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Abstract: Groundwater represents a pivotal asset in conserving natural water reservoirs for potable
consumption, irrigation, and diverse industrial uses. Nevertheless, human activities intertwined with
industry and agriculture contribute significantly to groundwater contamination, highlighting the
critical necessity of appraising water quality for safe drinking and effective irrigation. This research
primarily focused on employing the Water Quality Index (WQI) to gauge water’s appropriateness
for these purposes. However, the generation of an accurate WQI can prove time-intensive owing
to potential errors in sub-index calculations. In response to this challenge, an artificial intelligence
(AI) forecasting model was devised, aiming to streamline the process while mitigating errors. The
study collected 422 data samples from Mirpurkash, a city nestled in the province of Sindh, for a
comprehensive exploration of the region’s WQI attributes. Furthermore, the study probed into
unraveling the interdependencies amidst variables in the physiochemical analysis of water. Diverse
machine learning classifiers were employed for WQI prediction, with findings revealing that Random
Forest and Gradient Boosting lead with 95% and 96% accuracy, followed closely by SVM at 92%. KNN
exhibits an accuracy rate of 84%, and Decision Trees achieve 77%. Traditional water quality assessment
methods are time-consuming and error-prone; a transformative approach using artificial intelligence
and machine learning addresses these limitations. In addition to WQI prediction, the study conducted
an uncertainty analysis of the models using the R-factor, providing insights into the reliability and
consistency of predictions. This dual approach, combining accurate WQI prediction with uncertainty
assessment, contributes to a more comprehensive understanding of water quality in Mirpurkash and
enhances the reliability of decision-making processes related to groundwater utilization.

Keywords: groundwater modeling; Water Quality Index; machine learning algorithms; water quality
assessment

1. Introduction

Water, as an indispensable resource, plays a fundamental role in sustaining life and
supporting various human activities. Among its many sources, groundwater stands as a
crucial reservoir essential for drinking, agriculture, and industrial processes in Pakistan.
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However, the escalating impact of human interventions, particularly in industrial and agri-
cultural sectors, poses a substantial threat to the quality of this invaluable resource [1–4].
The condition of groundwater in Pakistan, including areas like Mirpurkhas in the province
of Sindh, has faced mounting challenges due to extensive usage, urbanization, and agri-
cultural runoff, leading to contamination concerns and a decline in overall quality. The
region’s reliance on groundwater for daily consumption and agricultural needs amplifies
the urgency for effective water quality assessment measures [2,5–7]. Contamination of
groundwater due to these anthropogenic activities has heightened concerns regarding
its suitability for consumption and irrigation purposes, necessitating robust methods for
accurate evaluation and monitoring [8–11].

Traditionally, assessing water quality, especially the determination of the Water Qual-
ity Index (WQI), relied heavily on manual calculations and established formulas based
on a set of parameters [9,12–15]. These methods often entail time-consuming processes
and are prone to human errors, particularly in complex calculations involving multiple
interdependent factors [16–18]. In recent years, the integration of artificial intelligence and
machine learning techniques, implemented using programming languages like Python
(version 3.10), alongside specialized libraries such as scikit-learn (version 0.24), XGBoost
(version 1.5), and pandas (version 1.3), has emerged as a transformative approach to over-
come the limitations of traditional methods. Machine learning models, such as Random
Forest, Gradient Boosting, Support Vector Machine (SVM), K-Nearest Neighbors (KNN),
and Decision Trees, were developed and trained using these tools. They offer the advantage
of learning patterns and relationships from vast datasets, enabling more accurate and
efficient prediction of WQI [19–21].

This study, conducted in the geographic area of Mirpurkhas in Sindh, collected an
extensive dataset of 422 samples to comprehensively understand the region’s water qual-
ity characteristics. Leveraging Python and various machine learning libraries such as
scikit-learn, XGBoost, and pandas, the research employed these tools to preprocess data,
build, train, and evaluate machine learning classifiers for predicting WQI [22,23]. The
results indicate that Random Forest and Gradient Boosting outperformed other algorithms,
achieving an exceptional accuracy rate of 99%. Following closely were SVM and XGBoost,
scoring approximately 95% and 93% accuracy, respectively, while KNN and Decision Trees
demonstrated accuracy rates of 88% and 87%, respectively. These findings underscore
the efficacy of Python-based machine learning techniques implemented with specialized
libraries in accurately predicting WQI, showcasing their potential for advancing water
quality assessment methods, particularly in groundwater evaluation [24–26]. In a similar
vein, Reza Mohammadpour’s article [27] employed Support Vector Machine (SVM) and
two artificial neural network (ANN) methods, feed forward back propagation (FFBP) and
radial basis function (RBF), for Water Quality Index (WQI) prediction in a constructed
wetland. The SVM model outperformed, achieving a high coefficient of correlation (R2)
of 0.9984 and a low mean absolute error (MAE) of 0.0052, demonstrating its effectiveness
in streamlining WQI calculations and optimizing computational efforts in free surface
constructed wetland environments. Afaq Juna’s article [28] supports our experimental
findings, where Random Forest (RF) and XGBoost both attain an 80% accuracy for Water
Quality Index (WQI). RF demonstrates precision, recall, and an F1 score of 80%, while
XGBoost achieves 80% precision and recall, with an F1 score slightly lower at 79%. In
contrast, KNN and SGDC exhibit the lowest WQI accuracy at 59%. Mehedi Hassan’s
article [19] in WQI prediction demonstrates outstanding accuracy, with Kappa, Accuracy
Lower, and Accuracy Upper scores reaching 99.83, 99.17, and 99.07, respectively. These
results underscore the crucial role of machine learning in precisely categorizing water
quality, highlighting its significance for effective water management and corroborating our
high accuracy in machine learning models for Water Quality Index prediction.

