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Abstract: Finding effective ecosystem services (ESS) management practices to counteract land degra-
dation and poverty is becoming increasingly urgent in the Ethiopian highlands, where livelihood
security is strongly dependent on local ESS, particularly those provided by water and soil. In this
paper, we test the effects of widely implemented soil and water conservation (SWC) interventions on
storm flow and sediment concentration in the Debre Mawi watershed (representative of watersheds
in the upper Blue Nile basin and Ethiopian highlands). The SWC interventions were tested with a
Parameter Efficient Distributed (PED) model. The PED model simulates saturation excess runoff
from degraded and saturated valley bottoms, and base and interflow from hillsides. The model
was calibrated with observed runoff and sediment data in a 95-ha subcatchment. We found that the
PED model simulated the discharge and soil loss well by decreasing the proportion of degraded
lands due to installing SWC practices. The results show that four years after the implementation
of SWC practices, the infiltration of rainwater was improved in 53% of the degraded lands. Thus,
installing SWC practices on hillsides where infiltration is limited is most beneficial and will result in
greater water availability during the dry phase, especially in locations where volcanic dikes block the
lateral flow.

Keywords: parameter efficient distributed model; soil and water conservation; Debre Mawi; hillsides;
land degradation

1. Introduction

Leveraging rural ecosystem services (ESS) management as poverty alleviation is
receiving increasing attention [1–3]. The link between ESS and the livelihood of people
experiencing poverty is direct in rural areas where agriculture is the only income source [4].
Despite increased understanding of the linkages between ESS and poverty alleviation,
there needs to be more awareness of how to utilize and present them within the regional
socio-ecological framework [5], such as in the Ethiopian highlands where community-level
livelihoods and to some degree, the national economy, depend on rural ESS. In particular,
agriculture is directly linked to ecosystem services provided by water and soil and requires
additional emphasis [6,7].

The majority of the Ethiopian population, 88%, resides in the Ethiopian Highlands,
with 85% being impoverished subsistence farmers [8]. Their livelihood depends mainly
on traditional rain-fed agriculture, for which ecosystem services are negatively affected
during the monsoon rain phase by erratic and inconsistent rainfall and soil erosion, leading
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to decreased agricultural output [9,10]. During the dry monsoon phase, rivers have dried
up, seriously affecting the availability of drinking water for livestock. This degradation in
ESS is furthering poverty [11,12].

In the 1970s, a severe drought [13] significantly impacted the rural population’s
livelihood [14], prompting the Ethiopian government to take measures to improve ESS
and prevent poverty lock-in. They implemented SWC structures consisting of infiltration-
increasing structures to reduce erosion, enhance recharge, and improve water harvesting to
store rainwater for use during the dry season [15,16]. Water-conserving practices improve
farmers’ income and food security through enhanced production from animals and higher-
yielding crops by increasing the duration of the streamflow and groundwater after the rain
phase, which can be used for irrigation and animal drinking [17–19].

The government-led SWC interventions have been implemented widely to counteract
soil erosion through community mobilization [20,21], but the implication of these inter-
ventions on the spatio-temporal distribution of erosion and groundwater storage has not
been examined. The objective of this research is, therefore, to simulate (based on observed
discharge and sediment concentration data) the potential of increasing water availabil-
ity by simulating the change in runoff and erosion from erosion-prone areas due to the
implementation of soil and water conservation interventions

The research was carried out in the 716 ha Debra Mawi watershed, with soil losses and
challenges to food security and environmental sustainability characteristics for the semi-
humid and humid Ethiopian Highlands [22–24]. The effectiveness of these interventions is
evaluated with the Parameter Efficient Distribution model, using observed discharge and
sediment concentration data we collected at the outlet of a 95-ha sub-watershed over six
years during which soil and water conservation practices were installed.

