 23 
 

 

2.3.1. Hydrological Simulation Using the Soil and Water Assessment Tool (SWAT) 
SWAT was chosen to simulate the basin’s hydrological components for the baseline 

and future period under climate and land-use change scenarios. It is a continuous water 
and sediment yield model, which operates at a daily time scale [59]. Hydrologic processes 
simulated with SWAT include canopy storage, surface runoff, infiltration, evapotranspi-
ration, lateral flow, tile drainage, redistribution of water within the soil profile, consump-
tive use through pumping (if any), return flow, and recharge with seepage from surface 
water bodies, ponds, and tributary channels [13]. Researchers have extensively used 
SWAT for hydrological studies under climate change and land-use change drivers [60–64], 
and it has been found to be suitable for continuous simulation for agricultural watersheds 
[24]. Further details on SWAT can be found in Neitsch et al. [59]. 

 
Figure 4. The methodological framework used in the study to assess projected changes in the water 
balance component in the near-future (2021–2050) under individual and combined impacts of cli-
mate change compared to the baseline (1981–2010). 

In this study, the watershed is divided into 57 sub-watersheds based on the topogra-
phy and location of the hydrological stations, which are further sub-divided into 1855 
hydrologic response units (HRUs) comprising homogenous land-use, slope, and soil char-
acteristics. The Penman–Monteith method [65] was used to estimate the potential evapo-
transpiration. The model was calibrated and validated at monthly temporal resolutions 
for flows at nine stations. The calibration was conducted using the land-use map of 2008 
and for the period 2006–2017. Similarly, validation involved the land use of 2000 and the 
period 1996–2005. For some stations, data are unavailable for the validation period (i.e., 
before 2005). In such a case, those stations were used only for calibration. 

Table 2 presents the drainage area of each gauging station along with the percentage 
of the area under different land use. Most of the catchment area for each drainage point is 
dominated with rice fields, followed by field crops and forest. The catchment at station 
M159 has the highest coverage with rice fields; station M2A has field crops; and station 
M176 has forest. Table 3 shows the projected changes in the land-use class at each station 
in the near-future period for BAU and CCU scenarios. Of the dominating land-use class, 
for both scenarios, rice fields are projected to decrease (highest for BAU), and field crops 
are projected to increase (highest for BAU). Forest area is projected to decrease under BAU 
and increase under CCU scenarios. 

Figure 4. The methodological framework used in the study to assess projected changes in the water
balance component in the near-future (2021–2050) under individual and combined impacts of climate
change compared to the baseline (1981–2010).

2.3.1. Hydrological Simulation Using the Soil and Water Assessment Tool (SWAT)

SWAT was chosen to simulate the basin’s hydrological components for the baseline
and future period under climate and land-use change scenarios. It is a continuous water
and sediment yield model, which operates at a daily time scale [59]. Hydrologic processes
simulated with SWAT include canopy storage, surface runoff, infiltration, evapotranspira-
tion, lateral flow, tile drainage, redistribution of water within the soil profile, consumptive
use through pumping (if any), return flow, and recharge with seepage from surface water
bodies, ponds, and tributary channels [13]. Researchers have extensively used SWAT for
hydrological studies under climate change and land-use change drivers [60–64], and it
has been found to be suitable for continuous simulation for agricultural watersheds [24].
Further details on SWAT can be found in Neitsch et al. [59].
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In this study, the watershed is divided into 57 sub-watersheds based on the topography
and location of the hydrological stations, which are further sub-divided into 1855 hydrologic
response units (HRUs) comprising homogenous land-use, slope, and soil characteristics.
The Penman–Monteith method [65] was used to estimate the potential evapotranspiration.
The model was calibrated and validated at monthly temporal resolutions for flows at nine
stations. The calibration was conducted using the land-use map of 2008 and for the period
2006–2017. Similarly, validation involved the land use of 2000 and the period 1996–2005.
For some stations, data are unavailable for the validation period (i.e., before 2005). In such
a case, those stations were used only for calibration.

Table 2 presents the drainage area of each gauging station along with the percentage
of the area under different land use. Most of the catchment area for each drainage point is
dominated with rice fields, followed by field crops and forest. The catchment at station
M159 has the highest coverage with rice fields; station M2A has field crops; and station
M176 has forest. Table 3 shows the projected changes in the land-use class at each station in
the near-future period for BAU and CCU scenarios. Of the dominating land-use class, for
both scenarios, rice fields are projected to decrease (highest for BAU), and field crops are
projected to increase (highest for BAU). Forest area is projected to decrease under BAU and
increase under CCU scenarios.

