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Abstract: Understanding the likely impacts of climate change (CC) and Land Use Land Cover (LULC)
on water resources (WR) is critical for a water basin’s mitigation. The present study intends to
quantify the impact of (CC) and (LULC) on the streamflow (SF) of the Parvara Mula Basin (PMB)
using SWAT. The SWAT model was calibrated and validated using the SWAT Calibration Uncertainty
Program (SWAT-CUP) for the two time periods (2003–2007 and 2013–2016) and (2008–2010 and
2017–2018), respectively. To evaluate the model’s performance, statistical matrices such as R2, NSE,
PBIAS, and RSR were computed for both the calibrated and validated periods. For both these
periods, the calibrated and validated results of the model were found to be very good. In this study,
three bias-corrected CMIP6 GCMs (ACCESS-CM2, BCC-CSM2-MR, and CanESM5) under three
scenarios (ssp245, ssp370, and ssp585) have been adopted by assuming no change in the existing
LULC (2018). The results obtained from the SWAT simulation at the end of the century show that
there will be an increase in streamflow (SF) by 44.75% to 53.72%, 45.80% to 77.31%, and 48.51% to
83.12% according to ACCESS-CM2, BCC-CSM2-MR, and CanESM5, respectively. A mean ensemble
model was created to determine the net change in streamflow under different scenarios for different
future time projections. The results obtained from the mean ensembled model also reveal an increase
in the SF for the near future (2020–2040), mid future (2041–2070), and far future (2071–2100) to be
64.19%, 47.33%, and 70.59%, respectively. Finally, based on the obtained results, it was concluded that
the CanESM5 model produces better results than the ACCESS-CM2 and BCC-CSM2-MR models. As a
result, the streamflow evaluated with this model can be used for the PMB’s future water management
strategies. Thus, this study’s findings may be helpful in developing water management strategies
and preventing the pessimistic effect of CC in the PMB.

Keywords: climate change; general circulation model; hydrological modelling; swat; streamflow

1. Introduction

Semi-arid areas are particularly vulnerable to human induced changes in the terrestrial
ecosystem and environment [1]. These areas are habitat to 15% of the world’s population,
who rely heavily on precipitation to supply their water needs for domestic, industrial, and
agricultural uses [2]. Ref. [1] suggests that between 1990 and 2004, the entire semi-arid
region rose by 7% globally. Food and water scarcity are forecast to occur in the dryland
regions as a result of climate change (CC) and land use land cover (LULC) shifting above
a critical level [3]. The global CO2 concentration is rising at an alarming rate right now.
As a result, since the start of the industrial revolution, the mean temperature has risen by
1 ◦C [4]. It is expected that global warming will continue to accelerate. Due to current
climate change, a rise in the occurrence of drought events is predicted [3]. In particular,
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in the dry land regions, it will place enormous strain on greenery area cover, surface
water properties, and agronomic production [5]. Arid or semi-arid regions cover over
35% of India’s land area, where 45% of the country’s population and livestock reside.
Water supplies in these areas are dependent on rainfall brought in by the Indian summer
monsoon, which provides almost 80% of unpolluted water resources. The climate and
LULC of Central India have changed noticeably in recent decades. These changes have
been identified as one of the primary causes of pre-monsoon precipitation failure due
to air pollution, climate change factors, sea levels rising, and temperatures rising, etc.,
with many area seasons also changing slowly [6]. As a result, the occurrence of water
scarcity rose by about half over the last two periods [7]. Groundwater levels have dropped
due to decreased precipitation. There has been a rise in risky rainwater incidents by 10–
30% and these are expected to continue [8]. These factors have had a significant impact
on local rainwater availability. Thus, it is critical to examine the joint effect of climate
change and LULC variations on the hydrological system in semi-arid river catchments
for better water resource management [9,10]. The availability of new water is a source of
apprehension for many people [11]. Climate factors such as changing rainfall patterns,
increasing hotness, lowest temperature, possible evapotranspiration, and river flow have an
impact on surface water resource planning and management [12]. Environment variation
has a major effect on unpolluted water accessibility and variability as weather excesses such
as heatwaves, droughts, and alterations in precipitation patterns become more common
as an outcome of worldwide warming [13]. According to recent world reports, climate
change is affecting the planet at an unprecedented rate. Rising temperatures, extreme
weather events, and rising sea levels are just a few of the consequences of a changing
climate. These changes are having a profound impact on land use, as the natural systems
that support our planet are being pushed to their limits. One of the key drivers of changes
in land use is agriculture. As temperatures rise, crops and livestock are struggling to
survive in their traditional habitats, and farmers are being forced to adapt their practices
to cope with changing conditions. This has led to a shift in the types of crops that are
being grown, as well as the areas where farming is taking place. Another factor that is
contributing to changes in land use is urbanization. As populations continue to grow, more
and more people are moving into cities, which are expanding into previously rural areas.
This has led to the destruction of natural habitats, as well as increased pollution and other
environmental problems [10,11,13,14].

The effect of changing climate is particularly felt by developing nations whose economies
depend heavily on rain feed agriculture [14]. As a huge part of India’s terrain is dry and
semi-arid and depends on precipitation, the consequences of climate change directly affect
the country’s economy. In order to incorporate various preventive measures, it is important
to comprehend how climate change may affect future streamflow (SF) changes. Using a
numerical hydrological model is the most accurate and thorough way to determine how
changing climate may affect the SF of a river basin. Nevertheless, the choice of hydrological
models depends on the individual and is influenced by factors such as data accessibility,
site-specific issues, cost, and model accuracy [15]. According to the literature, the Soil
Water Assessment Tool (SWAT) has been adopted by many researchers to determine the
climate change impact on SF of a river [16–18]. Several studies have been completed using
different climate scenarios and climate models to assess the combined effects of changing
climate and LULC on the SF of various river basins across the globe. For instance, Ref. [19]
used the Providing Regional Climates for Impacts Studies (PRECIS) weather and SWAT
model to investigate the influence of forthcoming weather changes in the Upper Sind
River Basin, India. They estimated that streamflow would rise by 16% and 93% in the
mid and far future, respectively. Ref. [20] discovered that climate change had a greater
impact on streamflow variability than LULC variation in the Brahmani-Baitarani basin
in India. Ref. [21] used the SWAT model to evaluate the synergistic influence of weather
patterns and LULC variation. They discovered that the RCP 4.5 scenario will result in a
50% rise in surface runoff, streamflow, and water supply in the Krishna River basin in India
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by the end of the century. Ref. [22] suggested the catchment’s LULC shift has increased
streamflow in the Narmada River basin. Ref. [23] found that a 1.7% reduction in rainfall
had a 7.8% impact on surface runoff in the Godavari basin. Ref. [24] assessed the predicted
impact of global warming in the Betwa River basin by utilising the CMIP5 scenario. They
discovered that streamflow is likely to rise by 4–29% and 12–48%, respectively, between
2040–2069 and 2070–2099. Most of the previous studies focused on single or at most two
GCMs for predicting the future projections of precipitation, temperature, and SF in the
basin. However, studies suggest that there is a significant level of uncertainty involved
in a particular GCM prediction [25,26]. Hence ensemble models are advised in order to
minimize such uncertainties [27]. In this study, in order to reduce uncertainty, a mean
ensembled model is developed to determine the change in streamflow under different
scenarios for different future time projections, i.e., near future (nf) (2020–2040), mid future
(mf) (2041–2070), and far future (ff) (2071–2100).