2. Materials and Methods
2.1. The Debre Mawi Watershed

In the Ethiopian highlands, the Debre Mawi watershed is located in the headwaters of
the Blue Nile, about 30 km south of Lake Tana (between 11◦20′13′′ and 11◦21′58′′ N, and
37◦24′07′′ and 37◦25′55′′ E) [25]. The watershed is mountainous, highly rugged, and has
a dissected topography with steep slopes [26] and variable soil losses [26]. The total area
of the watershed is 716 ha. The elevation ranges between 1950 and 2309 m. Slopes range
from 8 to 36% (Figure 1). The maximum average annual temperature of 26 ◦C occurs in
March–April; the minimum yearly temperature occurs in November–December with an
average of 8 ◦C. The catchment has a unimodal rainfall regime with an average annual
rainfall of 1238 mm [26]. June, July, August and September receive the largest share of
the yearly rainfall. Potential evapotranspiration is 2–3 mm/day in the rainy season and
4–5 mm/day during the dry season.
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Major SWC interventions implemented in Debre Mawi are soil bund and Fanya juu
on croplands and trenches on sloping degraded lands. These were implemented in the
upper part of the watershed. In the study area, the expected on-site role of soil bund
and Fanya juu is intended to enhance crop production by reducing overland flow and
soil erosion and improving soil fertility /or nutrient availability. Trenches enhance the
rehabilitation of degraded lands through rainfall/runoff harvesting, which improves on-site
water availability for vegetation growth. All these interventions are designed to increase
downslope water availability during the dry phase by enhancing infiltration and lateral
flow; this water availability counteracts the dry season water scarcity in the watershed.

2.2. Methods

The impact of SWC interventions on discharge and soil loss was analyzed in the
95-ha sub-catchment of the Debre Mawi watershed, where a gauging station was located
(Figure 1) and most of the SWC structures were implemented in 2012, before the mon-
soon rain phase. In addition to rainfall collected in an on-site rain gauge and calculated
potential evapotranspiration, the discharge and sediment concentration data collected in
the watershed from 2010 to 2016 were used to calibrate the PED model, and to study the
short-time effects of the soil and water conservation measures and monitoring both surface
and subsurface flow.

The PED model was calibrated using the runoff and sediment concentration data from
2016. For the simulations in the remaining years (2010–2014), all the parameters were kept
the same except for the degraded and permeable hillside areas, which changed due to the
construction of soil and water conservation practices. The saturated area was also changed
from before the first two years of implementation (2010–2011) due to greater saturation.
Subsequently, we upscaled the results of the 95-ha subwatershed to the whole Debre Mawi
catchment (716 ha) by combining PED model data with GIS tools to simulate the spatial and
temporal variability of storm flow and sediment concentration of average monthly flows.

2.2.1. Simulation of Effects of Soil and Water Conservation Interventions

The conjecture of reducing discharge and soil loss through SWC interventions is that
the soil and water conservation interventions can transform some areas of the catchment
from a degraded state to a “permeable hillslope” (hillside) state, thus increasing infiltra-
tion [27]. At the same time, this increased infiltration decreases storm flow and soil loss
during the wet monsoon season [28]. The enhanced infiltration increases water availability
in lower catchment streams and groundwater abstraction wells during several months
of the dry season. The effect of the soil and water conservation practices is quantified
by (1) using the PED model in which we will decrease the degraded areas as a result of
the soil and water conservation practice implementation and change them to areas that
contribute to water infiltration and recharge (“hillsides area” in the terminology of the
PED model), which in turn reduces storm flow and soil loss, (2) mapping the spatial and
temporal variability of the average monthly outflow and sediment concentration at the
watershed level.

2.2.2. Analysis of Discharge and Soil Loss with PED and GIS Tools

The likelihood of reducing storm flow and soil loss by enhancing infiltration through
SWC structures implementation was evaluated using the parameter efficient distributed
(PED) model. The PED hydrological and erosion model was developed and applied widely
in the Ethiopian Highlands [28,29] to simulate discharge and soil loss at the watershed
outlet. The model was adapted to display spatially distributed soil loss and discharge.