To better capture the water balance in the basin, the model was also calibrated for evap-
otranspiration (ET) and soil moisture. The simulated ET using the model was compared
with the remote-sensing-based ET data acquired from the Global Land Evapotranspiration:
the Amsterdam Model (GLEAM ET) [66]. The GLEAM model is driven by satellite-based
observations on air temperature, precipitation, and surface soil moisture and is available
from 2003 to 2015 at a spatial resolution of 0.25 degrees. The ET includes open-water and
bare-soil evaporations, plant transpiration, and interception losses [67]. Since data have
been available only since 2003, simulated ET was compared only for the calibration period.

Soil moisture (SM) data for the calibration were obtained from the Global Land Data
Assimilation System (GLDAS) Noah Land Surface Model (LSM) [68]. It is a global terrestrial
modeling system that uses ground and satellite observations [69]. The data have been
available since 2000 at a spatial resolution of 0.25 degrees. Since rice, forest, and field crops
are the significant land uses in the basin, ET and SM were compared from the corresponding
HRUs in the selected sub-basin, which has most of these land uses with the observed data.
Pearson’s correlation coefficient (r) was used to compare the simulated ET and soil moisture
with the observation.

The model was calibrated using SWAT-CUP software with the Sequential Uncertainty
Fitting (SUFI) algorithm [70]. Critical model parameters were identified with a sensitivity
analysis and p-value. In addition to the Nash–Sutcliffe Efficiency (NSE), Coefficient of
Determination (R2), and Percentage Biases (Pbias) [71], model performance in simulating
flows was also assessed using the P-factor and R-factor [70]. The P-factor is the fraction of
the observation data encapsulated using the uncertainty range, while the R-factor is the
ratio of range width and standard deviation of the observed values [70,72]. For perfect
simulation, the P-factor shall have a value of one while the R-factor will be zero.
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Table 2. Drainage area and percentage of land-use classes in the catchment of each hydrological station.

S.N. Hydrological
Station ID

Drainage
Area (km2)

% of Land-Use Class

Rice Field Crop Perennials and
Orchards

Agriculture
(Others) Forest Water

Bodies
Marsh and

Swamp Land Urban Miscellaneous

1 M176 2989 51.0% 7.2% 13.2% 0.1% 19.8% 1.9% 0.1% 4.5% 2.2%
2 M2A 3137 14.0% 35.8% 7.1% 4.6% 19.3% 1.6% 0.2% 12.9% 4.5%
3 M9 3530 66.6% 5.1% 3.9% 0.1% 13.8% 1.8% 0.1% 5.9% 2.7%
4 M185 4610 25.9% 16.8% 7.1% 0.2% 41.5% 2.6% 0.1% 4.3% 1.5%
5 M159 4754 69.6% 3.9% 6.4% 0.3% 7.5% 2.7% 0.1% 7.9% 1.6%
6 M104 24,644 40.0% 26.3% 4.9% 1.2% 16.6% 1.9% 0.5% 6.1% 2.6%
7 M6A 28,016 43.2% 24.4% 5.1% 1.2% 15.1% 2.1% 0.5% 6.1% 2.5%
8 M5 44,328 54.7% 16.6% 4.6% 0.9% 12.0% 2.2% 0.7% 6.1% 2.2%
9 M182 48,658 55.9% 15.5% 4.5% 0.9% 12.0% 2.2% 0.7% 6.1% 2.3%

Table 3. Projected changes in the land-use class area in the near-future (2021–2050) compared to baseline (1981–2010) in the catchment of each hydrological station
for business as usual (BAU) scenario. The projected changes for combination of forest conservation and urban growth (CCU) are shown in parenthesis.