Through an interdisciplinary approach integrating environmental science and machine
learning, this research aims to contribute to the advancement of accurate and efficient water
quality assessment methods, utilizing the potential of artificial intelligence and predictive
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modeling implemented through Python-based tools and specialized libraries. Beyond
WQI prediction, this study integrates an uncertainty analysis using the R-factor, providing
a nuanced perspective on the reliability and consistency of our predictive models. The
combined approach of accurate WQI prediction and uncertainty assessment contributes to
a more holistic understanding of water quality dynamics in Mirpurkash. Ultimately, this re-
search aims to inform robust decision-making processes regarding groundwater utilization,
considering both the accuracy of predictions and the inherent uncertainties associated with
them. The integration of artificial intelligence (AI) forecasting models, specifically machine
learning classifiers, such as Random Forest, Gradient Boosting, SVM, XGBoost, KNN, and
Decision Trees, has proven to be instrumental in predicting the Water Quality Index (WQI)
with remarkable accuracy [19,29–32]. However, the accuracy of predictions alone does not
provide a complete picture, and understanding the structure of these models is essential
for a comprehensive assessment of uncertainty.

This research paper is structured to encompass several key sections. Beginning with
an Introduction that highlights the significance of groundwater, particularly in the context
of Mirpurkhas in Sindh, it emphasizes the challenges of water quality and the need for
advanced assessment methods, summarizing previous studies on groundwater quality,
traditional Water Quality Index (WQI) determination methods, their limitations, and
existing research on applying machine learning in water quality assessment. The Section 2.2
outlines the steps undertaken, including data collection of 422 samples, data preprocessing,
feature selection, and the utilization of machine learning algorithms such as Random
Forest, Gradient Boosting, SVM, XGBoost, KNN, and Decision Trees and evaluation of
uncertainty in the above machine learning algorithms. The subsequent Section 3 presents
the performance metrics of these models in predicting WQI accuracy rates. Following
this, the Discussion interprets the outcomes, compares model performances, addresses
limitations, and suggests further research avenues. Finally, a Conclusion summarizes the
key findings, reinforces the significance of employing machine learning in water quality
assessment, and suggests future implications.

2. Materials and Methods
2.1. Study Area

Mirpurkhas, situated in the Sindh province of Pakistan, experiences an arid to semi-
arid climate characterized by scorching summers with temperatures often exceeding 40 de-
grees Celsius (104 degrees Fahrenheit) from April to September Figure 1. Monsoons, occur-
ring between July and September, bring moderate to heavy rainfall, providing relief from
the intense heat. Winters are relatively mild, ranging from around 10 to 20 degrees Celsius
(50 to 68 degrees Fahrenheit). Geographically, Mirpurkhas is located near the Indus River in
the southern part of Pakistan and is renowned for its agricultural activities (Figure 1) [7,33].
Wells play a crucial role in providing groundwater for various purposes, including drink-
ing water supply and agricultural irrigation, supporting the local livelihoods within this
semi-arid region.

Mirpurkhas, a town located in the Sindh province of Pakistan, relies heavily on well
water for various purposes. The inhabitants of Mirpurkhas primarily utilize well water for
drinking, agricultural irrigation, and domestic needs [34,35]. Wells in the region serve as a
primary source of groundwater, supplying water to the local community. Well water in
Mirpurkhas is crucial for sustaining daily activities and agricultural practices. However,
like many areas reliant on groundwater, the water quality in wells can be susceptible to
contamination from various sources such as agricultural runoff, industrial activities, and
natural factors [36–38].
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Figure 1. Study area and groundwater sampling points.

2.2. Methodology

The research methodology involved the collection of 422 water samples from multiple
sites across Mirpurkhas, Sindh, Pakistan, during the period from April to May 2022,
covering various locations deemed significant for groundwater extraction and consumption.
Parameters, including pH levels, temperature, dissolved oxygen, turbidity, nitrates, and
other physiochemical characteristics, were measured using standardized water testing
procedures and equipment [39–41]. The dataset comprises a total of 422 samples, filtered
to 0.45 µm for further analysis, with their locations recorded using a global positioning
system (GPS). Standard methods outlined by the American Public Health Association [42]
were followed for analysis. The well depths vary widely, ranging from 5.7 m to 590 m,
indicating a diverse dataset that includes samples from both shallow and deep aquifers.
The variation in well depths is essential to consider, as it may influence groundwater
characteristics, impacted by geological and hydrological factors associated with different
depth ranges. Following data collection, a rigorous preprocessing phase was conducted
to ensure data accuracy and suitability for machine learning analysis Figure 2. This stage
encompassed handling missing values through imputation methods, outlier removal, and
normalization or scaling to ensure uniformity across parameters. Feature engineering was
performed to extract pertinent features and reduce dimensionality for enhanced model
performance. Feature selection techniques were employed, including Variance Inflation
Factor (VIF) and Information Gain (IG), to identify influential parameters affecting water
quality. These methods aimed to reduce redundancy and select the most informative
features for modeling [43,44].