PED Hydrology Model

PED lumps the total study area into three regions with diverging hydrological char-
acteristics: saturated (A1), degraded (A2) and permeable hillslopes, called hillsides (A3)
areas (regions). A1 and A2 generate direct runoff (Q1 and Q2), while in region A3, rainfall
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infiltrates (percolates) and eventually recharges the groundwater storage and produces base
flow (Qb) or becomes interflow (Qi). As a result, the total discharge (Q) at the watershed
outlet is the sum of direct runoff generated from saturated area Q1 and degraded area Q2,
and base flow and interflow generated from hillsides using a zero-order aquifer (Qb + Qi).
The other hydrological parameters of the model are the maximum and initial root zone
storages per unit area (Smax1, Smax2, Smax3, Sinit1, Sinit2, Sinit3) in mm, maximum groundwa-
ter storage (BSmax) in mm, duration of interflow (τ*) and half-life of the aquifer (t1/2) in
days. Discharge simulation begins with the basic water balance equation in PED for a time
step of ∆t and ends up with interflow (Qi) analysis as mentioned in Equations (1)–(9).

Q = A1Q1 + A2Q2 + A3(Qb + Qi) (1)

where Q1 and Q2 are the saturated excess overland flow per unit area generated from
the saturated and the degraded areas, A1 and A2, respectively. In A3, which are also
called “hillsides”, the rainfall that does not evaporate after infiltration eventually becomes
either base flow (Qb) or interflow (Qi). For simplicity, we left out the subscript t with flow
rate parameters.

Surface runoff is simulated as any rainfall in excess of soil saturation:

Q1,2 =
St−∆t, − Smax + (P − PET)∆t

∆t
(2)

where P is precipitation (mm d−1), PET is potential evapotranspiration (mm d−1), St−∆t
is previous time step storage (mm), ∆t is the time step (day: d), and Smax is the maximum
water storage capacity in the root zone.

When soil moisture is less than the threshold (Smax) and precipitation is less than the
potential evaporation (PET), the actual evaporation (E) is simulated as:

E = S(t−∆t)

[
1 − exp

(
(P − PET)∆t

Smax

)]
(3a)

When the precipitation is greater than potential evaporation (PET), then:

E = PET (3b)

When the soil storage of the hillside area (A3) is above the field capacity (i.e., St3 > Smax3),
the recharge to the aquifer is calculated as:

Rech = St3 − Smax3 for St3 > Smax3 (4)

where the subscript 3 indicates the hillside area.
The recharge routes to two reservoirs, i.e., a first-order reservoir that produces base

flow (Qb) and a zero-order reservoir that produces interflow (Qi). The base flow reservoir is
filled up first, and after the base flow reservoir is filled above BSmax, the interflow reservoir
is filled up subsequently. When the base flow storage BSt < BSmax, its outflow (Qb) is
calculated as:

Qb,t = BSt−∆t

[
1 − exp

(
−0.69

t1/2
∆t

)]
for BSt ≤ BSmax (5)

The storage is calculated when the base flow reservoir is not filled up as:

BSt = BS(t−∆t) + (Rech − Qb,t)∆t for BSt ≤ BSmax (6)

When the calculated storage is greater than the maximum storage (BSmax), BSt is equal
to the maximum storage, and percolation (Perc,t) to the interflow reservoir is calculated as

BSt = BSmax for BSt ≥ BStmax (7)
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Perc,t = BSt − BSmax (8)

Assuming that the slope of the hillslope is the only driving force, the interflow Qi,t can
be obtained by averaging the percolation over time, τ∗, which is the period for the water to
flow from the groundwater divide to the point of interest, e.g.,

Qi,t =
∑τ∗

0 Perc,t−τ

τ∗ for τ ≤ τ∗ (9)

where τ is the time after the rainfall event for the water to travel from the most distance
upslope to the bottom of the hill.