S.N. Hydrological
Station ID

Projected Changes in the Land-Use

Rice Field Crop Perennials and
Orchards

Agriculture
(Others) Forest Water Bodies Marsh and

Swamp Land Urban Miscellaneous

1 M176 −16% (−30%) 11% (2%) 56% (20%) 35% (36%) −9% (45%) 38% (38%) 8% (−27%) 21% (63%) 5% (−2%)
2 M2A −41% (−23%) 24% (−1%) −13% (−26%) −24% (−21%) −15% (12%) 26% (26%) −3% (−27%) 16% (26%) −12% (−1%)
3 M9 −14% (−23%) 28% (−8%) 213% (75%) 48% (44%) −13% (61%) 43% (43%) 84% (58%) 16% (62%) −14% (−18%)
4 M185 −26% (−34%) 14% (−2%) 73% (40%) −46% (−39%) −4% (11%) 23% (23%) −49% (−56%) 13% (37%) −26% (−28%)
5 M159 −21% (−35%) 137% (57%) 97% (43%) 33% (46%) −4% (161%) 41% (41%) −4% (−31%) 25% (77%) 12% (8%)
6 M104 −27% (−31%) 34% (3%) 36% (21%) −23% (−20%) −10% (42%) 46% (45%) 25% (2%) 19% (45%) −3% (2%)
7 M6A −27% (−32%) 38% (5%) 40% (20%) −26% (−22%) −11% (53%) 45% (45%) 21% (−2%) 20% (49%) −2% (2%)
8 M5 −21% (−31%) 42% (7%) 73% (36%) −23% (−21%) −11% (80%) 49% (49%) −13% (−40%) 22% (60%) 4% (6%)
9 M182 −20% (−30%) 42% (7%) 83% (39%) −20% (−19%) −11% (80%) 48% (48%) −15% (−41%) 21% (60%) 3% (4%)
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2.3.2. Future Hydrological Simulation under Climate Change and Land-Use Change
Scenarios

The calibrated SWAT model simulated the water balance components for the baseline
(1981–2010) and the near-future (2021–2050) under climate change and land-use change
scenarios. Specifically, five future cases (shown in Table 4) are considered, and the projected
changes were assessed with respect to the baseline. The study focused on changes in
rainfall, potential evapotranspiration, actual evapotranspiration, surface runoff, and water
yield in the basin as they have relevance to agricultural activities.

Table 4. Future cases considered for hydrological simulations for individual and combined climate
change and land-use scenarios.

S.N. Future Cases

Case1 Climate change only (CC_only)
Case2 Land-use change under BAU (LU_BAU_only)
Case3 Land-use change under CCU (LU_CCU_only)
Case4 Climate change and land-use change under BAU (CC+LUC_BAU)
Case5 Climate change and land-use change under CCU (CC+LUC_CCU)

3. Results and Discussion
3.1. Calibration and Validation of SWAT

Based on the sensitivity analysis carried out in SWAT-CUP and the p-value of the
parameters, thirteen parameters, as shown in Table 5, were chosen for calibrating the
SWAT model. CN2.mgt, SOL_AWC.sol, GW_DELAY.gw, ESCO.hru, GWQMN.gw, and
REVAPMN.gw are the most sensitive parameters with a p-value less than 0.05. In addition,
other parameters are also found to be sensitive in some of the sub-basins in this study. The
range of calibrated parameter values is well within the plausible limits (Table 5).

Table 5. Parameters chosen for the calibration of the SWAT model, along with their initial and
calibrated range.

S.N. Parameter Descriptions
Initial Range Calibrated Range

Min Max Min Max

1 v__GW_DELAY.gw Groundwater delay time (days) 0 100 2 40

2 v__GWQMN.gw Threshold depth of water in the shallow aquifer
required for return flow to occur (mm) 0 1500 475 1250

3 v__GW_REVAP.gw Groundwater “revap” coefficient (-) 0.02 0.2 0.016 0.16

4 v__REVAPMN.gw
Threshold depth of water in the shallow aquifer
for “revap” or percolation to the deep aquifer to

occur (mm)
0 100 300 777

5 v__RCHRG_DP.gw Deep aquifer percolation fraction (-) 0 0.2 0.05 0.1
6 v__CANMX.hru Maximum canopy storage (mm) 0 20 0 10
7 v__ESCO.hru Soil evaporation compensation factor (-) 0 1 0.64 0.94
8 v__OV_N.hru Manning’s “n” value for overland flow 0.05 0.2 0.12 0.16
9 v__CH_N2.rte Manning’s “n” value for the main channel 0.014 0.1 0.015 0.025

10 v__CH_N1.sub Manning’s “n” value for the tributary channels 0.014 0.1 0.015 0.025

11 r__SOL_AWC.sol Available water capacity in the soil layer
(mm/mm soil) −0.25 0.25 0.1 0.2

12 r__SOL_K().sol Saturated hydraulic conductivity −0.25 0.25 0 0.15

13 r__CN2.mgt Initial SCS runoff curve number for moisture
condition II (-) −0.15 0.15 −0.16 −0.07

Note: ‘v’ in the parameter name means absolute change where new values substitute the initial values in the
SWAT database; ‘r’ in the parameter name means relative change where the initial values in the SWAT database
are multiplied by factor 1 plus new values.
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As indicated in Figure 1, simulated flows were calibrated at nine locations (indicated
in Figure 1) and validated at six locations (due to lack of data) that cover the basin’s
upper, middle, and lower parts. Statistical performance at each location is presented in
Table 6. In many downstream stations, the P-factor exceeds 0.7 during the calibration and
validation phases. At other stations, this factor is above 0.5. Except for station M182 (during
calibration) and M6A (during validation), the R-factor for all other stations is below 1,
indicating a limited uncertainty in the hydrological modeling. These values align with the
recommendations given by Abbaspour et al. [70].

