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Abstract: Predictive uncertainty (PU) is defined as the probability of occurrence of an observed
variable of interest, conditional on all available information. In this context, hydrological model
predictions and forecasts are considered to be accessible but yet uncertain information. To estimate
the PU of hydrological multi-model ensembles, we apply a method based on the use of copulas which
enables modelling the dependency structures between variates independently of their marginal
distributions. Given that the option to employ copula functions imposes certain limitations in
the multivariate case, we model the multivariate distribution as a cascade of bivariate copulas by
using the pair-copula construction. We apply a mixture of probability distributions to estimate the
marginal densities and distributions of daily flow rates for various meteorological and hydrological
situations. The proposed method is applied to a multi-model ensemble involving two hydrological
and one statistical flow models at two gauge stations in the Moselle river basin. Verification
and inter-comparison with other PU assessment methods show that copulas are well-suited for
this scope and constitute a valid approach for predictive uncertainty estimation of hydrological
multi-model predictions.

Keywords: predictive uncertainty; pair-copula construction; C-Vine; quantile regression; Bayesian
model averaging; multivariate truncated normal distribution; mixture probability distribution

1. Introduction

Hydrological real-time forecasts are important means for decision support in water resources
management and optimal control of rivers, for instance, for navigation or hydropower production.
At the same time, forecasts are invaluable for flood risk management, as demonstrated during
the major floods in Central Europe in June 2013. The benefit of an operational forecasting system
depends foremost on the reliability and accuracy of the hydrological prediction. Excess non-quantified
uncertainty reduces the benefits of predictions in the decision-making process.

Sources of uncertainty in the meteorological-hydrological forecasting chain are attributable to
meteorological observations (i.e., measurement and interpolation errors) and numerical weather
forecasts (chaotic-deterministic behavior of atmospheric processes), model errors and parameter
uncertainty as well as knowledge gaps on initial and boundary conditions of hydrological and
hydraulic models used for flow prediction.
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Rational decision-making on issues such as maximum vessel load, optimized operation of
retention areas to shave flood peaks or timely release of water from reservoirs should optimally
be based on objective cost-benefit analysis. This analysis depends on uncertain predictions of
unknown quantities such as water level, flow rates or inflow volumes to reservoirs. The uncertainty
of the unknown future value y can be characterized by a probability distribution conditioned on all
information available at the onset of the forecast [1]. Ignoring the inherent uncertainty of the prediction,
as in the case of purely deterministic forecasts, precludes truly rational decision-making.

In hydrological forecasting, the future flow rates or water levels are given by output of hydrological
and hydraulic models. The Predictive Uncertainty (PU) of the observed variable at time ¢ is the probability
distribution f (y; | ) of y conditional on a single or multiple model prediction(s) # [2]. The predictive
uncertainty is conditional on the model structure, its parameters and the forcing data. The hydrological
model predictions §j can be a deterministic prediction by single or multiple models (multi-model
ensemble) forced by a deterministic meteorological prediction or by meteorological ensemble predictions.

The definition of PU is often confused with the so called “validation uncertainty”, which is the
ability of a model to reproduce reality [3]. It describes the uncertainty f (§; | y;) of the prediction
conditional on the known observation y. This uncertainty is important to describe and improve the
skill of hydrological models. What is more important to a flow forecaster is the uncertainty of the future
observation given a particular decision than the uncertainty of the hydrological model prediction.

When dealing with uncertainty in operational practice the term has a negative connotation as
an expression of “lack of knowledge”, with the result that uncertain information is still ignored in
many cases, while only the seemingly certain deterministic forecast is considered by operational users.
To overcome this, well knowing that the future is not perfectly predictable, uncertainty should be
rather communicated comprehensively as a measure of “predictive knowledge” [4]. To demonstrate
this, a number of studies revealed the added potential economic value of using probabilistic forecasts
in decision-making [4-6].