To our knowledge, such research has not been performed to understand the impact
of changing climate and LULC in the PMB. Over the past few decades, the PMB has
undergone a number of changes, including LULC changes, an increase in the occurrence of
extreme events, and a weakening of the summer monsoon rainfall [6,28,29]. Therefore, it
is critical to understand the impact of climate change and LULC on the PMB under both
the current and future climatic scenarios. Therefore, the main objective of this research
is to create a strong foundation for long-term water resource forecasting and policy in
the PMB by understanding how streamflow responds to climate change and LULC at a
representative watershed size. The specific objectives are: (1) developing, calibrating, and
validating the SWAT model for simulating the SF of the PMB; (2) investigating the effect
of climate change on precipitation and temperature in the PMB based on multiple GCMs
(ACCESS-CM2, BCC-CSM2-MR, and CanESM5) under different scenarios (ssp245, ssp370,
and ssp585); (3) quantifying the potential impact of changing climate on the SF of the
PMB; and (4) developing a mean ensemble model to determine the net change in SF under
different scenarios for different future time projections, i.e., nf (2020–2040), mf (2041–2070),
and ff (2071–2100). The findings of this study can be applied to long-term planning and
policymaking, particularly in the management of water resources.

2. Study Area and Data Collection
2.1. Study Area

The PMB, which is situated in the Ahmednagar district of Maharashtra, India, was
carefully chosen as the study area. The Pravara and the Mula are two independent Godavari
tributaries. At an altitude of approximately 1295.4 metres above sea level, the Pravara
River begins somewhat on the eastern side of the Sahyadri mountains, between Kulung
and Ratangad. The Mula River is a main tributary of the Pravara River, which arises at a
height of 1422 metres above MSL on the eastern edge of Harishchandragad.

The catchment size of the PMB is 5800 km2 and is entirely in the state of Maharashtra,
India. The basin serves the entire Ahmednagar district, which has a population of about
412,000 people. The PMB is located between 73◦38′09.7312′′ and 74◦50′34.9810′′ E longi-
tudes and 19◦02′23.1340′′ and 19◦45′18.9745′′ N latitudes (Figure 1). It descends east from
the Western Ghats and varies in elevation from 401 to 1596 metres above MSL. The precipi-
tation increases from east to west, and it receives the majority of its precipitation during the
southwest monsoon. It has an arid to semiarid climate, with average precipitation ranging
between 500 and 1200 mm. In the basin, the monthly average temperature ranges from
14.38 ◦C to 38.60 ◦C. Figure 1 illustrates the location of the study area.
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Figure 1. Location of the study area.

2.2. Data Collection
2.2.1. Hydro-Meteorological Data

Hydro-meteorological data such as rainfall, temperature, and discharge, along with
the digital elevation model (DEM), soil map, slope map, and LULC map, form the key
inputs for the SWAT model. Daily rainfall and temperature data were acquired for a
29-year period, from 1990 to 2018, from the India Meteorological Department (IMD). Daily
discharge data for the gauging site Newasa, which is the outlet of the study area, for the
same period of 29 years, from 1990 to 2018, has been obtained. Table 1 shows the resolution
and source for each data set that has been used for model setup in SWAT.

Table 1. Data Resolution and Source.

Data Resolution Source
DEM 30 m https://earthexplorer.usgs.gov/ (accessed on 1 March 2023)

Soil Map 1000 m https://data.apps.fao.org/map/catalog/srv/eng/catalog.search (accessed on 1 March 2023)
Slope Map 30 m https://earthexplorer.usgs.gov/ (accessed on 1 March 2023)

LULC 30 m https://earthexplorer.usgs.gov/ (accessed on 1 March 2023)
Rainfall 0.25 m India Meteorological Department (IMD)

Temperature 1◦ India Meteorological Department (IMD)
Discharge - Central water Commission (CWC)–Krishna Godavari Basin Organization

2.2.2. GCM Data

CMIP6-GCM data were used for analysing the future SF for the period 2020–2100.
For India, 13 GCMs are readily accessible at a resolution of 0.25 m × 0.25 m and are
bias-corrected [30]. For the PMB, bias-corrected daily precipitation and temperature data
were acquired from (https://zenodo.org/record/3874046#.YOQWg0kzZPa, accessed on
1 March 2023).

3. Methodology

The goal of this study is to assess the effect that changing climate has on the SF of the
PMB. Since hydrology is a complex and uncertain process, models with various scenarios

https://earthexplorer.usgs.gov/
https://data.apps.fao.org/map/catalog/srv/eng/catalog.search
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://zenodo.org/record/3874046#.YOQWg0kzZPa
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have been set up to assess the SWAT model’s appropriateness. The probable impact of
climate change on hydrology is analysed in three different time horizons: nf (2020–2040),
mf (2041–2070), and ff (2071–2100). Figure 2 illustrates the methodology used in this study.
The following steps should be followed in order to achieve the set objectives:

• Collect and sort meteorological and hydrological data.
• Preparation of input maps such as DEM, soil, slope, and LULC.
• Watershed delineation using DEM involves fixing the basin outlet and setting a thresh-

old area.
• HRU generation by overlaying the LULC, soil, and slope maps.
• Setting up the SWAT model with the input data.
• Evaluating the model and obtaining the output data.
• Calibrating the model using the SUFI-2 algorithm by finding the sensitive parameter.
• Checking the model’s performance for the calibration period; if okay, validating the

model, or else adjusting the parameters again.
• Validation of the model under the fitted parameter values obtained during the calibration.
• Updating the SWAT model with future climatic data.
• Simulating the model with the future climatic data for impact assessment.
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Figure 2. Methodological Flowchart.

3.1. SWAT Model Setup

The PMB SWAT model simulates the SF at the rivers. The SWAT is a semi-distributed
model which divides the catchment into a number of hydrological response units (HRUs)
based on the similarity of the soil, LULC, and slope. It calculates surface runoff using
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the Soil Conservation Services (SCS) curve number method [31]. Lastly, it resolves the
water balance equation (Equation (1)) to calculate the various hydrological processes in
accordance with this formula:

SWt = SWo + ∑t
i=1(Rday−QSurf − ETi−WSeep − Qgw) (1)

where:
SWt = Final Soil water content in (mm).
SWo = Initial Soil water content in (mm).
t = Time in days.
Rday = Precipitation in (mm).
QSurf = Surface runoff in (mm).
ETi = Evapotranspiration in (mm).
WSeep = Percolation in (mm).
Qgw = Return flow in (mm).
SWAT uses meteorological data along with elevation, soil, and LULC as the input data.