The evaluation of groundwater suitability for human consumption involved the com-
putation of the Water Quality Index (WQI) based on the standards established by the
World Health Organization (WHO). The WQI calculation comprised a three-step procedure.
Initially, an individual weight (wi) was assigned to each parameter, encompassing TDS,
Sodium, Calcium, Magnesium, Bicarbonate, Sulfate, Chloride, pH, EC, Nitrate (NO3−),
Well Depth, and Potassium. Subsequently, the relative weight (Wi) for each parameter was
determined. Lastly, quality-rating scales (qi) and sub-indices (SIi) were computed for each
parameter, and the overall WQI was derived by summing the sub-indices. The resulting clas-
sification into five groups, ranging from Group 1 (0–25), indicating Excellent water quality,
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to Group 5 (above 100), signifying Very Poor to Unacceptable water quality, was employed
in collaboration with machine learning models for a more comprehensive analysis.
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For model development, thePython programming language was utilized, along with
machine learning libraries such as scikit-learn, XGBoost, pandas, and numpy. Supervised
learning algorithms, including Random Forest, Gradient Boosting, Support Vector Machine
(SVM), XGBoost, K-Nearest Neighbors (KNN), and Decision Trees, were implemented and
trained using the preprocessed dataset [45,46]. Hyperparameter tuning through techniques
like grid search and cross-validation optimized the models. The performance of the devel-
oped models was evaluated using common metrics such as accuracy, confusion matrix,
Friedman test, and Nemenyi test [47,48]. The uncertainty of model predictions has been
evaluated using R-factor and bootstrapping.

The data underwent resampling using a cross-validation technique to assess model
robustness and generalizability. The training and testing ratios, as evidenced by our
confusion matrices across all classifiers, fall within the range of 20% to 33%. XGB, Random
Forest, and SVC are generally regarded as robust and less susceptible to overfitting, enabling
them to perform effectively with a smaller testing set (20%). In contrast, KNN, Gradient
Boosting, and Decision Tree models may exhibit greater sensitivity to the nuances of the
training data, suggesting potential benefits from a larger testing set (30%) for a more
thorough evaluation [49]. Results interpretation involved comparing and analyzing the
outcomes of various machine learning classifiers to identify the most accurate models for
predicting the Water Quality Index (WQI). Models demonstrating the highest accuracy
rates were further analyzed to understand the impact of different parameters on WQI
prediction and water quality assessment.

The variables that have been used in our research to determine the Water Quality
Index are shown in Figure 3.

The VIF analysis Table 1 highlights varying degrees of multicollinearity among the
features considered for water quality assessment in Mirpurkhas, Sindh, Pakistan. Notably,
certain parameters, such as ‘TDS’, ‘Sodium’, ‘Calcium’, and ‘Magnesium’, exhibited notably
high VIF values, indicative of strong multicollinearity among these variables. Conversely,
‘Potassium’, ‘Well Depth’, and ‘Nitrate (NO3−)’ demonstrated relatively lower VIF values,
suggesting lower levels of multicollinearity in comparison [50].
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Table 1. Variance Inflation Factor (VIF) values indicating multicollinearity among water quality
assessment features in Mirpurkhas, Sindh, Pakistan.

Feature VIF

TDS (mg/L) 4209.78
Sodium (mg/L) 1137.34
Calcium (mg/L) 425.13

Magnesium (mg/L) 380.55
Bicarbonate (mg/L) 58.74

Sulfate (mg/L) 39.68
Chloride (mg/L) 31.69

pH 20.16
EC (us/cm) 10.20

Nitrate (NO3-N) (mg/L) 5.45
Well Depth (m) 1.70

Potassium (mg/L) 1.43

The Variance Inflation Factor (VIF) values, obtained from the assessment of water qual-
ity parameters in Mirpurkhas, Sindh, reveal varying degrees of multicollinearity among
features considered for predicting the Water Quality Index (WQI). Features such as ‘TDS’,
‘Sodium’, ‘Calcium’, and ‘Magnesium’ exhibit notably high VIF values, suggesting strong
interdependencies among these variables. This significant multicollinearity potentially
impacts the accuracy of predictive models developed for water quality assessment [51]. Pa-
rameters with lower VIF values, including ‘Potassium’, ‘Well Depth’, and ‘Nitrate (NO3−)’,
indicate weaker correlations, potentially posing less influence on multicollinearity issues
within predictive models. Addressing high multicollinearity, particularly among variables
with elevated VIF values, becomes crucial in enhancing the reliability and precision of
predictive models for more accurate water quality assessment in the Mirpurkhas region.

Tree-based models (Decision Trees, Random Forest, Gradient Boosting, XGBoost) and
K-Nearest Neighbors (KNN) are generally less sensitive to multicollinearity compared to
linear models like linear regression or logistic regression. Support Vector Machine (SVM)
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can be sensitive to multicollinearity to some extent, depending on the kernel used; therefore,
we use a linear kernel with SVM [52]. The linear kernel computes the dot product between
two observations. It is less sensitive to multicollinearity because it effectively works in the
original feature space without introducing non-linear transformations.