In recent years, a large number of different methods have been developed to estimate the PU of
hydrological predictions. Most of the methods use meta-Gaussian models to describe dependency
structures between random variables: prediction(s) vs. observation or prediction error vs. prediction,
as it is much easier to build multivariate distributions when variables are Normal. Hydrologic variables
such as flow rate and water level are generally non-Gaussian. Hence, variables are transformed to
Normal space and the predicted Normal quantiles are then back-transformed to the real space by
means of inverse transformation.

In earlier works on the topic of post-processing and PU assessment in hydrological forecasting,
Krzysztofowicz [1,7] introduced the Bayesian Forecasting Framework BFS handling hydrological
model uncertainty of a single model prediction by means of the Hydrological Uncertainty Processor
HUP [8]. As prior density, a first-order Markov chain is used to model the river process, a representation
which tends to oversimplify reality. A first-order Markov chain can be adequate to represent the
recession curve but not necessarily the rising limb of the flood wave. Another drawback of the HUP
is that linear regression models used for prior density and likelihood cannot easily handle error
heteroscedasticity. Krzysztofowicz and Maranzano [9] extended the HUP to a multivariate version,
which generalizes the univariate HUP to account for the temporal dependence between consecutive
values. Reggiani ef al. [10] applied the HUP, which was originally developed for deterministic forecasts,
to estimate the PU in hydro-meteorological ensemble forecasts.

The Model Conditional Processor (MCP) [2] relies on a meta-Gaussian model to estimate the PU
of the predictions by multiple hydrological models. To address heteroscedasticity in the error variance,
Coccia and Todini [11] extended the MCP by using Multivariate Truncated Normal (MTN) distributions
to model the joint multivariate probability distribution of multiple variates in the Normal space. In recent
applications, the MCP is being extended to include hydro-meteorological ensemble forecasts [12].

Weerts et al. [13] applied Quantile Regression (QR) to consider heteroscedasticity in the error variance.
QR estimates a separate regression relationship for each quantile. Depending on the number of forecast
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models at least two parameters need to be estimated for each quantile, leading to a non-parsimonious
problem of approximating the conditional probability distribution. A potential shortcoming arising
with QR is that quantiles may cross due to their independent estimation. To mitigate this problem,
Lopez et al. [14] applied a non-crossing QR variant. Depending on the distribution of residuals, QR not
always works well with heteroscedastic error structures, a case frequently encountered in the peak flow
range. In this context, Coccia and Todini [11] showed an example, where QR underperforms with respect
to other methods.

Raftery et al. [15] proposed Bayesian Model Averaging (BMA) for PU estimation of multiple
model predictions. Uncertainty is estimated as a weighted mean of the predictive distributions of
individual models. In classical BMA, constant variance is assumed for the predictive distributions of
individual models, irrespective of magnitude of the variable. The assumption of homoscedasticity
of the error variance suffers from the shortcomings already mentioned for HUP with hydrological
variables. BMA has been frequently applied in hydrology over recent years [16-18], while Madadgar
& Moradkhani [18] introduced a combination of copulas and BMA.

Another method to post-process hydro-meteorological ensemble forecasts is Ensemble Model
Output Statistics (EMOS) [19,20], a variant of Model Output Statistics (MOS) [21]. EMOS uses the
variance and the weighted mean of ensemble predictions to estimate the uncertainty distribution.
Madadgar et al. [22] applied copulas in post-processing of stream flow ensemble predictions.

All methods presented thus far are parametric. Brown and Seo [23] proposed a non-parametric
post-processor which is similar to indicator co-kriging in geostatistics. Nevertheless, the accuracy
of a non-parametric distribution remains highly dependent on the number of available observations
and predictions.

Here, we propose to use the so-called pair-copula construction to build the multivariate probability
distribution to estimate the PU of the predictions of three different prediction models: a conceptual,
a physically-based and a statistical hydrologic response model. All three models are forced by observed
meteorological data, implying that all hydrologic uncertainties described above are quantified by
the PU assessment approach. The uncertainty of numerical weather prediction models has been
eliminated, as observations are assumed to constitute “perfect” hindcasts.