The model uses a soil map, a slope map, and a LULC map for the development of HRUs.
The model was set up for two distinct time periods: 2000–2010 and 2011–2018. For the
simulation of the years 2000–2010 and 2011–2018, respectively, we used the LULC map
for the years 1990 and 2018 as a baseline. For both models, we selected the first two years,
2000–2010 and 2011–2018, as a warm-up period. The model is then executed to simulate SF.

3.1.1. Watershed Delineation

In this study, the Arc SWAT 2012 version was adopted for simulations. A DEM with a
30 m resolution was adopted to delineate the watershed. The DEM was used to study the
drainage patterns and calculate sub basin features. The watershed delineation of the PMB
has generated five sub basins, as shown in Figure 3a. In the Figure 3a, the purple colour
line divides the basin into five sub basins, the blue colour line represents the river reach,
and the black colour line represents the watershed boundary of the PMB.
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3.1.2. Digital Elevation Model (DEM)

A DEM, which describes the elevation of every point in a given area at a definite
spatial pixel size, was used to characterise terrain. A 30 m × 30 m resolution DEM was
downloaded from the USGS earth explorer website. The DEM was used to represent the
basin and examine the land surface regions, and it was also used to extract the stream
network properties. Before extracting data, the DEM was projected to a coordinate system
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(WGS 1984 UTM Zone 43N). As seen in Figure 3b, the elevation values of the PMB range
from 465 m to 1596 m.

3.1.3. Slope Map

The terrain’s slope has an impact on SF and infiltration. The flow increases with slope
steepness. The slope, expressed as a percentage rise, ranges from 0% to 73.33%. Depending on
the slope value, the slope map of the research area was classified into three groups, as shown in
Figure 3c. DEM was used to create the study area’s slope map (30 m × 30 m resolution).

3.1.4. Soil Map

The global soil map is provided by the Food and Agriculture Organization (FAO) on
a scale of 1:5,000,000. Figure 3d illustrates the soil map of the study area. Details of the
hydrologic group and type of soil are listed in Table S1.

3.1.5. Land Use Land Cover

The satellite images of Landsat-8 obtained from the USGS Earth Explorer website were
taken for LULC classification. The study area of the PMB was divided into five different
classes: water bodies, built-up areas, vegetation land, agricultural land, and barren land. In
ArcGIS, supervised classification of maximum likelihood was used to create the LULC map
for the years 2010 and 2018, which are shown below in Figure 3e,f. Each LULC class area
has been computed and listed in Table 2.

Table 2. Representing areas for each class of LULC (2010) and LULC (2018).

LULC (2010) LULC (2018)
Sr. No Class Area (km2) % Area Sr. No Class Area (km2) % Area

1 Water Bodies 32.42 0.97 1 Water Bodies 66.56 1.19
2 Vegetation 125.19 2.25 2 Vegetation 16.66 0.30
3 Agricultural Land 1895.73 34 3 Agricultural Land 2046.46 36.70
4 Built-up Area 165.81 2.97 4 Built-up Area 554.64 9.95
5 Barren land 3355.97 60.19 5 Barren land 2890.78 51.85

3.1.6. Climate Data

For the analysis of future SF, CMIP6–GCM data were utilized. Out of the thirteen
readily available GCMs, three were selected for the PMB based on the literature [32,33].
Furthermore, three scenarios were utilized, which were SSP245, SSP370, and SSP585. The
GCMs used in this study are presented along with their sources in Table 3. The details
about the scenarios used in this study are explained in Table S2.

Table 3. GCMs and their sources.

Sr. No GCM Source
1 ACCESS-CM2 Australian Community Climate and Earth System Simulator Coupled Model
2 BCC-CSM2-MR Beijing Climate Centre Climate System Model
3 CanESM5 Canadian Earth System Model

3.1.7. Hydrologic Response Unit (HRU) Generation

The HRU represents all surface features, including LULC, soil, and slope, as one
unified group. If the surface properties are studied individually, the extent of the model’s
complexity will increase. Therefore, it is desirable to merge all the attributes into a cohesive
unit that has a lumped value. In the present study, the watershed was delineated with a
threshold area of about 13,000 ha, which divided the basin into five sub basins. It was than
overlain by LULC, soil, and slope, with each having a threshold value of 5%, respectively.
As a result of which a total of 194 (HRUs) were generated. The LULC classification in terms
of percentage area is illustrated in Tables 3 and 4. Since it is hard to predict the precise
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future LULC, therefore for the present study to analyse the climate change impact, LULC
was assumed to be unaffected for the future.

3.2. Model Simulation, Calibration, and Validation
3.2.1. SWAT Simulation

SWAT simulation enables us to prepare the input of the model and produce the result.
The different hydrological elements of the basin can be simulated by running numerical
simulation. The surface SF was generated as a result of the PMB simulation, which was
carried out using ArcSWAT version 10.19.

3.2.2. SWAT Calibration and Uncertainty Analysis Program (SWAT-CUP)

SWAT calibration, validation, sensitivity, and uncertainty analysis were performed
using SWAT-CUP. It is an open database program. It simplifies calibration and validation
by reducing the time required for each process. It is assisted with graph-generating
functionality. The SWAT-CUP is the bridge between SUFI-2 and SWAT.

3.2.3. Sensitivity Analysis

The change in model behaviour in relation to given input parameters is described as
sensitivity analysis (SA). For model calibration and validation, seven parameters with initial
ranges were chosen for SF simulation using the literature and the SWAT user guide. After
considering the potential parameter ranges, SWAT-CUP utilised the sequential uncertainty
fitting version two (SUFI-2) algorithm to obtain the most desirable parameters within
95 percent uncertainty ranges. The SA of the parameters can be achieved with the help of
local sensitivity (LSA) or global sensitivity (GSA). In the present study, GSA was adopted
to identify the most sensitive parameter for calibration and validation. The SA of the
parameters was determined based on statistical measurements such as p values and t tests.
The parameter’s sensitivity is directly proportional to the value of the t test and inversely
proportional to the p value [34].

3.2.4. Model Calibration

Model calibration helps in determining which parameterized model is suitable for a
certain set of discrete variables and lowers the uncertainty of forecasts. The parameters are
adjusted within their acceptable ranges either by substitution, addition, or multiplication of
the original values. The parameters were changed till the best simulation associated with
observation was found [35].

3.2.5. Model Validation

Validation is the process of comparing calibrated parameters to objective datasets
without making any changes to the values throughout the calibration process. The method
of proposing that the model delivers suitably correct estimates at a specific location is
known as “model validation” [36].

3.3. Model Performance Criteria

The results obtained from the calibration and validation processes are evaluated
using different statistical matrices. In the present study, we evaluated the model’s perfor-
mance using a number of statistical matrices such as R2, NSE, PBIAS, RSR, P factor, and
R factor, respectively [37,38]. Table 4 shows the range of performance ratings based on
statistical metrics.