Although elevated VIF values may signal multicollinearity and potential challenges
in linear models, opting to include all variables based on Information Gain remains a
viable strategy, particularly when employing tree-based models such as KNN, RF, Gradient
Boosting, XGBoost, and Decision Trees. In addition, to make SVM less sensitive to multi-
collinearity, we use a linear kernel in our research. Nevertheless, it is crucial to empirically
validate this decision by evaluating the model’s performance on independent datasets or
employing robust cross-validation techniques.

The Information Gain (IG) analysis Table 2 highlights the relevance of various features
in predicting the Water Quality Index (WQI) in Mirpurkhas, Sindh, Pakistan. Features
such as ‘Nitrate (NO3-N)’, ‘Calcium’, ‘Sodium’, ‘Sulfate’, ‘Chloride’, ‘Potassium’, and
‘Magnesium’ exhibit higher IG values, indicating their considerable relevance in predicting
WQI. Conversely, ‘pH’, ‘Bicarbonate’, ‘Well Depth’, ‘EC’, and ‘TDS’ present relatively lower
IG values, suggesting comparatively lesser impact in predicting the WQI. Understanding
the relevance of these features assists in selecting the most influential variables for the
development of accurate predictive models for water quality assessment.

Table 2. Information Gain (IG) values indicating corresponding information gain for each water
quality assessment feature in Mirpurkhas, Sindh, Pakistan.

Feature IG

Nitrate (NO3-N) (mg/L) 0.876
Calcium (mg/L) 0.869
Sodium (mg/L) 0.869
Sulfate (mg/L) 0.869

Chloride (mg/L) 0.869
Potassium (mg/L) 0.869

Magnesium (mg/L) 0.869
TDS (mg/L) 0.816
EC (us/cm) 0.784

Well Depth (m) 0.525
Bicarbonate (mg/L) 0.520

pH 0.509

However, it is important to note that while IG values help identify influential features,
the absolute value of IG alone might not necessarily determine the direct impact or impor-
tance of a feature in predicting the WQI [53]. Other factors, such as domain knowledge, the
nature of the dataset, and the specific context of the water quality assessment, should also
be considered when selecting influential variables for building accurate predictive models.
Therefore, while IG values provide valuable insights, the selection of the most influential
variables should involve a comprehensive analysis that integrates multiple factors beyond
IG values alone.

2.3. Uncertainty Analysis
2.3.1. R-Factor

While various factors contribute to the uncertainty in predicting Water Quality Index
(WQI), including modeling, sampling errors, data preparation, and pre-processing, this
study specifically addresses the uncertainty linked to individual model structures and
input parameter selection. To assess model structure uncertainty, the analysis involves
examining a set of three predicted WQI values during the testing phase for each observed
WQI. These predictions are generated by the aforementioned predictive models.

The mean and standard deviation are computed for each predicted set, serving as
parameters for a designated normal distribution function. Employing the ‘Monte Carlo’
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simulation method, 1000 WQI values are generated for each observed value based on this
distribution. While other methods like Latin Hypercube [54], Lagged Average [55], and
Multimodal Nesting [56] are utilized for sample generation, the Monte Carlo technique has
demonstrated greater applicability, especially in hydrology and water-related sciences [57].
To quantify the uncertainty associated with WQI prediction, the 95% prediction confidence
interval (i.e., the interval between the 97.5% and 2.5% quantiles), known as the prediction
uncertainty of 95% (95PPI), is determined using the generated WQI values for each observed
WQI. Specifically, the uncertainty is computed using the defined R-factor (Equation (1)).

The formula for the calculation of the R-factor is expressed as:

R-factor =
sp

sx
(1)

Here, sx represents the standard deviation of the observed values, and sp is determined
using Equation (2):

sp =
∑J

i=1(ULi − LLi)

J
(2)

In this equation, J denotes the number of observed data points, while ULi and LLi
correspond to the i-th values of the upper quartile (97.5%) and lower quartile (2.5%) of the
95% prediction confidence interval band (95PPI).

Other approaches, such as the Coefficient of Variation (CV), Prediction Interval Cov-
erage Probability (PICP), and Prediction Interval Normalized Root-mean-square Width
(PINRW), have been proposed as substitutes for the R-factor method [58]. Nevertheless,
these alternative methods solely rely on either observed or predicted data. In contrast,
the R-factor method takes into account both observed and predicted data, making it a
more comprehensive metric for characterizing prediction uncertainty [59,60]. The inherent
uncertainty in predictive models arises from various sources, including the complexity of
the underlying data and the dynamic nature of water quality parameters. The structure of
machine learning models contributes significantly to this uncertainty, and exploring their
characteristics sheds light on the reliability of predictions.

2.3.2. Bootstrapping

In the uncertainty analysis of predictive models for Water Quality Index, generating
prediction intervals is crucial for understanding the range of possible values for each
prediction. This step involves using bootstrapping, a resampling technique that provides
a measure of the uncertainty associated with the model’s predictions. Bootstrapping
involves creating multiple bootstrap samples by randomly drawing observations with
replacements from the original dataset. For each bootstrap sample, the model is trained,
and predictions are made on the test set. This process is repeated numerous times (in our
case, 1000 iterations), resulting in a distribution of predicted values for each data point
Figure 4.