The paper is structured as follows: first, we describe the study area and the models used. Then,
we present the copula theory and the pair-copula construction as well as the mixed probability
distributions used to estimate marginal distributions of the random variables. We also describe the
methods applied as reference for uncertainty estimation and verification. Finally, we present the
analysis and discuss the results. The paper ends with a conclusions section. All analyses have been
performed using the statistical software R [24].

2. Materials and Methods

2.1. Study Area

The methods are applied to daily mean flow rates at two gauges in the Moselle river basin, which
is an important tributary of the river Rhine. Two different catchment sizes are considered: gauge
Bollendorf located at the river Sauer with an area of 3,222 km? and a mean flow of 40 m3/s and gauge
Trier at the Moselle with an area of 23,857 km? and a mean flow of 280 m?/s (see Figure 1 and Table 1).
Both gauges show a rainfall dominated (pluvial) flow regime with maximum flow during winter and
early spring and minimum flow in late summer.

Table 1. Validation gauges, catchment area, mean flow, and maximum observed mean daily flow.

Gauge River Area (km?) Mean Flow (m3/s)  Max. Flow (m3/s)

Trier Moselle 23,857 280 3840
Bollendorf Sauer 3213 40 823
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Figure 1. Study area Moselle river, elevation above sea level (digital elevation model DEM),
sub-catchments gauge Trier and gauge Bollendorf, long-term mean monthly flow (1981-2010).

2.2. Hydrological and Statistical Models

Hourly runoff simulations from two hydrological and one statistical models aggregated to daily
values are used to estimate the predictive uncertainty at the two gauges: the conceptual model
HBYV [25], the physically based Representative Elementary Watershed model REW [26,27] and the
statistical model Echo State Networks (ESN) based on artificial Recurrent Neural Networks (RNN) [28].
All models use observed meteorological data, which are spatially interpolated to the subbasins of the
specific models as meteorological forcing series.

For the semi-distributed HBV model, the catchment is subdivided into four (gauge Bollendorf)
and respectively 26 (gauge Trier) subbasins. These subbasins are further subdivided into hydrological
response units according to land use and elevation classes. The hydrological processes for runoff
generation are calculated for those HRUs on the basis of linear conceptual stores. The model
estimates runoff at hourly resolution using temperature and precipitation forcing time series that
have been spatially interpolated to the subbasins. The potential evapotranspiration is derived from
long-term mean daily evapotranspiration values which have been corrected by the effect of actual
temperature [25]. The model has been calibrated for the 1996-2007 period.

For application of the spatially-distributed REW-model, the catchment of gauge Bollendorf is
subdivided into nine Representative Elementary Watersheds (REWs) and the one of gauge Trier into
85 entities. The REWs represent irregularly-shaped modelling elements for which relevant hydrological
processes are identified and modelled. The unsaturated zone is further broken down into subunits
based on land-use and soil type. The main governing equations are upscaled point-scale conservation
equations. Physical governing equations, such as the Richards equation, are also used to describe
vertical moisture diffusion through the unsaturated soil column. Hourly time series of precipitation,
temperature and relative air humidity interpolated toward REWs force the model at 15 min time steps.
The model was calibrated for the 19962011 period.