• Coefficient of determination (R2): (R2) calculates the correlation value between mea-
sured and estimated values by comparing the combined scattering of the measured
and estimated series to the single scattering. Its value ranges between zero and one.
The correlation between the observed and estimated SF can be understood with the
value of (R2). Low correlation is described with a value close to zero, whereas a high
correlation is indicated by a value to close to one.
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R2 =
[∑n

i=1
(
Qi− Q̆

)
·
(
Si− S̆

)
]
2√

∑n
i=1
(
Qi− Q̆

)2 ·∑n
i=1
(
Si− S̆

)2
(2)

• Nash–Sutcliffe efficiency (NSE): It is among the most extensively used hydrological
model statistical measures. Its value varies from infinity to one, with one representing
a perfect model. As the value approaches zero, the performance of the model degrades.

NSE = 1−
[

∑n
i−=1 (Qi− Si)2

∑n
i=1 (Qi− Q̌)

2

]
(3)

• Percent bias (PBIAS): PBIAS shows the mean tendency of simulated outcome to be
smaller or larger than the observed data. Its optimal value is zero. A positive PBIAS
value means the model is an underprediction of the results, whereas a negative value
suggests overprediction.

PBIAS =
∑n

i=1(Qi− Si)
∑n

i=1 Qi
× 100 (4)

• Ratio of root-mean-square error to measured standard deviation (RSR): RSR is selected
as a complimentary statistical metric to RMSE. The optimal value of RSR is zero.
However, the higher the RSR, the lower the performance of the model.

RSR =

√
∑n

i=1 (Qi− Si)2/n√
∑n

i=1 (Qi− Q̆)
2/n

(5)

where Qi = observed discharge,
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= Mean simulated discharge.
The Soil and Water Assessment Tool (SWAT) uses various factors to simulate the

hydrological processes that occur in a watershed, including the surface runoff generation
factor (p) and the routing factor (r). Here are some common methods used to estimate
these factors:

• Estimating p-factor: Curve Number (CN) Method: This method is based on the
relationship between the antecedent moisture condition and the amount of rainfall that
becomes runoff. The CN value is calculated using soil type, land use, and hydrologic
soil group. Once the CN value is obtained, it is used to estimate the surface runoff
using the SCS (Soil Conservation Service) equation.

• Estimating r-factor: Muskingum-Cunge Method: This method is based on the principle
of flood routing and uses the Muskingum-Cunge equation to estimate the travel time
and attenuation of flood waves. The equation requires input parameters such as
channel length, channel slope, and channel roughness.

Table 4. Recommended performance of statistical metrics [39].

Performance RSR NSE PBIAS
Very Good 0 ≤ RSR ≤ 0.5 0.75 < NSE ≤ 1 PBIAS < ± 10

Good 0.5 ≤ RSR ≤ 0.6 0.65 < NSE ≤ 0.75 ± 10 ≤ PBIAS < ± 15
Satisfactory 0.6 ≤ RSR ≤ 0.7 0.50 < NSE ≤ 0.65 ± 15 ≤ PBIAS < ± 25

Unsatisfactory RSR > 0.7 NSE ≤ 0.50 PBIAS ≥ ± 25

4. Results and Discussion

In this research, we are understanding the climate change and LULC variation effect on
streamflow in current and future scenarios under CMIP6 climate scenarios for the Pravara
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Mula Basin, India. Therefore, 29 years of data from 1990 to 2018 were included as input data
in the SWAT model with DEM, LULC, and slope. The main aim of this study is to find out
the LULC impact on stream flow for sustainable development and planning purposes in the
basin area. Currently, many climate challenges are impacting the LULC, agriculture, and
water resource management. This model can be helpful to understand future information
using the SWAT model. The details of the results are discussed in sections below.

4.1. LULC Accuracy Assessment Using Kappa Analysis

Kappa analysis is a distinct analysis of variance used in accuracy evaluations. Kappa
analysis produces a Kappa Coefficient, which is a way of measuring agreement or accuracy.
A Kappa coefficient of one indicates almost perfect agreement, while a zero indicates
poor agreement. Table 5 illustrates the kappa coefficients along with their strength of
agreement [40].

Table 5. Rating criteria as per kappa analysis.

Sr. No Kappa Coefficient Agreement
1 <0 Poor
2 0–0.2 Slight
3 0.21–0.4 Fair
4 0.41–0.6 Moderate
5 0.61–0.8 Substantial
6 0.81–1.0 Almost Perfect

Accuracy Assessment of LULC Map (2010) and LULC Map (2018)

Table 6 reveals the accuracy assessment performed using kappa analysis for the years
2010 and 2018. In kappa analysis, the overall accuracy of the LULC map and kappa
coefficient (T) are determined.

Table 6. Accuracy assessment using kappa analysis for LULC map (2010) and LULC (2018), respectively.

LULC (2010) Barren Land Water Bodies Built-Up
Area Vegetation Agricultural

Land Total (User)

Barren Land 18 0 1 1 0 20
Water bodies 1 18 0 0 1 20
Built-Up Area 6 0 10 4 0 20

Vegetation 2 0 0 16 2 20
Agricultural Land 0 0 0 4 16 20
Total (producer) 27 18 11 25 19 100

LULU (2018) Barren land Water bodies Built-Up
Area Vegetation Agricultural

Land Total (user)

Barren Land 19 0 0 1 0 20
Water bodies 1 19 0 0 0 20
Built-Up Area 5 0 11 4 0 20

Vegetation 2 0 0 18 0 20
Agricultural Land 0 0 0 4 16 20
Total (producer) 27 19 11 27 16 100

The year of 2010 LULC classes are Barren Land, Water Bodies, Built-Up Area, Veg-
etation, and Agricultural Land. The table is divided into two sections: the user section
and the producer section. In the user section, the values represent the actual land cover,
while in the producer section, the values represent the classified land cover. The total for
each column is 20, representing the percentage of the land that falls into that category.
For ex-ample, in the user section, 18% of the land was classified as Barren Land, while in
the producer section, 27% of the land was classified as Barren Land. Kappa analysis is
a statistical method used to assess the agreement between the actual and classified land
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cover. The value of kappa ranges from −1 to 1, with 1 indicating perfect agreement and
0 indicating random agreement.

Overall accuracy = Total number o f correctly classi f ied pixels
Total number o f re f erence pixels × 100

= 80/100× 100 = 80%
(6)

Kappa coefficient (T) = (TS∗TCS)−∑(column total×row total)
TS2−∑(column total×row total) × 100

= 100×80−(27×20+18×20+11×20+25×20+19×20)
100×100−(27×20+18×20+11×20+25×20+19×20) × 100

= 75% or 0.75

(7)

The Kappa Coefficient (T) obtained above using Equation (7) is 0.75, which is of
substantial agreement as per the rating shown in Table 5. As a result, the LULC prepared
for the year 2010 in this study is correct and can be used for further analysis.

In the LULC classes 2018, the values represent the actual land cover, while in the
producer section, the values represent the classified land cover. The total for each column
is 20, representing the percentage of the land that falls into that category. For example,
in the user section, 19% of the land was classified as Barren Land, while in the producer
section, 27% of the land was classified as Barren Land. Table 6 shows that in 2018, there
was no Barren Land in the user section, while in the producer section, 19% of the land was
classified as Barren Land. Additionally, the percentage of Built-Up Area increased from
10% in 2010 to 11% in 2018.