PED Sediment Model

A PED-based sediment transport was developed [29]. It is described here briefly. Two
different sediment transport modes are distinguished: transport limited and source limited.
The sediment concentration is at the transport limit, at, when sediment deposition and
entrainment are in equilibrium. Source limited sediment concentrations, as, occur when the
availability of sediment for pickup by the water is insufficient. The threshold between both
is typically after 500−600 mm of effective rainfall. The other important parameter is the
active rills indicative variable, H, which is the fraction of the runoff-producing area with
actively forming rills. In the study region, it has been estimated that H begins at the value
of 1 during the beginning of the monsoon wet season and reduces to zero after around
500 mm of cumulative effective precipitation. Like in previous work [29], here we set H = 1
initially and up to the middle of July; H = 0.5 to the end of July and H = 0.25 in August;
finally, H = 0 during the remainder of the rain phase. Combining these parameters, the
sediment load, Y (kg m−2 day−1) is expressed as:

Y = (A1Q1[as1 + H(at1 − as1)]Qn
1 ) + (A2Q2[as2 + H(at2 − as2)]Qn

2 ) (10)

where n is an exponent set to 0.4, which was selected based on calibrations presented in
the study region [29]. Equation (10) can be rewritten to simulate sediment concentration,
C (kg m−3 d−1):

C =
y
Q

=

(
A1Q1.4

1 [as1 + H(at1 − as1)]
)
+

(
A2Q1.4

2 [as2 + H(at2 − as2)]
)

A1Q1 + A2Q2 + A3(Qb + Qi)
(11)

PED-ArcGIS Model

The spatial and temporal variability of discharge and soil loss at the watershed level
was investigated using the PED model results combined with ArcGIS spatial analyst tools.
First, the current saturated, degraded, and hillside area fractions of the 716 ha Debre Mawi
were delineated from Google Earth and field observation. With this area fraction and the
hydrology and erosion model parameter sets fixed during the analysis of the effect of SWC
intervention on hillside area fraction improvement, the current monthly discharge and
sediment concentration at the catchment level were simulated. Subsequently, two specific
soil and water conservation intervention strategies were selected and prioritized: SWC
intervention on degraded land, and blocking lateral flow. For the spatial analysis, we
used the SRTM DEM at 30 m resolution and the current three areas fractions of the 716 ha
Debre Mawi watershed, delineated from Google Earth. First, total, saturated, degraded and
hillside area flow accumulations were calculated separately using the ArcGIS hydrology
tools. Then, the fraction of flow, f, for each pixel of the three watershed regions was
calculated with the map algebra raster calculator tool as follows:

fhill =
Ahill
AT

(12)
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where Ahill is the contributing area on the well-drained hillside of the pixel and AT is the
total area of the watershed. For the degraded area, we find similarly:

fdeg =
Adeg

AT
(13)

where Adeg is the contributing area on the degraded hillside of the pixel. For the saturated
area, it is as follows:

fsat =
Asat

AT
(14)

where Asat is the contributing area on the periodically saturated pixel. Next, the cumulative
flows for each month of each pixel, Q are calculated as follows:

Q1,p =
fsatQmonth,1

A1
(15)

Q2, p =
fdegQmonth,2

A2
(16)

Q3,p =
fhillQmonth,3

A3
(17)

where Q1,p, Q2,p is the overland flow for each pixel in the saturated and degraded area, Q3,p
is the interflow (Qi,p) and base flow (Qb,p) for each pixel in the well-drained hillside, Qmonth,
is the cumulative monthly flow simulated by the PED model with additional subscripts for
areas 1 (saturated), 2 (degraded) and 3 (well-drained hillside). Finally, A is the fraction of
the total area of the three regions based on the subscript.

The monthly discharge per pixel for the catchment was simulated as the sum of
the storm flows simulated by Equations (15)–(17) using the following map algebra raster
calculator expression for the storm flow spatial and temporal variability mapping at 716 ha
Debre Mawi.