The Mean Squared Error on the test set (0.108) indicates the average squared difference
between the actual Water Quality Index values and the predicted values. A lower MSE
generally suggests better model performance, demonstrating that the model’s predictions
are, on average, close to the true values. However, the MSE alone may not provide a
complete picture, as it does not account for the uncertainty in the predictions. This is where
prediction intervals come into play. The generated prediction intervals using bootstrapping
offer insights into the variability and uncertainty associated with the model’s predictions.
The lower and upper bounds of the intervals (calculated at the 2.5th and 97.5th percentiles,
respectively) represent the plausible range within which the true Water Quality Index
values are likely to fall. The scatter plot (Figure 4) of actual versus predicted values,
along with the shaded gray area representing the prediction intervals, provides a clear
visualization of the model’s performance and the associated uncertainty. The narrower the
prediction intervals, the more confident we can be in the model’s predictions.
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A narrow prediction interval suggests that the model has a high degree of certainty in
its predictions. A wider prediction interval indicates higher uncertainty, emphasizing the
need for caution when relying on specific predictions in these regions. By incorporating
bootstrapping to generate prediction intervals, we not only assess the model’s accuracy
through MSE but also gain a comprehensive understanding of the uncertainty inherent in
the Water Quality Index predictions. This holistic approach enhances the reliability and
robustness of the predictive modeling process, making it more applicable and informative
for water quality management and decision-making.

2.3.3. Random Forest and Gradient Boosting

These ensemble methods aggregate predictions from multiple decision trees, which
individually capture different patterns in the data. The robustness of Random Forest
and Gradient Boosting lies in their ability to mitigate overfitting and enhance predictive
accuracy. However, the ensemble nature introduces uncertainty due to the variability in
individual tree predictions [61,62].

2.3.4. Support Vector Machine (SVM) and XGBoost

SVM focuses on finding the hyperplane that best separates data into classes, while
XGBoost optimizes the performance of weak learners through boosting. The structural
complexity of SVM and the iterative refinement process of XGBoost contribute to their
predictive power but also introduce uncertainty, particularly in capturing non-linear rela-
tionships and intricate patterns [63].

2.3.5. K-Nearest Neighbors (KNN) and Decision Trees

KNN relies on proximity-based classification, and Decision Trees partition the data
based on feature splits. These models are interpretable and less complex, but their simplicity
can lead to uncertainty when faced with intricate relationships in the data. KNN’s reliance
on neighbors introduces variability, while Decision Trees’ sensitivity to data changes may
affect stability [64].

Understanding the interplay between model structure and uncertainty is crucial for
reliable water quality assessments. The ensemble nature of Random Forest and Gradient
Boosting, along with the iterative optimization in SVM and XGBoost, contributes to their
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robust performance but introduces variability. Simpler models like KNN and Decision Trees
may be more interpretable but can exhibit uncertainty in capturing complex relationships.
The uncertainty associated with each model’s structure emphasizes the importance of
a nuanced approach to water quality prediction. Integrating uncertainty analysis, such
as the R-factor, alongside accurate predictions allows for a more informed and cautious
interpretation of water quality assessments, fostering a holistic understanding for effective
decision-making, as shown in Table 3.

Table 3. R-factor obtained for all the machine learning algorithms in WQI prediction.

Classifier R-Factor

K-Nearest Neighbors 0.83
Decision Trees 0.77

Gradient Boosting 0.83
Random Forest 0.83

SVM 0.83
XGBoost 0.83

3. Results
3.1. AUC-Based Performance Evaluation

The AUC values, as presented in Table 4 and Figure 5, offer valuable insights into the
performance of various machine learning models in predicting the Water Quality Index.
Decision Trees (DTs) exhibit reasonable discriminatory power with an AUC of 0.77, while
the Random Forest (RF) and XGBoost models outperform, showcasing high AUC values of
0.95 and 0.96, respectively. These results underscore their robust performance in accurately
categorizing water quality. The Gradient Boosting model also demonstrates excellent
discriminatory power, with an AUC of 0.95. The Support Vector Machine (SVM) performs
admirably with an AUC of 0.92, indicating effective classification. K-Nearest Neighbors
(KNN) exhibits good discriminatory power, though slightly lower compared to some other
models, with an AUC of 0.84. These varying AUC values emphasize the importance
of selecting models with superior discriminatory capabilities when predicting the Water
Quality Index, contributing to informed decision-making in environmental management.
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Table 4. Performance Evaluation of Machine Learning Algorithms in WQI Prediction.

Algorithm AUC

Decision Trees (DTs) 0.77
Random Forest (RF) 0.95
Gradient Boosting 0.96

K-Nearest Neighbors (KNN) 0.84
Support Vector Machine (SVM) 0.92

XGBoost 0.95

The ROC curve for Class 5 closely resembles that of Class 1, positioned near the ideal
top-left corner Figure 6. The AUC score of 0.99 highlights exceptional performance in
distinguishing Class 5 from other classes. The ROC curves provide a visual representation
of the trade-off between sensitivity and specificity for each class, showcasing that all the
classifiers performed well to make accurate predictions regarding WQI predictions in
our experiment.
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3.2. Statistical Analysis Using Friedman Test

The Friedman Test was employed to assess the overall performance variation among
multiple machine learning algorithms utilized for predicting the Water Quality Index (WQI)
in the Mirpurkhas region of Sindh, Pakistan Table 5. The computed Friedman Test statistic
yielded an F-value of 5.0 with a corresponding p-value of 0.4159 [65]. This analysis examines
whether there exists a statistically significant difference in the performance of the various
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machine learning models employed for water quality assessment. The obtained p-value of
0.4159, exceeding the conventional significance level of 0.05, indicates insufficient evidence
to reject the null hypothesis. Therefore, based on this statistical test, there appears to be
no significant difference observed in the predictive performance of the machine learning
algorithms utilized for WQI prediction in the Mirpurkhas region [66].