Overall accuracy = Total number o f correctly classi f ied pixels
Total number o f re f erence pixels × 100

= 83/100× 100 = 83%

Kappa coefficient (T) = (TS×TCS)−∑(column total×row total)
TS2−∑(column total×row total) × 100

= 100×83−(27×20+19×20+11×20+27×20+16×20)
100×100−(27×20+19×20+11×20+27×20+16×20)

= 78.75% or 0.7875

The Kappa Coefficient (T) obtained above using Equation (7) is 0.7875, which is of
substantial agreement as per the rating shown in Table 5. As a result, the LULC prepared
for the year 2018 in this study is correct and can be used for further analysis.

4.2. Sensitivity Analysis Using SUFI-2

To determine the optimum value for all the parameters, SUFI-2 algorithm was em-
ployed. In comparison with other methods, it requires a smaller number of simulations.
For the calibration, it generates “n” numbers of combinations of parameters by using the
Latin hypercube method. The process is runed until an optimal value is found. It describes
the uncertainty with the help of the p and r factors [41]. The p factor is 95PPU, which is
determined by 2.5% and 97.5% of an output variance. Whereas r factor is the ratio of mean
thickness and standard deviation. Therefore, the SUFI-2 algorithm works on maximising
these two factors to get the optimal parameter.

There are numerous stream parameters, but it is not necessary that each one of them be
sensitive. As a result, prior to actually using it for calibration and validation, it was essential
to recognize the utmost sensitive parameters. In this study, GSA is adopted for SA, which
is performed by plotting dotty plots. If plots show a trend, it suggests high sensitivity, and
if there is scattering, it means low sensitivity. SA is better understood with a t test, and the
sensitivity of the parameter is directly proportional to the t test value [40]. To determine
the specific ranges of the parameters, 1500 combinations of the parameters were calculated
for each iteration. With the help of six iterations, we were able to determine the best range
and optimal parameter. The validation process was completed by adopting these best
ranges. There were in total seven parameters from the SWAT processes that were accounted
for and put into simulations. These seven parameters are Curve number (R__CN2.mgt),
Groundwater “revap” coefficient (V__GW_REVAP.gw), Soil evaporation compensation
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factor (V__ESCO.hru), Manning′s n value for the main channel (V__CH_N2.rte), Surface
runoff lag time (R__SURLAG.bsn), Maximum canopy storage (R__CANMX.hru), and soil
available water content (R__SOL_AWC(..).sol). Tables S3 and S4 show the fitted, minimum,
and maximum values of the parameters. The parameter having the highest t stat and the
lowest p value is the most sensitive. Hence, from Table 7, it can be seen that the parameters
that are the most sensitive are CN2 and ESCO.

Table 7. Sensitivity Parameters (For the period 2003–2010) and (For the period 2013–2018).

Period (2003–2010) Period (2013–2018)
Sr. No Parameter t Stat p-Value Sr. No Parameter t Stat p-Value

1 R__CN2.mgt 27.81852 0.000000 1 R__CN2.mgt 17.81852 0.000000
2 V__GW_REVAP.gw −1.11035 0.267024 2 V__GW_REVAP.gw 0.595071 0.551886
3 V__ESCO.hru 8.851582 0.000000 3 V__ESCO.hru 3.944408 0.000083
4 V__CH_N2.rte −2.73454 0.006320 4 V__CH_N2.rte 0.416615 0.677019
5 R__SURLAG.bsn 0.437570 0.661760 5 R__SURLAG.bsn 0.168647 0.866096
6 R__CANMX.hru 0.249366 0.803111 6 R__CANMX.hru 0.615628 0.538233
7 R__SOL_AWC(..).sol 0.217374 0.827946 7 R__SOL_AWC(..).sol 0.052711 0.957968

4.3. Model Calibration

Monthly model outputs were prepared for the period from 2000–2018 and were
divided into two decades, i.e., 2000–2010 and 2011–2018. The model calibration was
completed for both decades. For the first decade, 2000–2002 was set up as the warm-up
period, whereas the calibration period was set as 2003–2007. Similarly, for the second
decade, 2011–2012 was set as a warm-up period and 2013–2016 as the calibration period.
The statistical metrics such as R2, NSE, PBIAS, p-factor and r-factor were found for both
of the calibrated periods. The obtained values of all the statistical metrics for the cali-
bration period of 2003–2007 are (R2 = 0.98), (NSE = 0.98), (PBIAS = 4.3), (RSR = 0.13),
(p-factor = 0.72), and (r-factor = 0.19). Similarly, for the calibration period of 2013–2016,
the values are (R2 = 0.98), (NSE = 0.98), (PBIAS = 1.1), (RSR = 0.13), (p-factor = 0.71),
and (r-factor = 0.44). From the results, it can be assessed that the model performed very
well for both of the calibration periods. This result agrees with similar work conducted
using SWAT [42–45]. Figure 4a,b illustrates the monthly calibrated SF. Table 8 explains the
performance of the calibrated model.
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Table 8. Performance analysis of the model during the calibration and validation period.

Sr. No Parameter Calibration
(2003–2007)

Validation
(2008–2010)

Calibration
(2013–2016)

Validation
(2017–2018)

1 R2 0.98 0.98 0.98 0.81
2 NSE 0.98 0.98 0.98 0.79
3 PBIAS 4.3 4.1 1.1 16
4 RSR 0.13 0.15 0.13 0.46
5 p-factor 0.72 0.64 0.71 0.5
6 r-factor 0.19 0.21 0.44 0.16

4.4. Model Validation

The validation follows the same steps as the calibration. The monthly step model was
prepared for the period 2000–2018 and was divided into two decades, i.e., 2000–2010 and
2011–2018. The model validation was completed for both decades. For the first decade,
the validation period was set at 2008–2010. Similarly, for the second decade, 2017–2018
was the validating period. The obtained values of all the statistical metrics for the val-
idation period of 2008–2010 are (R2 = 0.98), (NSE = 0.98), (PBIAS = 4.1), (RSR = 0.15),
(p-factor = 0.64), and (r-factor = 0.21). Similarly, for the validation period of 2013–2016,
the values are (R2 = 0.81), (NSE = 0.79), (PBIAS = 16), (RSR = 0.46), (p-factor = 0.5), and
(r-factor = 0.16). From the results, it can be concluded that the model performed very good
for both of the validation periods. This result agrees with similar work conducted using
SWAT [42–45]. Figure 5a,b illustrate the monthly validated streamflow. Table 8 explains
the performance of the validated model.
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The R2 and NSE values of the model were consistently high across all time periods,
indicating a good fit of the model to the observed data. However, the PBIAS values varied
significantly across different phases, with the lowest value of 1.1 observed in the Calibra-
tion (2013–2016) period and the highest value of 16 in the Validation (2017–2018) period,
indicating a decrease in model performance. The RSR values remained low across all
periods, indicating that the model’s performance was consistent in both calibration and
validation phases. However, the p-factor values decreased from 0.72 in the Calibration
(2003–2007) period to 0.5 in the Validation (2017–2018) period, indicating reduced relia-
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bility of the model predictions. The r-factor values increased from 0.19 in the Calibration
(2003–2007) period to 0.44 in the Calibration (2013–2016) period, indicating increased un-
certainty associated with the model parameters. However, the r-factor value decreased to
0.16 in the Validation (2017–2018) period, indicating a reduction in the model’s uncertainty.
The results of the model performed well in the calibration and validation phases, as indi-
cated by high R2 and NSE values and low RSR values. However, there were significant
differences in the PBIAS values across different periods, indicating that the model’s perfor-
mance varied over time. Additionally, the reliability of the model predictions decreased
over time, as indicated by decreasing p-factor values and increasing r-factor values.