Table 6. Model performance in simulating monthly discharge during calibration and validation
periods using statistical indicators.

Outlets
Calibration (2006–2017) Validation (1996–2005)

P-Factor R-Factor R2 NSE P-Bias (%) P-Factor R-Factor R2 NSE P-Bias (%)

M5 0.82 0.97 0.86 0.85 9.1 0.86 1.09 0.84 0.83 −1.4
M6A 0.59 0.93 0.84 0.84 12.0 0.77 1.32 0.83 0.78 −11.7
M176 0.72 0.56 0.87 0.86 5.4 0.46 0.63 0.91 0.74 −29.6

M9 0.54 0.78 0.9 0.89 8.6 0.69 0.86 0.87 0.77 −19.3
M159 0.51 0.71 0.85 0.78 3.7 0.63 0.78 0.90 0.78 2.1
M2A 0.56 0.83 0.81 0.78 5.1 0.5 0.90 0.85 0.78 21.1
M104 0.56 0.83 0.89 0.87 11.3 - - - - -
M182 0.82 1.08 0.84 0.83 5.0 - - - - -
M185 0.44 0.83 0.79 0.78 −0.5 - - - - -

Furthermore, the R2 and NSE values at most stations range from 0.78 to 0.90 during
calibration and 0.74 to 0.91 during validation. Except in three stations (M176, M9, and M2A)
during validation, the P-biases are under 15%, indicating a strong alignment between the
simulated and observed flows. As suggested by Abbaspour et al. [71], the performance of
the SWAT model in these key statistics shows excellent simulation in most of the outlets.
The results are similar to or better than previous studies [58–60] reported using SWAT in
the region. Similarly, considering several calibration/validation locations ensures that the
compensating errors within various sub-basins do not give a false impression of accuracy at
the basin outlet. Visual representation of the calibration and validation of flow is presented
in Figure 5, which shows that the model simulation captures the temporal pattern of the
observed flow in all stations very well. Although some high flows at some sub-basins are
underestimated, the model captures low flows very well, and this is a crucial trait required
for hydrological simulation in an agricultural catchment [24]. In addition to uncertainties
with the hydrological modeling, the discrepancies of simulated flow with observation could
be due to inaccuracies in the conversion of point to areal average rainfall, measurements of
high flows (which in most cases are extrapolated from the rating curves), etc.

The simulated values of ET and SM exhibit a commendable correlation with observa-
tions, as shown in Table 7. HRUs from twelve sub-basins, predominantly rice-cultivated,
were compared with observations for evaluation. Similarly, HRUs from five forest-heavy
sub-basins and three with field crops as the principal land use are considered. The cor-
relation between observed and simulated ET is as follows: rice ranges from 0.68 to 0.78,
forests from 0.57 to 0.75, and field crops from 0.30 to 0.57 during the calibration phase. The
corresponding correlation coefficients for SM are 0.69–0.86 for rice, 0.74–0.87 for forests,
and 0.46–0.58 for field crops. Chen et al. [73] also reported the correlation between SWAT-
simulated and GLDAS soil moisture between 0.58 and 0.86 in the Luanhe River Basin,
China. Similar to our findings, the forest area had the highest correlation coefficients. It is
worth noting that field crops have correlation coefficient of 0.3 to 0.57 with the observed
evapotranspiration and 0.33 to 0.58 with the observed soil moisture. This relatively low
correlation can be attributed to the fact that field crops, comprised mainly of three different
crops, namely maize, cassava, and sugarcane, have varying water needs and growing sea-
son lengths. In the SWAT model, all field crops are lumped together, and this generalization
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can impact performance. Moreover, since the observed data are derived from satellites,
it is inherently subject to biases. Still, the results remain acceptable, as suggested using a
study in the USA [74], where the correlation between the SWAT-simulated soil moisture
and Normalized Difference Vegetative Index (NDVI) for agriculture was close to 0.6 and
judged to be an acceptable simulation with the model.
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Figure 5. Comparison of SWAT-simulated flows with observations at nine locations during the period
of calibration (2006–2017) and validation (1996–2005).

Table 7. Range of Pearson’s correlation coefficients between simulated and observed evapotranspira-
tion and soil moisture during the calibration and validation periods.