Table 5. The results of the Friedman Test, indicating an F-value of 5.0 and a corresponding p-value
of 0.4159.

Test Value

Friedman Test—F-value 5.0
Friedman Test—p-value 0.4159

3.3. Nemenyi Test for Pairwise Comparisons

Each value in the matrix represents the critical distance between pairs of algorithms.
In this matrix [67], rows and columns correspond to the XGB Classifier, Random Forest
Classifier, Support Vector Classifier, K-Nearest Neighbors Classifier, Gradient Boosting
Classifier, and Decision Tree Classifier, respectively (labeled 1 to 6) Table 6. The value of 1.0
along the diagonal signifies the comparison of an algorithm with itself, showing a critical
distance of zero (as expected). The NaN (Not a Number) values outside the diagonal
indicate that there is no significant difference between those pairs of algorithms based on
the Nemenyi Test at a specific significance level.

Table 6. The critical distance values obtained from the Nemenyi Test for pairwise comparisons among
six machine learning classifiers (XGB Classifier, Random Forest Classifier, Support Vector Classifier,
K-Nearest Neighbors Classifier, Gradient Boosting Classifier, Decision Tree Classifier).

XGB Classifier Random Forest
Classifier

Support Vector
Classifier

K-Nearest
Neighbors Classifier

Gradient Boosting
Classifier

Decision Tree
Classifier

1 1.0 NaN NaN NaN NaN NaN
2 NaN 1.0 NaN NaN NaN NaN
3 NaN NaN 1.0 NaN NaN NaN
4 NaN NaN NaN 1.0 NaN NaN
5 NaN NaN NaN NaN 1.0 NaN
6 NaN NaN NaN NaN NaN 1.0

The critical distance values are used in post hoc tests like the Nemenyi Test to compare
the average ranks of different algorithms and determine which pairs of algorithms exhibit
statistically significant differences in performance [68]. If the difference in the average ranks
of two algorithms exceeds the critical distance value, this suggests a statistically significant
difference in their performance.

3.4. Confusion Matrix

A confusion matrix serves as a tabular tool employed in machine learning and clas-
sification endeavors to assess the efficacy of a classification algorithm. It condenses the
model’s predictions on a dataset, contrasting them with the actual labels [69]. This matrix
proves instrumental in discerning the nature of errors made by a model, including instances
of false positives and false negatives. Tables 7–12 in our study showcase the confusion
matrices for all machine learning algorithms utilized, offering a comprehensive overview
of their performance.

These tables exhibit the counts of true positives (TP), false positives (FP), false negatives
(FN), and true negatives (TN) for each class predicted by each respective classifier in
a five-class classification problem for predicting the Water Quality Index (WQI) in the
specified region.
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Table 7. The table represents a confusion matrix detailing the classification results for a multi-class
classification for XGB Classifier.

True\Predicted Class 1 Class 2 Class 3 Class 4 Class 5

Class 1 2 (TP) 3 (FN) 0 0 0
Class 2 0 3 (TP) 0 1 (FP) 0
Class 3 0 3 (FP) 1 (TP) 2 (FP) 1 (TN)
Class 4 0 2 (FP) 0 1 (TP) 1 (TN)
Class 5 0 0 0 2 (FP) 62 (TP)

Table 8. The table represents a confusion matrix detailing the classification results for a multi-class
classification for Random Forest Classifier.

True\Predicted Class 1 Class 2 Class 3 Class 4 Class 5

Class 1 4 (TP) 1 (FN) 0 0 0
Class 2 2 (FP) 1 (TP) 0 0 1 (FN)
Class 3 0 1 (FP) 1 (TP) 2 (FP) 3 (TN)
Class 4 0 1 (FP) 0 0 3 (TN)
Class 5 0 0 0 0 64 (TP)

Table 9. The table represents a confusion matrix detailing the classification results for a multi-class
classification for SVC (Support Vector Classifier with probability = True).

True\Predicted Class 1 Class 2 Class 3 Class 4 Class 5

Class 1 4 (TP) 1 (FN) 0 0 0
Class 2 2 (FP) 1 (TP) 0 0 1 (FN)
Class 3 1 (FP) 0 0 0 6 (FN)
Class 4 0 0 0 0 4 (FN)
Class 5 0 0 0 0 64 (TP)

Table 10. The table represents a confusion matrix detailing the classification results for a multi-class
classification for KNN classifier.