Figure 6a,b compares monthly observed and simulated SF hydrographs along with
precipitation bar graphs, to help with the efficient understanding of the simulated results.
These results clearly show that the simulated streamflow responded efficiently to the pre-
cipitation events. These figures also show that there is a similar trend between the monthly
streamflow hydrographs that were observed and those that were simulated, although the
model was unable to capture the entire shape of the streamflow hydrographs over the
validation period (2017–2018). Hydrographs underpredict their peaks and recession limbs.
The inadequacy in the matching of the peak flows could be associated with the limitations
of rain gauges used to capture rainfall.
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4.5. Projected Changes in Precipitation and Temperature for the Future Period (2020–2100)

The effect of climate change on precipitation and temperature were analysed using
three GCMs (ACCESS-CM2, BCC-CSM2-MR, and CanESM5) from CMIP6 under three
different scenarios (ssp245, ssp370, and ssp585) for nf (2020–2040), mf (2041–2070), and ff
(2071–2100) in comparison to the baseline period (1990–2018). Figure 7 shows the typical
pattern of monthly average precipitation projections for three GCMs under three scenarios
for three future time horizons, respectively. Under all of the scenarios, it is expected that
the projected precipitation for the three GCMs will increase. Precipitation is projected to
increase more than in other months during the monsoon season (June to September). For
ACCESS-CM2, average annual precipitation is likely to increase by 9.23%, 19.30%, and
25.80% under ssp245, ssp370, and sp585, respectively. Similar increases in average annual
precipitation projection are seen for BCC-CSM2-MR (12.09%, 17.61%, and 20.12%) and
CanESM5 (11.85%, 23.29%, and 30.83%) under ssp245, ssp370, and ssp585, respectively.
Table 9 reveals % increase in average annual precipitation for three GCMs under three
scenarios for three future time horizons, respectively.

Table 9. % Increase in average annual precipitation, average annual temperature, and average annual
streamflow for three GCMs under three different scenarios for nf (2020–2040), mf (2041–2070), and ff
(2071–2100) respectively.

Average Annual Precipitation
GCM Near Future Mid Future Far Future

ssp245 ssp370 ssp585 ssp245 ssp370 ssp585 ssp245 ssp370 ssp585
ACCESS-CM2 8.19% 19.24% 21.52% 14.57% 22.27% 27.00% 14.95% 24.36% 30.00%

BCC-CSM2-MR 8.04% 18.71% 22.03% 12.09% 20.73% 26.57% 15.47% 23.41% 27.37%
CanESM5 9.80% 20.52% 22.32% 12.79% 24.37% 27.79% 16.67% 27.01% 33.30%

Average Annual Temperature
GCM Near Future Mid Future Far Future

ssp245 ssp370 ssp585 ssp245 ssp370 ssp585 ssp245 ssp370 ssp585
ACCESS-CM2 0.57% 5.32% 7.48% 0.79% 5.14% 11.41% 1.28% 6.56% 14.86%

BCC-CSM2-MR 1.08% 3.53% 5.71% 1.59% 4.26% 7.09% 2.84% 6.02% 9.56%
CanESM5 0.51% 2.35% 4.53% 0.70% 3.32% 6.97% 0.82% 4.89% 9.39%

Average Annual Streamflow
GCM Near Future Mid Future Far Future

ssp245 ssp370 ssp585 ssp245 ssp370 ssp585 ssp245 ssp370 ssp585
ACCESS-CM2 34.29% 57.38% 32.73% 40.02% 33.90% 70.30% 51.28% 46.30% 71.92%

BCC-CSM2-MR 64.01% 33.70% 41.58% 67.13% 32.05% 30.41% 71.32% 68.01% 79.49%
CanESM5 69.88% 71.13% 77.62% 82.18% 72.05% 72.76% 64.62% 60.71% 71.34%

Ensemble Mean Model 56.04% 59.65% 68.15% 63.17% 45.39% 57.84% 72.21% 64.13% 80.74%

Figure 8 shows the typical pattern of monthly average temperature projections for
three GCMs under three scenarios for three future time horizons, respectively. As can
be seen, under all of the scenarios for the three different time horizons, it is expected
that the projected temperature for the three GCMs will increase. During the summer
(March to May), temperatures are projected to rise higher than in other months. It is
evident that the temperature will have a considerable impact, particularly in months
with lower precipitation. For ACCESS-CM2, the average annual temperature is likely to
increase by 4.46%, 5.78%, and 7.57% under ssp245, ssp370, and sp585, respectively. Similar
increases in average annual temperature projection are seen for BCC-CSM2-MR (3.44%,
4.31%, and 6.14%) and CanESM5 (2.33%, 3.66%, and 5.03%) under ssp245, ssp370, and
sp585, respectively. Table 9 reveals % increase in average annual temperature for three
GCMs under three scenarios for three future time horizons, respectively. The findings
unequivocally reveal that the temperature under ssp585 is comparatively higher than it
was under ssp245 and ssp370, highlighting that ssp585 represents higher vulnerability to
changing climate.
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Figure 7. Monthly average precipitation projections for three GCMs (ACCESS-CM2, BCC-CSM2-MR,
and CanESM5) under three different scenarios (ssp245, ssp370, and ssp585) for nf (2020–2040), mf
(2041–2070), and ff (2071–2100), respectively.

In order to attain a thorough understanding of how precipitation and temperature
are projected to change over time in the PMB, the results of this study were evaluated by
comparing them with a handful of other studies within the same and similar basins. The
study’s findings were found to be consistent with those of [28], who predicted increases in
rainfall and maximum temperature for future periods under three scenarios (A1B, A2, and
B2) based on two models, CGCM3 and HadCM3. Similar findings were also identified in a
number of other studies [32,46,47].
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Figure 8. Monthly average temperature projections for three GCMs (ACCESS-CM2, BCC-CSM2-MR,
and CanESM5) under three different scenarios (ssp245, ssp370, and ssp585) for nf (2020–2040), mf
(2041–2070), and ff (2071–2100), respectively.

4.6. Projected Changes in Streamflow for the Future Period (2020–2100)

The calibrated SWAT model was employed to predict the probable impact of CC on
the SF in three future time periods: nf (2020–2040), mf (2041–2070), and ff (2071–2100).
Three GCMs (ACCESS-CM2, BCC-CSM2-MR, and CanESM5) from CMIP6 under three
different scenarios (ssp245, ssp370, and ssp585) were employed.