Hydrologic
Variables Land Use Number of

Sub-Basins Calibration Validation

Evapotranspiration
Rice 12 0.68–0.78 -

Forest 5 0.57–0.75 -
Field Crops 3 0.30–0.57 -

Soil moisture
Rice 12 0.69–0.86 0.53–0.80

Forest 5 0.74–0.87 0.59–0.79
Field Crops 3 0.46–0.58 0.33–0.44

Overall, the results suggest that the developed SWAT model is robust with reasonable
accuracy in simulating the hydrological processes within the basin, considering the uncer-
tainties associated with the parameterization of models and the underestimation of high
flows at some stations.

3.2. Baseline Simulation of Hydrological Components

The calibrated SWAT model was used to simulate the hydrological processes and
outputs in the basin for the baseline period of 1981–2010. The summary of the most
pertinent variables is shown in Table 8. The annual basin average rainfall during the
observed period is about 1233 mm, of which about 80% is lost to evapotranspiration. High
ET (989 mm annually) in the basin is due to significant agricultural fields and forest covers.
The value is consistent with those reported by Giambelluca et al. [75] in the region. Similarly,
the total recharge from the model is about 193 mm/year, which aligns with the findings
from Lacombe et al. [76], who estimated it to be between 170 and 200 mm/year in the area.
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Table 8. Simulated variables for the baseline period using SWAT.

Variables In mm

Rainfall 1233
PET 1830
ET 989

Total aquifer recharge 193
Total groundwater storage 48

Deep aquifer recharge 10
Surface runoff, Q 41
Total water yield 189

Interestingly, the surface runoff constitutes only 22% of the water yield in the basin. As
most of the basin has sandy loam soil, it facilitates more infiltration, resulting in less surface
runoff and a higher proportion of sub-surface flow. The total annual water yield from the
basin is 189 mm (about 16% of the rainfall). The major portion of the rainfall in the basin is
lost as ET, which, in addition to climate, is also a function of soil types, slopes, and land use.

The monthly flow and annual cumulative flow data normalized using the long-term
average and the standard deviation at three locations (Discharge anomaly = (Qi −Qm)/Standard
deviation), namely at M104 (representing upper Mun), M5 (representing middle Mun), and
at the basin outlet (lower Mun), are presented in Figure 6. Minimum flow in the basin
occurs during March and April, while the higher flows are recorded during the rainy
season, with maximum flow in October (about 1120 m3/s at the basin outlet). The annual
average discharge at these three locations is 79 m3/s, 191 m3/s, and 301 m3/s, respectively.
The anomaly plot (Figure 6b) also shows that most of the years between 1985 and 2000 are
marked with low annual flows.

Water 2023, 15, x FOR PEER REVIEW 14 of 23 
 

 

 
Figure 6. Observed (a) monthly flows and (b) annual cumulative flow data normalized using the 
long-term average and the standard deviation at three locations corresponding to the upper, middle, 
and lower Mun River Basin for the baseline period (1981–2010). 

3.3. Projected Changes in Water Balance under Climate Change and Land-Use Change Scenarios 
3.3.1. Water Balance Components 

Projected changes in the water balance components (rainfall, potential evapotranspi-
ration, actual evapotranspiration, surface runoff, and water yield) for individual and com-
bined cases of climate change and land-use change scenarios are presented in Table 9 and 
Figure 7. Rainfall and PET are only affected by climate change (case1, case4, and case5), 
while actual ET, surface runoff, and water yield are affected by both drivers. The ensemble 
average annual rainfall during the near-future is projected to increase by less than a per-
cent, although climate models projected changes from −5% to +10%. Similarly, PET is pro-
jected to rise by 4.4%, similar to estimates by Thompson et al. [77] in the basin, and is 
driven by an increase in future temperature. Under climate change, actual ET is also pro-
jected to increase slightly (0.2%) as it is affected by the increased ET demand. Notably, the 
increase in the actual ET is projected to be higher under both land-use change scenarios 
(by 1.0% and 1.3% under BAU and CCU, respectively). For both scenarios, the area under 
rice cultivation will decrease by 10% and 16% in the basin, while the area under field crops 
will increase by 6.3% and 1.3; the area under perennials and orchards will increase by 2.6% 
and 2.5%, respectively, for BAU and CCU. As field crops such as cassava, sugarcane, and 
perennials (rubber) have longer growing periods and water requirements [78], ET is ex-
pected to be higher. In addition, the CCU forest area is projected to grow from 12.5% to 
22.3%, leading to enhanced evapotranspiration as reflected with a higher increase in ET 

Figure 6. Observed (a) monthly flows and (b) annual cumulative flow data normalized using the
long-term average and the standard deviation at three locations corresponding to the upper, middle,
and lower Mun River Basin for the baseline period (1981–2010).