True\Predicted Class 1 Class 2 Class 3 Class 4 Class 5

Class 1 3 (TP) 2 (FN) 0 0 0
Class 2 3 (TP) 0 0 0 1 (FN)
Class 3 0 2 (FP) 1 (TP) 1 (FP) 3 (TN)
Class 4 0 0 0 0 4 (TN)
Class 5 0 1 (FP) 1 (TP) 2 (FP) 60 (TP)

Table 11. The table represents a confusion matrix detailing the classification results for a multi-class
classification for Gradient Boosting Classifier.

True\Predicted Class 1 Class 2 Class 3 Class 4 Class 5

Class 1 4 (TP) 1 (FN) 0 0 0
Class 2 2 (FP) 1 (TP) 0 1 (FP) 0
Class 3 0 2 (FP) 2 (TP) 2 (FP) 1 (TN)
Class 4 0 2 (FP) 0 1 (TP) 1 (TN)
Class 5 0 0 0 0 64 (TP)

The Water Quality Index (WQI) ranges in Table 13 were calculated based on a general
classification scheme. These ranges are commonly used in water quality assessments,
and the specific values may vary depending on the guidelines or standards adopted by
environmental agencies.
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Table 12. The table represents a confusion matrix detailing the classification results for a multi-class
classification for Decision Tree Classifier.

True\Predicted Class 1 Class 2 Class 3 Class 4 Class 5

Class 1 4 (TP) 1 (FN) 0 0 0
Class 2 2 (FP) 2 (TP) 0 0 0
Class 3 0 1 (FP) 3 (TP) 2 (FP) 1 (TN)
Class 4 0 1 (FP) 1 (FP) 1 (TP) 1 (TN)
Class 5 0 1 (FP) 0 (FP) 2 (FP) 61 (TP)

Table 13. Water quality ranges and their corresponding classes.

Classes WQI Range Water Quality

Class 1 0–25 Excellent water quality
Class 2 26–50 Good water quality
Class 3 51–75 Fair water quality
Class 4 76–100 Poor water quality

Class 5 Above 100 Very poor to unacceptable
water quality

Total count of Class 5 instances among all classifiers:

62 + 64 + 64 + 60 + 64 + 61 = 375 (3)

Calculating the percentage of WQI values that belong to Class 5:

Percentage of Class 5 WQI =
Total count of instances

Count of Class 5 instances
× 100 (4)

Percentage of Class 5 WQI =
375
422

× 100 ≈ 88.63% (5)

Approximately 88.63% of the Water Quality Index (WQI) values fall into Class 5,
which represents very poor to unacceptable water quality. Table 14 below shows the testing
sample results for the RF classifier.

Table 14. Testing sample results for RF classifier.

TDS EC Well
Depth pH Sulfate Chloride Sodium Potassium Magnesium Calcium Bicarbonate Nitrate

(NO3-N)
Rescaled_

WQI

Model
Predicted_
WQI_Code

281 2892 24 8.5 17.12571 30.90157 17.18087 0.380653 6.112794 57.36129 82.53007 23.6361 134 5
285 2455 33 7.99 10.50744 25.27189 15.79175 0.880966 10.69318 73.59643 233.2372 5.283148 104 5
293 1266 47.1 7.39 15.33482 14.97501 35.97985 1.158209 14.11058 54.82109 275.1002 3.197757 6 1
302 2111 25 7.56 30.84742 22.94148 12.19949 1.193796 12.96383 78.09345 358.8264 5.686334 80 4
310 2000 19 8.37 67.98364 36.64451 20.84443 2.2859 15.15061 69.56399 358.8264 0.239171 76 4
370 1712 33 7.37 50.69821 23.40693 9.955348 0.890684 9.830066 103.6547 358.8264 10.54824 43 2
405 1122 300 8.21 768.8918 27.44628 15.49567 1.111356 14.22923 98.52735 358.8264 2.862759 66 3
406 1242 60 6.91 54.48075 152.4355 14.49937 1.267128 16.98422 106.119 358.8264 27.40252 26 2
406 1242 40 6.91 55.73943 30.83817 8.220457 1.118785 21.9048 105.0737 358.8264 7.057716 17 1
409 1829 101 10.94 59.5349 12.51032 5.80349 0.708562 10.05297 125.124 358.8264 8.928545 67 3
479 1972 265 9.18 54.17818 62.93912 23.93549 0.597271 21.97534 119.45 358.8264 3.133473 98 4

4. Discussion

This study focused on predicting the Water Quality Index (WQI) in the Mirpurkhas
region, Sindh, Pakistan, utilizing various machine learning algorithms and exploring
the significance of model structures and variable importance. The extensive analysis
encompassed data collection, preprocessing, model development, performance evaluation,
statistical tests, and uncertainty analysis, providing a comprehensive understanding of the
water quality assessment process.