Qpixel = con(IsNull(Q1), 0, Q1) + con(IsNull(Q2), 0, Q2) + con(IsNull(Q3), 0, Q3) (18)

where Qpixel (m) is the spatial discharge map at the watershed level. Equations (15)–(18)
separately were run 12 times to determine the annual monthly values.

Following the storm flow spatial and temporal analysis, sediment concentration was
also presented for each pixel, Ypixel, at the 716 ha Debre Mawi catchment by replacing
the monthly runoff loss, Qmonth,1 and Qmonth,2 for the saturated and degraded area by the
monthly sediment loss Ymonth,1 and Ymonth,2 in Equations (15)–(18). Since it was assumed
that the well-drained hillslope had only subsurface flow, there was no sediment loss from
that area, hence Ymonth,3 = 0.

The monthly cumulative concentration can be obtained simply as follows:

Cpixel =
Ypixel

Qpixel
(19)

where Ypixel (kg m−2 month−1) is sediment load and Cpixel (kg m−3 month−1) is sediment
concentration per pixel.

3. Results and Discussion

This section is divided into subheadings to provide a concise and precise description
of the experimental results, their interpretation, and the experimental conclusions that can
be drawn.
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3.1. SWC Impact on Runoff and Soil Loss

To evaluate SWC interventions for increasing the catchment area (“hillsides area”) that
contributes to water infiltration and recharge and reduces runoff and soil loss, the PED
model was used in the 95 ha sub-catchment of Debre Mawi. The model was calibrated
with the discharge and sediment concentration in 2016 (Figures 2 and 3). The calibrated
PED parameter values are shown in Table 1. The Nash Sutcliffe Efficiency (NSE) for weekly
data was 0.82 for the hydrology model and 0.80 for the sediment model. By changing the
proportion of the saturated, degraded and hillside areas, the effect of SWC intervention
was simulated before the intervention(2010/2011), during the intervention (2012), and after
the intervention (2014 and 2016) as shown in Figures 2 and 3. The hydrology and erosion
model simulated discharge and sediment concentration satisfactorily to very good [30].
NSE values for discharge ranged from 0.51 to 0.89, and sediment concentration from 0.50
to 0.76 (Table 1). Due to the implementation of the SWC practices, the degraded area with
restricted infiltration decreased from 55% in 2010 and 2011 before the SWC intervention to
2% in 2016, 4 years after implementation (Table 1). The hillside area with infiltration rates
greater than the prevailing increased from 42% before to 97% after implementation. The
saturated areas increased from 3 to 10% from 2010 to 2012 due to the increased infiltration.
Still, they decreased to 1% in 2016 (Table 1), possibly due to the eucalyptus trees planted in
the saturated areas [26].

The SWC implementation reduced the maximum storm flow from around 25 mm per
week in 2010 to 10 mm per week in 2016 (Figure 2). Sediment concentrations were reduced
from 70 to 85 g L−1 before to 40 g L−1 after the intervention (Figure 3). The data clearly
show the benefit of SWC practices within four years after implementation in reducing the
overland flow and sediment loss, as well as the increase in recharge. This recharge will
increase groundwater storage in areas where volcanic dikes or misaligned faults block the
flow [31,32] (without these dikes, a large portion of the recharge is lost as interflow during
the rain phase).
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Table 1. The optimized parameter values of the PED hydrology and erosion model.