Recurrent neural networks (RNN) [29] are inspired by the information processing in biological
neural networks. The processing elements represent neurons which are linked by connections.
This connection topology contains feedback loops, and therefore previously received input signals are
still represented in the net (i.e., implement some memory) and influence its output. Mathematically,
a RNN is a dynamical system akin to a system of differential equations. RNNs are able to model
the input-output behavior of dynamical systems which have states evolving over time. The same
temperature and precipitation time series used for the HBV subbasins are applied as input time series
to the RNN. Echo State Networks ESN [28,29] is a method designed for constructing and training large
RNNs. ESNSs are built in a special way, thereby ensuring the so called “Echo State property”, and
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then only the connections to the output nodes are computed in the training phase. This is done using
regression, which is far more simple and stable than gradient-based optimization. This simplicity
enables the training of large networks including thousands of internal nodes. These large nets have
the capacity of learning high-dimensional dynamics of complex systems. Two ESN have been trained
for each gauge for the 2000-2012 period and two flow situations: one with focus on low to mean flow
and the second with focus on mean to high flows. The two outputs are combined on the basis of the
specific situation reproduced by the ESNs. Each ESN had one output node (i.e., the predicted flow),
2000 internal nodes, and eight (gauge Bollendorf) and 40 (gauge Trier) input nodes, i.e., temperature
and precipitation for each HBV subbasin to be considered.

The chief aim of this study is to demonstrate PU assessment using copulas rather than addressing
hydrological calibration and validation strategies. Hence, model simulations are used “as is”, despite
inconsistencies between different calibration and validation periods. The uncertainty processor was
applied to the 1 October 2000 to 30 September 2015 period.

2.3. Copula Theory

A copula is a function that describes the dependence structure of correlated random variables
independently from marginal distributions. Due to their flexibility in modelling different dependence
structures, copulas are increasingly applied in multivariate analysis for flood frequency analysis,
drought analysis, dam risk assessment and rainfall processing [30-33]. In hydrological forecasting,
Madadgar et al. [18] and Madadgar and Moradkhani [22] applied copulas for statistical post-processing
of hydrological ensemble forecasts.

For sake of brevity, we give only a short overview about copulas here. For a more detailed
description of the theory, the reader is referred to [34-36].

After Sklar’s theorem [37] a joint multivariate probability distribution of n correlated variates X7,
X5, X3, ..., Xy can be described through the copula function C. The copula function is a multivariate
distribution function of an n-dimensional random vector on the unit cube, i.e., C: [0,1]" — [0,1],
and is strictly invariant under the condition of monotonously increasing transformations of
Xl, Xz, X3, ceey Xnt

Fx, X,,.. X, (X1,%2,..y) = C [Fx, (x1), Fx, (x2), ..., Fx, (xn)] = C (1,42, ..., ) (1)

where 1y, uy, ..., uy € [0,1] are uniformly distributed random realizations of the variates defined as

uy = FX1 (Xl), Uy = FXZ (XZ), cee U = FXn (xn).
The joint multivariate density function is expressed via the copula density c as follows:

’UT’lC M1,1/l2, Z u
X1, %0, X (X1, X2, X)) = oy, fo =c ul/MZ/---/un)Hin (x;) )

2.4. Pair-Copula Construction

For the bivariate case, which models the dependency of two random variables, a large number
of copulas are available [34,35]. By contrast the number of available copula functions for the
multivariate case is rather limited and the applicable elliptical (Gaussian copulas, Student t copulas)
and exchangeable Archimedian copulas lack the flexibility to model dependency structures of multiple
heterogeneous random variables. To overcome this problem, the concept of Vine copulas has
been developed [38-41]. Vine Copulas are a flexible graphical model to build multivariate copulas
from a cascade of bivariate or pair-copulas. The advantage of this pair-copula construction is the
decomposition of the multivariate probability density into several bivariate copulas, which can be
selected independently. Vine copulas have been originally applied in the area of risk-modelling in the
financial sector and more recently also in hydrology [42-44].
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As there are a significant number of possible pair-copula constructions for high-dimensional
distributions (e.g., 240 different constructions for a five-dimensional density [45]), Bedford and
Cooke [39,40] introduced the graphical model, the so called Regular Vines, which help to organize
possible combinations. In this application, we concentrate on the special case of C(anonical)-Vines [45],
which we consider the most suitable pair-copula construction for the estimation of the PU of
hydrological multi-model ensembles. All conditional random variables can be directly linked to
the random variable of interest, the observation (random variable 1 in Figure 2).