Water 2023, 15, 3672 14 of 22

3.3. Projected Changes in Water Balance under Climate Change and Land-Use Change Scenarios
3.3.1. Water Balance Components

Projected changes in the water balance components (rainfall, potential evapotran-
spiration, actual evapotranspiration, surface runoff, and water yield) for individual and
combined cases of climate change and land-use change scenarios are presented in Table 9
and Figure 7. Rainfall and PET are only affected by climate change (case1, case4, and case5),
while actual ET, surface runoff, and water yield are affected by both drivers. The ensemble
average annual rainfall during the near-future is projected to increase by less than a percent,
although climate models projected changes from −5% to +10%. Similarly, PET is projected
to rise by 4.4%, similar to estimates by Thompson et al. [77] in the basin, and is driven by
an increase in future temperature. Under climate change, actual ET is also projected to
increase slightly (0.2%) as it is affected by the increased ET demand. Notably, the increase in
the actual ET is projected to be higher under both land-use change scenarios (by 1.0% and
1.3% under BAU and CCU, respectively). For both scenarios, the area under rice cultivation
will decrease by 10% and 16% in the basin, while the area under field crops will increase
by 6.3% and 1.3; the area under perennials and orchards will increase by 2.6% and 2.5%,
respectively, for BAU and CCU. As field crops such as cassava, sugarcane, and perennials
(rubber) have longer growing periods and water requirements [78], ET is expected to be
higher. In addition, the CCU forest area is projected to grow from 12.5% to 22.3%, leading
to enhanced evapotranspiration as reflected with a higher increase in ET than under the
BAU scenario. Under the combined case of climate and land-use change, ET is projected to
increase between 0.5 and 1.0% in the near-future.

Table 9. Average projected changes in the hydro-meteorological variables considering climate model
ensemble for the near-future period (2021–2050) compared to the baseline period (1981–2010) for
individual and combined cases of climate change (SSP5-8.5) and land-use change (BAU and CCU)
scenarios.

S.N. Future Cases
Projected Changes (%) in Near-Future Compared to the Baseline

Rainfall PET ET Surface
Runoff

Water
Yield

1 CC_only 0.5 4.4 0.2 33 11
2 LU_BAU_only 0 0 1.0 7 −5
3 LU_CCU_only 0 0 1.3 49 −6
4 CC+LUC_BAU 0.5 4.4 0.5 38 8
5 CC+LUC_CCU 0.5 4.4 1.0 87 8

Water 2023, 15, x FOR PEER REVIEW 16 of 23 
 

 

 
Figure 7. Projected changes in annual water balance for near-future period (2021–2050) with refer-
ence to baseline (1981–2010) considering future cases of climate change and land-use change scenar-
ios. The boxplot shows the range of projections from eight climate models. The boxes represent the 
IQR with the horizontal line in the box corresponding to the median value and the whiskers to either 
the maximum/minimum values or 1.5 times the IQR. The red crosses are the values for the ensemble 
average, and the green plus sign is the value considering land use only. The absolute values of the 
variable (in mm) during the baseline period are presented within parenthesis (). 

3.3.2. Projection of Flows and Soil Moisture 
Figure 8 presents the projected annual average discharge at the outlet representing 

the upper part of Mun, the middle part, and the basin outlet for the near-future period. 
Cases considering climate change only and the combined case of climate change and land-
use changes are analyzed. The figure clearly shows that the future discharge at all consid-
ered locations will be dominated with climate change. Land-use change (especially the 
CCU scenario) is expected to slightly decrease the flows in the future (5–6%). This is pri-
marily because, under this scenario, forest area is expected to reach 25% of the total area 
by 2050. Consequently, the evapotranspiration demands in the future are expected to in-
crease in most sub-basins, resulting in reduced flows. The climate change impacts the in-
put variable (rainfall) of the hydrological cycle in addition to the hydrological process and 
other variables such as evapotranspiration, soil moisture, and surface runoff. While the 
land-use change will affect only the latter variables. This is one of the main reason climate 
change will have higher impacts in the future. Moreover, climate change affects the entire 
basin by increasing temperature and changing rainfall patterns, whereas land use can be 
localized. 
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As shown in Table 8, surface runoff during the baseline period is less than 5% of
the total annual rainfall in the basin. Under climate change, it is projected to increase on
average by 33% (13.2 mm). As the extreme rainfall and the rainfall intensity are projected
to increase in the basin [48], it gives less opportunity for water to infiltrate the soil, thus
increasing the proportion of surface runoff. Similarly, under the land-use change scenario,
an increase in the surface runoff is predominantly affected by an increase in the urban area
(7.2% in BAU and 9.5% in CCU of the basin area from 6.1% during baseline). With increased
impervious areas, rainfall can quickly flow to the water channel. A case with climate change
and land-use change in CCU will observe the highest increase in surface runoff by 87%
(37 mm) because of the abovementioned reasons. Climate change will positively impact the
annual water yield (+11%), while the land-use change will have the opposite effect, with
decreased water yield by 5 and 6% for BAU and CCU, respectively. The decrease is mainly
due to an increase in the ET in the near-future. A study by Yang et al. [35] in the Chao
Phraya River, Thailand, reported that the future flows under climate change will increase
by 10–20% in 2071–2100. The study’s findings also show that land-use change will decrease
the flows by about 7% due to afforestation and a decrease in cropland. Liu et al. [20] also
found that the expansion of forest and grassland will reduce the surface runoff, and an
increase in cultivation land will increase the runoff. Similar results were also reported by
Lucas-Borja et al. [27] in a tropical forest watershed. These results are very much aligned
with the current findings. Under combined drivers, the yield will increase by about 8%.
It is also noted from Figure 7 that the interquartile range (IQR) is exceptionally high for
surface runoff and water yield. It is mainly because of the climate models’ high uncertainty
associated with projected rainfall and the higher sensitivity of these variables to changes
in rainfall.