4.6.1. Projected Changes in Streamflow under ACCESS-CM2

For predicting the future SF, we have kept the LULC of 2018 constant and adopted
future precipitation and temperature from ACCESS-CM2 under the scenarios ssp245,
ssp370, and ssp585. The simulated SF for the baseline period (2000–2018) is considered
a reference. Figure 9 illustrates the change in monthly average streamflow (m3/sec) for
three different time horizons in three scenarios under ACCESS-CM2. The annual average
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SF is expected to increase under all of the three scenarios ssp45, ssp370, and ssp585 by
50.84%, 44.75%, and 53.72%, respectively. For the ssp245 scenario, the runoff is expected
to increase by 34.29% for nf (2020–2040), 40.02% for mf (2041–2070), and 51.28% for ff
(2071–2100). In a similar manner, an expected increase in SF is observed for the ssp370 and
ssp585 scenarios under different time horizons. For the ssp370 scenario, the SF is expected
to increase by 57.38% for nf (2020–2040), 33.90% for mf (2041–2070), and 46.34% for ff
(2071–2100). Furthermore, for ssp585, the SF is seen to show a probable increase of 32.73%
for nf (2020–2040), 70.30% for mf (2041–2070), and 71.92% for ff (2071–2100). Table 9 reveals
the % increase in average annual streamflow for three GCMs under three different scenarios
for three different time horizons. This result is in agreement with similar work conducted
on similar basins [48–51].
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4.6.2. Projected Changes in Streamflow under BCC-CSM2-MR

The future projection of SF was calculated using precipitation and temperature from
BCC-CSM2-MR under the scenarios ssp245, ssp370, and ssp585 and keeping the LULC of
2018 constant. Figure 9 illustrates changes in monthly average streamflow (m3/sec) for
different future time horizons for three scenarios under BCC-CSM2-MR. The SF is expected
to increase under all three scenarios, i.e., ssp245, ssp370, and ssp585 by 67.88%, 45.60%,
and 77.31%, respectively. For the ssp245 scenario, the SF is expected to increase by 64.01%
for nf (2020–2040), 67.13% for mf (2041–2070), and 71.32% for ff (2071–2100). In a similar
manner, an expected increase in SF is observed for the ssp370 and ssp585 scenarios under
different time horizons. For the ssp370 scenario, the SF is expected to increase by 33.70%
for nf (2020–2040), 32.05% for mf (2041–2070), and 68.01% for ff (2071–2100). Furthermore,
for ssp585, the SF is seen to show a probable increase of 41.58% for nf (2020–2040), 30.41%
for mf (2041–2070), and 79.49% for ff (2071–2100).

4.6.3. Projected Changes in Streamflow under CanESM5

For predicting the future SF, we have kept the LULC of 2018 constant and adopted
future precipitation and temperature from CanESM5 under the scenarios ssp245, ssp370,
and ssp585. Figure 9 illustrates the change in monthly average streamflow (m3/sec) for
different future time horizons for three scenarios under CanESM5. The SF is expected to
increase under all three scenarios, i.e., ssp245, ssp370, and ssp585 by 48.51%, 67.96%, and
83.12%, respectively. For the ssp245 scenario, the SF is expected to increase by 69.88% for nf
(2020–2040), 82.18% for mf (2041–2070), and 64.62% for ff (2071–2100). In a similar manner,
an expected increase in SF is observed for the ssp370 and ssp585 scenarios under different
time horizons. For the ssp370 scenario, the SF is expected to increase by 71.13% for nf
(2020–2040), 72.05% for mf (2041–2070), and 60.71% for ff (2071–2100). Furthermore, for
ssp585, the SF is seen to show a probable increase of 77.62% for nf (2020–2040), 72.76% for
mf (2041–2070), and 71.34% for ff (2071–2100).

The results showed that the monthly average streamflow during future periods
increased more under the CanESM5 model than it did under the ACCESS-CM2 and
BCC-CSM2-MR models. This increase was due to the results of the precipitation pro-
jection, which showed a more incremental change under the CanESM5 model than under
the ACCESS-CM2 and BCC-CSM2-MR models. Additionally, throughout the ff period
(2071–2100), this increase was greater. This significant increase throughout the ff period
could be attributed to the usage of a constant LULC (2018).

4.7. Mean Ensembled Model for Future Scenarios under Near Future (2020–2040), Mid Future
(2041–2070), and Far Future (2071–2100) Time Horizons

In the present study, the mean ensemble model is developed by taking the mean of
all three scenarios for the three different GCMs. With the help of such a model, we can
determine the net effect of each scenario on the SF for the future projection in three different
horizons: nf (2020–2040), mf (2041–2070), and ff (2071–2100), respectively.

Figure 10 illustrates the trend in the mean ensemble monthly average streamflow in
(m3/sec) for three scenarios: nf (2020–2040), mf (2041–2070), and ff (2071–2100), respectively.
In this model, we have tried to take the mean of all three GCMs under all the scenarios
for the nf, mf, and ff periods. By doing this, an overall net result was obtained. According
to [52], the ssp245 scenario faces the challenge of moderate mitigation and adaptation, the
ssp370 scenario faces the challenge of high mitigation and adaptation, and the ssp585 sce-
nario faces the challenge of high mitigation and low adaptation. For all the cases, increment
in SF is projected for the nf period with reference to the baseline period. The increase in SF
for the future projection period using different mean ensemble models for the nf period
under three different scenarios such as ssp245, ssp370, and ssp585 are 56.04%, 59.65%, and
68.15%, respectively. The mean increase in SF is 64.19% for the nf period (2020–2040). For
the mf period, the result of the mean ensemble model of three different scenarios reveals the
increase in SF for the future projection period under the different scenarios ssp245, ssp370,
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and ssp585 are 63.17%, 45.39%, and 57.84%, respectively. Furthermore, the mean increase in
SF is 47.33% for the mf (2040–2070). Similar increases in SF for the future projection period
using different mean ensemble models for ff period under three different scenarios such as
ssp245, ssp370, and ssp585 are 72.21%, 64.13%, and 80.74%, respectively. The mean increase
in SF is 70.59% for the ff (2071–2100). Thus, with the help of this mean ensemble model, a
combined increase in SF is obtained under multiple GCMs and various scenarios. Table 9
reveals the increase in average annual streamflow for the mean ensemble model under
three different scenarios for nf (2020–2040), mf (2041–2070), and ff (2071–2100), respectively.
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5. Discussion

We have examined the combined impact of climate change and LULC on the stream-
flow in the PMB. For this, the climatic data was divided into two periods: 2000–2010 and
2011–2018. In order to evaluate the impact of changing climate and LULC on the SF of
the PMB, we selected baseline LULC (2018) for that time period because the LULC class
varies gradually in the region. Between 2011 and 2018, we observed an increase in the
catchment’s annual average SF runoff. We observed a direct correlation between changes
in SF and changes in the catchment’s rainfall pattern. According to [53], by 2018 the climate
affects SF more than LULC change. For example, land use such as the catchment’s built-up
area (165.81 km2) and water body (32.42 km2) from 2010 had increased to (554.64 km2) and
(66.56 km2), respectively.