Figure 2 shows the graphical representation of a four-dimensional C-Vine copula. It consists of a
number of random variables n — 1 trees T, Tree T; has n + 1 — j nodes and n — j edges. In total, the
decomposition is defined by n (n — 1)/2 edges and each edge is represented by a pair-copula density.
The labels of the edges represent subscript of the copula density, e.g., 13 |2 denotes the copula density
c1312(+) [39,45].

12 @
”1\/13@ @ 20
” 2414

Tree T, Tree T, Tree T,

Figure 2. Graphical representation of a 4-dimensional C-Vine copula [45].

The n-dimensional density of the C-Vine copula is defined as:

n—1n—j

flaeyeoxn) =10 TTT Tejinmio [F (35[0 xim1) F (x4 |x1, oo x-0)] B)
k=1 j=1i=1

with j sweeping the trees and i sweeping the edges in each tree.
The conditional distribution functions for each node in a tree are determined by sequentially
applying the following equation over the previous trees:

6Cx,vj|v7j [F (x\v_]-) F (Uj|v—j)]
OF (vj[v)

F (x|v) = 4
with the m-dimensional vector v, vj an arbitrary element of v and v ; the (m — 1)-dimensional vector v
excluding element vj.

When applying C-Vines, the PU of the random variable observation (random variable X, in
Figure 2) conditional on other variables can be solved analytically by means of Equation (4). In this
case, the key variable has no direct connection to the remaining variables in the most important
first tree, and the dependence is only modelled indirectly in the downstream trees. Hence, it is
recommended to locate the key variable at the root (variable Xj in Figure 2) of the C-Vine copula [45].
The conditional copula density of the root variable conditional on the other variables is:

C1,23,.,n (U1, U2, U3, ..., Uy)
123, (1] 2, U3, s i) = 23 ; (u; u; , u,)n 5)
=y ’ 7o in

As the pair-copula only “approximates” the full copula density, it is difficult to derive the
lower-dimensional copula density in the denominator analytical. In this application, we calculated the
copula density in the denominator by integrating c; o ... , numerically over the first variable between
0 and 1 while fixing the remaining ones.
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The PU of the observation y, conditional on multiple hydrological predictions §, can be finally
expressed via the numerical integration of Equation (5) as:

EWl91,92,,9n) = | c1ppg..n (1] t2 = F(§1),u3 = F(92) oy tin = F (Jn)) dig (©)

o

The selection of the pair-copula families and the parameter estimation of the C-Vine copulas
is done stepwise [46]. In the selection process, the appropriate pair-copula functions are selected
sequentially tree by tree as the conditional pairs of the higher order trees depend on the previous
trees. The copula functions are chosen via Akaike’s Information Criteria (AIC) [47] and the canonical
maximum likelihood method [48] for parameter estimation among the following options [34,35,46]:
Gaussian, Student t, Gumbel, Joe, BB1, BB6, BB7, BB8 copula as well as the corresponding survival
copulas (rotated by 180 degrees) of the Clayton, Gumbel, Joe, BB1, BB6, BB7, BB8. The canonical
maximum likelihood method estimates the parameters of the copula function independently of the
uncertain estimation of the marginal distributions, as it uses empirical probabilities to transform
the sample data into the uniform variates. After selecting the copula families and estimating their
parameters for all edges sequentially, the parameters of the whole C-Vine structure are optimized
simultaneously by maximizing the log-likelihood of the C-Vine copula [46]. The goodness-of-fit of
the pair-copulas are analyzed graphically by comparing the bivariate sample values with simulated
values from the estimated copula in the copula space and for the copulas of the first tree also in the
original space. Moreover, the empirical and theoretical A-functions [49] defined as A = v — K(v), with
K(v) Kendall’s distribution of the random variable C(u1, 1) are also compared. In this application, the
C-Vine choice and parameter estimation was performed with the R-package CDVine [46].