Overall, the study suggests climate change will influence the hydrological responses
more than the land-use change. The finding is supported with recent studies such as [35] in
the Chao Phraya River Basin, Thailand; [39] in the Songkhram River Basin, Thailand; [28]
in Nam Rom Basin, Vietnam; [79] in the Kabul River Basin, Afghanistan; [41] in the Hoeya
River Basin, Korea; [42] in the Neka River Basin, Iran, etc. In addition, the impacts of
climate change and land-use change are not cumulative, as suggested in [38,80], and vary
temporally.

3.3.2. Projection of Flows and Soil Moisture

Figure 8 presents the projected annual average discharge at the outlet representing
the upper part of Mun, the middle part, and the basin outlet for the near-future period.
Cases considering climate change only and the combined case of climate change and
land-use changes are analyzed. The figure clearly shows that the future discharge at all
considered locations will be dominated with climate change. Land-use change (especially
the CCU scenario) is expected to slightly decrease the flows in the future (5–6%). This is
primarily because, under this scenario, forest area is expected to reach 25% of the total
area by 2050. Consequently, the evapotranspiration demands in the future are expected to
increase in most sub-basins, resulting in reduced flows. The climate change impacts the
input variable (rainfall) of the hydrological cycle in addition to the hydrological process
and other variables such as evapotranspiration, soil moisture, and surface runoff. While
the land-use change will affect only the latter variables. This is one of the main reason
climate change will have higher impacts in the future. Moreover, climate change affects the
entire basin by increasing temperature and changing rainfall patterns, whereas land use
can be localized.
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Figure 8. Comparison of projected annual average flows in the near-future period for scenarios consid-
ering (i) climate change (CC_only), (ii) climate change and land-use change in BAU (CC+LUC_BAU),
and climate change and land-use change in CCU (CC+LUC_CCU) with reference to baseline period
at outlet of (a) upper Mun (M104), (b) middle Mun (M5), and (c) lower Mun (basin outlet).

The projected monthly flows in the near-future under climate change and land-use
change scenarios are presented in Figure 9. Under climate change, the model ensemble
suggests that the annual flow will increase by 10% while the increase during the wet season
(May–October) is 14%. Similarly, under the land-use change scenario of BAU, the annual
flow will decrease by 5%, and under CCU, it will decrease by 6%. Temporally, flows will
increase during March–June by 5% under BAU while decreasing during August–January
by 6%. The latter is more critical as it represents the majority of annual flow. Under CCU,
flows will increase during March–August (13%) and decrease during September–February
(16%). Under both drivers, flows are expected to increase from May to October, though the
magnitudes are lesser than under climate change only. The results show that although the
runoff from the basin is dominated with climate change, land-use change will also impact
flows at a monthly scale.
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Figure 9. Boxplot shows the basin outlet’s monthly average flows using eight climate models for
climate change and land-use change scenarios. The boxes represent the IQR with the horizontal line
in the box corresponding to the median value and the whiskers to either the maximum/minimum
values or 1.5 times the IQR. The red crosses are the values for the ensemble average, the green plus
sign is the value considering land use only, and the blue stars are the values during the baseline
period. Severities are shown as absolute values.

It is also found that projected change in discharge under climate change is highly
sensitive to changes in rainfall. For instance, the highest increase in the annual rainfall
in the near-future period is projected with CNRM-CM6-1-HR (+10%), and the annual
discharge will increase by 52–56% under combined drivers. Similarly, HadGEM3-GC31-
HM projected the highest decrease in the annual rainfall (−5%), resulting in a decrease in
discharge by 34–36%. This sensitivity of the discharge in the basin was also previously
reported by Li and Fang [81], who used CMIP5 GCM and the SWAT model to simulate
future flows. The rainfall–runoff ratio in the basin is projected to increase by 10% under
climate change, mainly due to an increase in the surface runoff attributable to an increase
in rainfall intensity and extremes.