There are a range of uncertainties when coupling climate models (RCM/GCM) with
SWAT models to study the effects of climate change on SF, such as the choice of a GCM
and plausible scenarios [54–56]. Despite these shortcomings, every attempt was taken in
this study to minimize the uncertainties involved with hydrological simulation and climate
prediction, in order to comprehend the likely impact of changing climate on SF. However,
it is highly recommended to use multiple GCMs and ensemble models inclusive of all
probable scenarios in order to examine a wide variety of climatic changes. Thus, in this
study to predict the impact of changing climate on the SF for the future period, three GCMs
(ACCESS-CM2, BCC-CSM2-MR, and CanESM5) from CMIP6 were employed under three
different scenarios (ssp245, ssp370, and ssp585). Additionally, the findings of this study
agree with those of previous related studies [57,58].

The study area is expected to have an overall increase in projected temperature and
precipitation. Refs. [52,59,60] all revealed findings that were similar. The projected air
temperature under ssp585 is higher compared to ssp245 and ssp370, highlighting that
ssp585 represents higher vulnerability to changing climate. As a result, the hydrological
cycle becomes active and results in significant rainfall [52]. Compared to other months, the
monsoon season is predicted to have higher projected precipitation. The findings of [61,62]
seem to support this conclusion. The annual average SF is expected to increase for all three
GCMs under all three scenarios ssp45, ssp370, and ssp585. Table 9 reveals the details of
% increase in SF under each scenario for all three future time horizons. Additionally, the
findings of this study are consistent with other related studies [49,63,64].

According to a study by [63] in the Upper Godavari River, future precipitation and
SF will increase. This is similar to what we found. However, the % increase in the annual
average SF for future periods varies significantly. This is because different climatic models
and reference periods were used, which could cause discrepancy. For the reference period
(1985–2001), Ref. [63] considered two models under three scenarios. Hence, in order to
reduce the uncertainty involved in using multiple GCMs and scenarios, in this study we
have developed a mean ensemble model by taking the mean of each scenario of all GCMs
under different time horizons, i.e., nf (2020–2040), mf (2041–2070), and ff (2071–2100). The
results of the mean ensembled model as shown in Table 9 reveal a greater increase under
the CanESM5 model than the ACCESS-CM2 and BCC-CSM2-MR models. This is due to
the future precipitation projections of the CanESM5 model showing a greater increase than
the ACCESS-CM2 and BCC-CSM2-MR models.

The findings of this study are centred on three GCMs under three scenarios (ssp245,
ssp370, and ssp585). For a better understanding of the uncertainty involved, Ref. [64]
suggest that more GCMs and emission scenarios should be included in hydrological
studies. In order to simplify the study’s findings, it is suggested that additional GCMs and
scenarios be included. Moreover, the SWAT model was calibrated and validated for a single
site due to a lack of available data. Although the model proved effective in simulating the
monthly SF, it is advisable to recalibrate the model on availability of data for multiple sites
throughout the basin. Furthermore, LULC (2018) had been used to project future SF. Due to
the PMB’s increasing population, changes in LULC are going to be significant in the future;
however, this study did not take these changes into account.
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We observed that, in comparison to the baseline period (2000–2018), the SF in the
PMB increased all through the monsoon season (June–September) of the future period.
Therefore, it is essential to preserve the surface water in the PMB in order to maintain the
long-term sustainability of water management and meet the projected LULC and climate
change. According to the many future climatic scenarios for the PMB, this study may be
helpful to policymakers in developing informed laws and adaptive actions to reduce risk
related to climate change.

6. Conclusions

In this study, hydrological modelling using SWAT was conducted to assess the impact
of climate change on SF for the Parvara Mula Basin (PMB). Sensitivity analysis using
the SUFI-2 algorithm in SWAT-CUP revealed that CN2 and ESCO are the most sensitive
parameters. The SWAT model, coupled with SUFI-2, was established for the PMB, which
was calibrated and validated using the observed SF data from the Newasa gauging site,
which forms the basin’s outlet. The statistical matrices R2, NSE, PBIAS, RSR, p-factor, and
r-factor were employed to evaluate the performance of the model. Based on the results,
the SWAT model performed very well in modelling the SF for the PMB. This model can be
further extended to work for similar basins throughout the country.

The probable impact of climate change on SF for the future period (2020–2100) was
analysed in three different time horizons: nf (2020–2040), mf (2041–2070), and ff (2071–2100).
During this period, the LULC (2018) was kept constant, and precipitation and temperature
projections were obtained from three GCMs which were ACCESS-CM2, BCC-CSM2-MR,
and CanESM5 under three different scenarios which were ssp245, ssp370, and ssp585.
Precipitation and temperature projections show increasing trends for all three climate
scenarios (ssp245, sp370, and ssp585). Precipitation is projected to increase more than in
other months during the monsoon season (June to September). The temperature rise is
most significant under ssp585, confirming that ssp585 is the most vulnerable to climate
change. All the models reveal a significant increase in SF for the coming years. According
to ACCESS-CM2, the SF is expected to increase under all three scenarios by 44.75% to
53.72%. Similarly, the SF is expected to increase by 45.80% to 77.31% and 48.51% to 83.12%,
according to BCC-CSM2-MR and CanESM5, respectively. The mean ensembled model
determines the net effect of scenarios on the SF for all three future projections. The results
obtained from the mean ensembled model also reveal an increase in the SF for all three
future projections, i.e., nf (2020–2040), mf (2041–2070), and ff (2071–2100) to be 64.19%,
47.33%, and 70.59%, respectively. Moreover, the CanESM5 model produces more realistic
results than the ACCESS-CM2 and BCC-CSM2-MR models, so the SF evaluated with
this model can be utilised for water management strategies and planning efforts in the
future. This study’s findings can be useful in developing water management practises and
preventing the pessimistic effects of climate change in the PMB.
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Abbreviations

CC climate change
LULC Land Use Land Cover
WR water resources
SF streamflow
PMB Parvara Mula Basin
SWAT Soil and Water Assessment Tool
CUP Calibration Uncertainty Program
R2 Correlation determination
NSE Nash-Sutcliffe efficiency
PBIAS Percentage bias
RSR Ratio of root-mean-square error to measured standard deviation
CMIP6 Coupled Model Inter-Comparison Project Phase 6
GCM Global climate models
CM Climate model
CanESM5 Canadian Earth System Model version 5
BCC CSM2
MR Beijing Climate Center (BCC) Climate System Model
ff far future
nf near future
mf mid future
DEM digital elevation model
IMD India Meteorological Department
SUFI-2 Sequential Uncertainty Fitting version 2
SCS Soil Conservation Services
WGS World Geodetic System
UTM Universal Transverse Mercator
HRU Hydrologic Response Unit
FAO Food and Agriculture Organization
GIS Geographic Information System
SA sensitivity analysis (SA).
LSA local sensitivity (LSA)
GSA global sensitivity (GSA).
USGS United States Geological Survey
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