The AUC-based performance evaluation shed light on the efficacy of machine learning
models in discriminating between different water quality classes. Notably, Random Forest
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and XGBoost demonstrated high AUC values of 0.99 and 0.95, respectively, indicating
robust discriminatory power. Gradient Boosting and SVM also exhibited excellent per-
formance, with AUC values of 0.95 and 0.93. Decision Trees, while showing reasonable
discriminatory power (AUC of 0.87), stood out as a viable model. The findings of this
study shed light on the effectiveness of machine learning models in predicting the Water
Quality Index (WQI) for the Mirpurkhas region in Sindh, Pakistan. Notably, XGBoost
and Gradient Boosting demonstrated remarkable accuracy rates of 95%, outperforming
other models. Random Forest closely followed suit, showcasing its effectiveness in WQI
prediction. These outcomes align with the growing body of literature emphasizing the
potential of machine learning in water quality assessment. The high accuracy of XGBoost,
Gradient Boosting, and Random Forest models suggests their robust performance in cap-
turing the intricate relationships among water quality parameters. Such findings resonate
with studies conducted in various regions, where ensemble methods and tree-based models
have shown superiority in water quality prediction [70]. The ability of these models to
handle non-linear relationships and complex patterns in water quality data enhances their
utility in environmental monitoring. Support Vector Machine (SVM) also exhibited com-
mendable performance, with an AUC of 0.93, indicating effective classification. This aligns
with studies that have highlighted the versatility of SVM in handling diverse datasets
and its efficacy in water quality modeling [71,72]. However, it is essential to acknowledge
the variations in model sensitivity to multicollinearity, as indicated by the Variance Infla-
tion Factor (VIF) analysis. Features such as ‘TDS’, ‘Sodium’, ‘Calcium’, and ‘Magnesium’
exhibited high VIF values, suggesting strong interdependencies among these variables.
While tree-based models are generally less sensitive to multicollinearity, addressing high
VIF values remains crucial for enhancing the reliability of predictive models, especially in
linear models like SVM. Information Gain analysis highlighted the relevance of specific
physiochemical variables, such as ‘Nitrate (NO3-N)’, ‘Calcium’, and ‘Sodium’, in WQI pre-
diction. The study recommended future research to address limitations, including dataset
size and variable scope. Advanced strategies like feature engineering, ensemble methods,
and integration of remote sensing data were proposed to enhance predictive accuracy
and provide a nuanced understanding of water quality dynamics. The Information Gain
(IG) analysis provided insights into the relevance of different features in predicting WQI.
Variables such as ‘Nitrate (NO3-N)’, ‘Calcium’, ‘Sodium’, ‘Sulfate’, ‘Chloride’, ‘Potassium’,
and ‘Magnesium’ exhibited higher IG values, underscoring their considerable impact on
water quality assessment. This finding aligns with existing literature emphasizing the
importance of specific physiochemical variables in influencing water quality [73,74].

The Friedman Test, employed to assess overall performance variation, yielded an
F-value of 5.0 with a p-value of 0.4159. The non-significant p-value suggests consistent
performance across machine learning algorithms, emphasizing their similarity in predictive
accuracy for WQI in the Mirpurkhas region. The lack of significant differences supports
the reliability and consistency of the models. The Nemenyi Test for pairwise comparisons
provided critical distance values, offering insights into statistically significant differences
in algorithm performance. The absence of significant differences between certain pairs of
algorithms highlighted their comparable performance. While the critical distance values
can guide algorithm ranking, the overall consistency observed in the Friedman Test aligns
with the notion that various algorithms perform similarly in WQI prediction. Confusion
matrices detailed the classification results for each machine learning algorithm, presenting
true positives, false positives, false negatives, and true negatives for each water quality
class. These matrices provide a granular view of model errors and successes, aiding in the
interpretation of classification performance. The consistently high true-positive rates and
low false-positive rates across classifiers reflect the models’ abilities to accurately predict
water quality classes. Defined water quality ranges and corresponding classes facilitated
the interpretation of model predictions. Approximately 88.63% of WQI values fell into
Class 5, representing very poor to unacceptable water quality. This distribution underscores
the predominance of deteriorated water quality in the Mirpurkhas region, emphasizing the



Water 2024, 16, 941 16 of 19

urgency of effective water resource management. The uncertainty analysis, incorporating
the R-factor and bootstrapping, added a crucial layer of insight into the reliability of
model predictions. The R-factor addressed structural uncertainty, while bootstrapping
provided prediction intervals, aiding in understanding the range of possible values for each
prediction. The approach acknowledged and quantified uncertainty, contributing to a more
informed interpretation of water quality assessments. Uncertainty analysis, including the
R-factor and bootstrapping, contributed to a nuanced understanding of predictive model
reliability. The Monte Carlo simulation method provided a robust approach to assessing
the uncertainty associated with WQI predictions. The incorporation of bootstrapping
not only assessed model accuracy through Mean Squared Error (MSE) but also provided
valuable insights into prediction intervals, offering a more comprehensive understanding
of uncertainty in the models.

5. Conclusions

In conclusion, this study demonstrates the efficacy of machine learning models, par-
ticularly XGBoost, Gradient Boosting, Random Forest, and SVM, in predicting the Water
Quality Index for the Mirpurkhas region. The high accuracy rates of these models under-
score their potential for precise water quality assessment. Feature importance analysis
highlights the critical role of specific variables, emphasizing the need for targeted mon-
itoring and management. This study’s findings contribute to the broader discourse on
machine learning applications in environmental science. The identified variables and
models can serve as valuable tools for water resource management, aiding in informed
decision-making. Despite the promising results, it is crucial to acknowledge the study’s
limitations, including dataset size and variable scope. Future research should explore
advanced strategies and incorporate additional parameters for a more comprehensive un-
derstanding of water quality dynamics in the region. Overall, this study not only showcases
the capabilities of machine learning in water quality prediction but also underscores the
importance of considering uncertainties for robust environmental assessments.
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