The projected changes in the average soil moisture in the basin under the five cases
considered are presented in Figure 10. There will be a reduction in soil moisture in all
future cases. From February to May, the soil moisture decrease is highest while September
to November is the lowest. Both climate change and land-use change are found to be
essential drivers that affect future soil moisture, and their cumulative impacts are further
aggravating. Climate change predominantly alters the timing and volume of surface water
converting into soil moisture, while land-use change affects the timing and amount of
evapotranspiration from the basin.

Consequently, the projected increase in the other water balance components (evapo-
transpiration and runoff) will adversely affect soil moisture. It will have severe implications
in the basin as agriculture is the livelihood of the majority of the population in the basin.
Reduced soil moisture will make future agricultural droughts more frequent and severe,
affecting crop yields. It is especially crucial as only a fraction of the cultivation area has
irrigation facilities. Thus, the impacts of climate change and land-use change will rever-
berate in the livelihood and socioeconomic settings of the region unless the appropriate
adaptation measures are implemented.
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4. Conclusions

The hydrological model SWAT is calibrated and validated for the Mun River Basin
utilizing flow at nine gauging stations and satellite-based evapotranspiration and soil
moisture. It is found that the surface runoff in the basin is very low (about 22% of the
total flow), which is attributable to the soil type, slope, and the land use in the basin. The
rainfall–runoff ratio is also low in the basin (0.11), mainly due to high evapotranspiration
losses and low surface runoff generation. The southwest monsoon governs the monthly
streamflow, where low flows are recorded during March and April and the highest flow is
during October. In the near-future (2021–2050), PET will increase by 4.4%, while the ET
will increase between 0.2 and 1.3%. The land-use change scenario for the combination of
forest conservation and urban growth (CCU) has the highest increase in ET, mainly due to
an increase in the forest area and perennial and field crops. Similarly, under the climate
change scenario, surface runoff is projected to increase by 33% (13.2 mm), primarily because
of increased rainfall extremes and intensity. The land-use change scenario considering
CCU will also have an increased surface runoff by 49% (20 mm) by 2045 due to a projected
increase in the urban area in the near future by 55% from the current extent. Under climate
change, the water yield from the basin is expected to increase by 11%, while the land-use
change for BAU and CCU will decrease by 5 and 6%, respectively. Under the combined
drivers, the yields are expected to increase by 8% compared to the baseline.

Although significant efforts are made to calibrate and validate simulated flows, due
to a lack of observed data, ET and SM are calibrated using global products, which are
susceptible to inherited biases. Future projections can be more comprehensive, considering
multiple SSPs and land-use scenarios to capture the range of uncertainties. Moreover,
the study’s findings could be validated by replicating the study in other regions. As
intricately related, climate change is also affected by land-use change and vice versa.
The current study has not considered these dynamics of climate change and land-use
change while projecting future water balance. Despite these limitations, the study shows
the impacts of climate change will be higher than the land use in future streamflow,
although they have opposite effects. Our study shows that climate change and land-use
change will significantly affect soil moisture in the basin. This insight can be helpful for
agricultural water management. The projected decrease in soil moisture in the near-future
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can significantly impact the agricultural activities in the basin, where most people rely
on for their livelihood. Adaptation measures such as enhancing water use and various
soil moisture conserving practices would be beneficial. In addition, reduced soil moisture
will also have adverse impacts on the natural ecosystems by affecting plant growth, and
biodiversity. It can also make forest susceptible to pests and diseases and increases the
risk of wild fires. Similarly, the projected increase in surface runoff due to the expansion
of urban areas will also pose challenges in stormwater management in the future. The
study thus highlights that future policies should address climate change challenges and
land-use change.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/w15203672/s1. Figure S1. Climate change projections for the
near-future (2021–2050). The spatial pattern of the projected changes in (a) Tmax, (b) Tmin, and
(c) rainfall for CMIP6 –SSP5-8.5 using the multi-model average for the near-future period. Changes
are with respect to the baseline period. (Adopted from [48]). Figure S2. Land-use projections for the
basin. (a) Projections under the Business as usual (BAU) scenario for 2050 and (b) Projection under
the Combination of Forest Conservation and Urban Growth (CCU) scenario for 2050. (Adopted
from [56]). Table S1. Details of climate models from HighResMIPs of CMIP6 considered in the study.
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