2.5. Marginal Distributions and Normal Quantile Transform

In most of the existing approaches for PU estimation, meta-Gaussian models are applied to
describe the joint distribution between the transformed real (observed) and simulated values of the
variable of interest. Simulated and observed values are transformed to the Normal space by means
of the Box-Cox transformation [50], log-sinh transformation [51] and the non-parametric Normal
Quantile Transform (NQT) [52-54], which, however, has limitations in extrapolating the relationship
between the values in the Normal and real space beyond the range of the historically observed values.
The non-parametric NQT relationship between the values in the real space and the values in the
Normal space are calculated from the empirical probabilities and the corresponding quantiles of a
standard Normal distribution. A detailed description of the application of the NQT can be found
in [2]. Parametric models are needed at the tails of the NQT to extrapolate values beyond the range of
available observations. Several methods have been developed to handle this problem [11,55].

In the application described here, we use parametric probability distribution functions as marginal
distributions F(y) for the application of copulas according to Equation (6), and to transform the
observed and predicted values y to the Normal space 17 when applying other PU estimation methods
for inter-comparison of results (see Section 2.6):

n=o"1(F(y)) @)

with ®~! the inverse cumulative distribution function of the standard Normal distribution.
Estimating parametric probability distributions of daily flow rates and/or water levels is often
difficult, as the values arise from completely different meteorological and hydrological situations (e.g.,
low flows, high flows) and can in most cases not be described via one single probability distribution.
For this reason, a mixture of probability distributions has been developed to better represent
the distributions of heterogeneous data [56-58]. Solari and Losada [58] used a mixture of probability
distributions with a truncated central distribution and two generalized Pareto distributions for the
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maximum and minimum regimes of mean daily flow time series. The latter approach was used here to
estimate the marginal distributions of the random variables.

By considering two thresholds 17 and ujy, the probability density function (pdf) and the cumulative
distribution function (cdf) of the mixed probability distribution are defined as:

fm (y) Fe (u1) Yy <u
fW) =1 fely u <y <up ®8)
M) [1=F(u2)]  y>u

Fi (y) Fe (u1) y<i
F(y) =1 Fc(y) w <y<u 9)
Fe(u2) +[1 - Fe (u2)]Fm(y)  y>un

The multiplication of the lower distribution f,,(y) with F.(u1) and the upper distribution f(y)
with [1 — Fc(up)] is required to ensure the area under the probability density graph to equal unity.

For the lower distribution a minima Generalized Pareto (GP) distribution and for the upper
distribution a GP distribution is used. The type of the central distribution function can be selected
independently of the upper and lower distribution as long as it is defined in the range u1 to u,.

The pdf of the minima GP distribution is a mirrored (y = —y) GP distribution density (defined as
maxima GP distribution in the following) and the pdf and cdf are therefore defined as:

1
k ——1
fm (y) = alfl [1 - i (1 —y)] k (10)
1
Fun (y) = [1 - % (ug — y)] k (11)

The minima GP distribution has an upper boundary u; for negative k: y < uy; k; <0 and a lower
and upper boundary for positive k: u; —ay/k; <y <uy; k; >0.
The pdf and cdf of the maxima GP are defined as:

1
——1
fu ) =+ [1 By Mz)] k2 12)
1
Fy(y) = 1- [1 By uz>] k2 13)

The maxima GP distribution has a lower boundary u;, for negative k: 1, <y; k» <0 and a lower
and upper boundary for positive k: 1y <y <up +ay/ky; ko > 0.