Hydrology Model Parameters
Year

2010/2011 2012 2014 2016

Area fraction (%)
A1 (saturated) 3 10 8 1
A2 (degraded) 55 10 8 2
A3 (hillside) 42 80 84 97

Soil maximum
storage (mm)

Smax1 80 80 80 80
Smax2 10 10 10 10
Smax3 60 60 60 60

Soil initial
storage (mm)

Sinit1 15 15 15 15
Sinit2 5 5 5 5
Sinit3 10 10 10 10

Aquifers and interflow

Bsmax (mm) 25 25 25 25
BSinit (mm) 5 5 5 5
Half-life, t½ (day) 45 45 45 45
t star, τ* (day) 300 300 300 300

Nash–Sutcliffe efficiency, NSE (-) 0.59 0.51 0.89 0.82
Erosion model parameters
Source limit
as1 3 3 3 3
as2 3 3 3 3
Transport limit
at1 6 6 6 6
at2 14 14 14 14
NSE 0.50 0.59 0.76 0.80
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Although some authors report long-term benefits, ref. [33] reported in a review of
SWC interventions in the Ethiopian Highlands that are effective over a five-year period. It
agrees with our findings that after four years after the implementation of the SWC practices,
runoff and sediment concentrations are much lower than before implementation. However,
for soil and water conservation practices to perform well over a longer period, they must
be maintained [34].

3.2. Spatial and Temporal Catchment-Scale Discharge and Sediment Concentrations

The experimental discharge and sediment concentration data of the 95 ha sub-catchment
of Debre Mawi are upscaled to the catchment scale in the 716 ha Debre Mawi by combining
the PED hydrology and erosion model with ArcGIS tools. In 2016, the saturated, degraded
and hillside area fractions were 18, 17 and 65%, respectively, for the 716-ha Debre Mawi
delineated from Google Earth and the field observation for the entire 716-ha Debra Mawi
watershed (Figure 4). These percentage areas differ from those in Table 1 because the 95-ha
subwatershed was located in the upper watershed (Figure 1), where we expect less saturation
than in the upper part. Moreover, SWC practices were only implemented in the headwaters.
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With the area fractions for the 716-ha Debre Mawi (depicted in Figure 4) and the
remaining parameters of the hydrology and erosion model parameter sets for 2016 in Table 1,
the combined PED-ArcGIS model simulated the catchment-scale spatial and temporal
variability of storm flow (Figure 5) and sediment concentration (Figure 6) for 2016. The
yellow and blue shades in Figure 5 illustrate where the storm flow occurred in the watershed.
The red regions did not have storm flow. The highest monthly flow occurred in July,
followed by August, May, September, October and June. Some storm flow was generated
in March from the degraded lands (Figure 5) due to 74 mm of rainfall. The rainfall was less
than 1 mm in January, February and April.
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The 2016 annual rainfall and discharge were 1488 mm and 472 mm, respectively.
Subsurface flow from 65% of the watershed (hillside or A3, Figure 4) contributed 45% of
the discharge at the outlet of the entire 716 ha watershed, 30% of the discharge was from
saturated regions (A1) and 25% was from the degraded soils (A2, Figure 7). When calculated
per unit area where the flow originated, the annual runoff in 2016 on the degraded region
was 833 mm (56% of the rainfall), saturated 661mm (44% of the rainfall) and hillside 325 mm
(22% of the rainfall) (Figure 8).

The simulated annual sediment concentration in 2016 was 67.7 kg m−3. Sediment was
lost from the yellow and blue shaded regions (Figure 6). Forty-one percent of the sediment
was lost in July, 22% of the annual sediment load was in June, 13% in May, and 12% in
March. Despite the second-highest runoff, only 8% of the sediment was lost in August. The
much higher sediment losses at the beginning of the rain phase were due to the elevated
sediment concentrations after most croplands were plowed in June and July, and rills were
initiated in the disturbed topsoil without crop cover [15]—the sediment concentrations
before 500 mm of effective rainfall were thus transport-limited. The existing rill network
could facilitate the storm runoff in late July and August, and no new rills were formed.
So, the sediment was source-limited. When the effective rainfall was just over 500 mm
(Figure 9), July was a transition period when some storms were transport-limited and
other smaller storms were source-limited. Gully formation in some parts of the watershed
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contributed sediment to the outlet during the middle and end of the rain phase. This
sediment loss pattern with high concentrations at the beginning of the rain phase and
decreasing concentration after the middle of the rain phase is common in the uplands of
the Ethiopian Highlands [26].
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The PED-ArcGIS model-based discharge and sediment loss analysis confirms that SWC
interventions have the greatest benefit on degraded lands where the infiltration rates of the
subsoil are limited [34] and are the source of most of the sediment lost. Implementation on
the hillside areas with permeable subsoils will not reduce soil loss, since runoff is negligible
from these areas and water is lost by interflow. Despite the relatively high soil losses,
implementing soil bunds, Fanya juu, and trenches on the saturated lands is not advised
since water cannot infiltrate into the water-logged soils. The SWC practices will concentrate
flow and initiate gullies [27]. Instead, these soils should be drained to decrease runoff [35].