In the parameter estimation process of the mixture probability distribution, one needs to make
sure that no discontinuities occur in the transition of the pdfs at the thresholds u; and u;. Using the
conditions fo(y = u1) = fu(y = u1) Fe(uq) and fe(y = up) = fp(y = up) [1 — Fc(up)] the parameters a1 and a,
of the generalized Pareto distributions are obtained as:

Fe(u)) 1= F(u)

fwm) ™7 fw) 14

a) =
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By defining a lower b; and upper boundary b, of the mixture probability distribution as an
additional condition, the shape parameters k; and k; of the GP distribution result equal to:
a

a2
ki = ; ky =
ey A A S, (15)

The remaining parameters of the mixture probability distribution left to estimate are the central
distribution and the thresholds u1, u;. All parameters are estimated simultaneously using maximum
likelihood estimation. Solari and Losada [58] used a two-parameter log-Normal distribution as central
distribution function f,. In this application, different types of central distributions (generalized Extreme
Value, Logistic, generalized Logistic, Pearson3, log-Pearson3, Frechet, Gamma, Normal, log-Normal,
Weibull, log-Weibull, Gumbel, Exponential, and generalized Pareto distribution [59]) were applied and
the type of distribution with the best fit based on the AIC was selected.

2.6. Alternative Methods applied for PU Estimation

The results of the COpula uncertainty Processor (COP) defined in Equation (6) are compared
against the results of three frequently used methods: Quantile Regression (QR) [13,14], Bayesian Model
Averaging (BMA) [15-18] and Multivariate Truncated Normal (MTN) distribution as e.g., applied in
the Model Conditional Processor [11]. Only a short overview of the theory of the methods is given here.
For further details, we refer to the cited publications. When applying these methods, the observed and
simulated values y are first transformed to the Normal variable # (model predictions are indicated by
the hat symbol) and the estimated quantiles of the predictive uncertainty are back-transformed to the
real space by the inverse transform. Here, the values are transformed to the Normal space by means of
the same parametric mixture probability distributions used as marginal distributions in the COP via
Equation (7). Hence, differences in results are attributable exclusively to the specific PU method and
do not depend on the marginal distribution or the transformation method.

As done with QR, we fit separate multiple linear regression relationships for each quantile T via
optimized linear programming [60] using the model predictions as predictors. To approximate the
predictive distribution, multiple quantiles need to be estimated using;:

M
Hel A1 iz i = ac + . by if (16)
i=1

with a¢, by, the parameters of the multiple linear regression relationship and M the number of models.
The R-package quantreg [61] was used for parameter estimation.

The BMA predictive distribution is a linear combination of conditional probability distributions
of observation, conditional on model predictions and given that the prediction is the best possible in
the ensemble. Assuming Normal conditional distributions, the BMA predictive uncertainty is:

M
f(’?\ﬁllﬁz--w’?M)=ZwiN<’7\ﬂi+bﬂ7i/Uiz) (17)
i=1

where w; is the posterior probability of prediction i being the best, and M the number of models.
The weights w; are non-negative and add up to unity [15]. The conditional Normal distribution
of the individual model prediction is centered on a linear dependency for the model prediction.
Parameters a; and b; act as bias correction factors. The weights w; and standard deviations o; are
estimated from past model performance. We applied a two-step parameter estimation procedure:
(1) maximize log-likelihood with the Expectation Maximum (EM) algorithm to estimate weights and
standard deviations and (2) minimize the Continuous Ranked Probability Score (CRPS) by applying
Equation (23) to optimize the estimation of the standard deviations. This procedure is implemented in
the R-package ensemble BMA [62].
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To consider error heteroscedasticity in PU estimation [2,11], MTN distributions can be used
instead of the simple multivariate Normal distribution. Here, a combination of two MTN distributions
is used. The split of the multivariate Normal space into two parts is obtained by identifying an
M-dimensional hyperplane:

=

Hy=Y#i=M-a (18)

I
—_

with M the number of prediction models. The value of a is identified by minimizing the predictive
variance of the upper sample. The predictive distribution for the sample above the truncation
hyperplane is defined as:

A N 2
f(nlix=ni, Hf > M-a) =N (P’nmk:ﬁ:ﬂ;"ww"n|ﬁk=r7;*,H;<>M-a> (19)

with the predictive mean
—1 (A N
Poli=if HE>Ma = B T 2,7,7 g (nE — ) (20)

and predictive variance

—1sT
Sy — Sy Zan Tag (21)

2 =
Tuli=jt Hi>Ma
The model parameters mean, variance and covariance matrices are estimated from the data of
the upper sample. The predictive distribution of the lower sample looks similar but is defined for the

values of the sample below the truncation hyperplane Hj < M - a. For more details see [11].