4. Conclusions and Recommendations

We explored the potential of SWC interventions to reduce storm flow and soil loss in
an innovative way, combining experimental data with a model and tools. We deployed the
Parameter–Efficient–Distributed (PED) hydrological and erosion model with GIS tools to
evaluate the catchment-scale discharge and sediment concentration status in the Ethiopian
Highlands. We analyzed the effect of widely implemented in situ SWC interventions
on discharge and soil loss in a seven-year study, using data from an experimental 95 ha
sub-catchment, and found that SWC technologies could reduce storm flow and sediment
concentration by converting poorly infiltrating degraded hillslopes land into permeable hill-
slope land. Similar to other watersheds in the Ethiopian highlands, sediment concentration
decreased, and discharge increased with the progression of the rain phase. Compared to the
previous studies which were conducted in similar regions, our research has the following
unique perspective. Using the calibrated model, we examined the spatial distribution of
monthly discharge and sediment concentrations simulated with the PED-ArcGIS model
for the 716-ha watershed. Since the permeable hillside area was the largest fraction of
the watershed, it contributed the most water to the outlet. The sediment loss of this area,
where water moved via the subsurface to the outlet, was less than that of the degraded and
saturated valley bottom. The greatest sediment load came from the degraded areas, less
than 1/5 of the watersheds. Gullies in the valley bottom saturated lands were also a source
of sediment.

Given the productivity and sustainability of the livelihood strategies, priority should
be given to erosion control of the degraded lands by implementing SWC interventions to
increase the infiltration of the rainfall to decrease overland flow and soil loss. For their
benefits to extend for more than five years, regular maintenance is required for erosion
control practices. In addition, gullies that exist in the watershed should also be arrested.
These practices need to be maintained for a lasting benefit.

Since dry season water scarcity is a pronounced problem in the study region, the
second management priority is increasing groundwater storage in the rain phase from
the hillsides to improve dry season water supply. The most appropriate intervention is
blocking lateral water flow; otherwise, due to the sloping terrain, most recharge will be
lost as interflow during the rain phase or shortly after that. Natural blockage occurs by
vulcanic dikes and misaligned faults. To increase groundwater storage during the latter
part of the dry phase, investigations should be undertaken to reduce the leakage through
the dikes. For example, the injection of cement under pressure could be tried. Another
possibility is installing dams in the lower part of the watershed, similar to the sand dams
in other parts of the world with water scarcity, including Ethiopia and Kenya [36].

Despite the novelty of its research approach, the manuscript has some limitations. Be-
cause of time constraints, the research was conducted only in one representative watershed
(Debre Mawi) to test the effects of widely implemented SWC interventions on storm flow
and sediment concentration in the upper Blue Nile basin of Ethiopian highlands. Hence,
we recommended more watershed-based studies in the basin and the Ethiopian highlands,
applying our approach, which we implemented in Debre Mawi. Besides, the PED model
has some limitations. Although its hydrology and erosion model simulated discharge and
sediment concentration with satisfactory to very good NSE values, good performance in
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the hydrological module does not translate directly into good performance in the erosion
module and vice versa (Table 1).
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