2.7. Verification

We base the verification of the predictive distributions estimated with the methods described
above on the paradigm of maximizing the sharpness of the predictive distributions subject to calibration [63].
Calibration refers to the statistical consistency between the predictive distribution and observations.
The percentage levels of prediction intervals should be equal to the relative frequency of the
observations to lie within the corresponding quantiles of the predictive distribution. Another common
term for calibration in the present context is “reliability”. Sharpness refers to the concentration of
the predictive distribution. The more concentrated (“narrow” prediction intervals) the predictive
distribution, the sharper the prediction.

Reliability is assessed via the probability integral transform (PIT) [63]. From predictive distribution
the non-exceedance probability is estimated for each value observed. These probabilities should have
a uniform distribution, i.e., the observations should look like random samples from the predictive
distribution. When deriving the relative frequencies of the non-exceedance probabilities for defined
10% quantile intervals, one obtains the PIT-histogram. A flat histogram indicates good calibration,
whereas under-dispersion is indicated by a u-shape and overdispersion by a n-shape, respectively.
Sharpness is assessed by the distribution within the 5%-95% credibility interval of each verification
day. The distribution is illustrated by a modified Box-Whisker-Plot: the box represents the 25%—75%
quantile, the median is the band inside the box and the whiskers represent the 5% and the 95% quantile.
Outliers are not shown. Additionally, the predictive distribution is verified by the probabilistic
verification measures Brier Skill Score (BSS) and the Continuous Ranked Probability Skill Score
(CRPSS), two combined measures of reliability, sharpness and accuracy.

The Brier Score (BS) is a common verification measure of binary events (yes/no). It expresses the
mean squared error of the probability forecast p;, considering that observation o; is 1 if the event occurs
and 0 in its absence [21]:

BS =

|-

D (pi—o0)? (22)
i=1
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with n the number of verification days. In this application, the event is defined as the exceedance vs.
non-exceedance of flow rate thresholds ranging from the 5% quantile to the 95% quantile of observed
daily mean flow values.

The Continuous Ranked Probability Score (CRPS) verifies the full continuous distribution and is
the squared difference between the predictive distribution F / and the distribution of the observation
Fio [21]

CRPS=3§1 [ 5 w-rew] a @3)

whereas the probability distribution of the observation is a cumulative-probability step function that
jumps from 0 to 1 at the point where the variable y equals the observation.

The corresponding skill scores CRPSS =1 — CRPSpor/CRPSggr and BSS =1 — BSror/BSggr are
calculated from the CRPSror and BSror of the predictive distribution and the CRPSggr and BSggr
of the reference forecast, for which the climatological forecast, i.e., the observed daily mean flow of
the period from 1 October 2000 to 30 September 2015 is used. Due to the strong seasonality of the
flow at the two gauges (see Figure 1) the CRPSS and BSS are calculated for each month separately and
the climatological forecast is calculated only from the observed values of the corresponding month
excluding the current month of verification. A perfect forecast has a skill score of one, negative skill
score values indicate that the climatological forecast is superior to the predictive uncertainty derived
from the model predictions.

The accuracy of the expected value of the predictive distribution as well as the goodness-of-fit of
the deterministic model predictions is verified with the modified Kling-Gupta efficiency KGE’ and its
respective components [64]:

KGE = 1=/ =12+ (B~ 12 + (v~ 12 @
_ Cov(y,9) (25)
090y
My 26
P Hy -
CVy _ oy/Ky 27)

T=¢ Vy  oy/py
where p is the Pearson correlation between the observation and prediction, § is the bias ratio, v is
the variability ratio which uses the ratio between the coefficient of variation of the prediction and the
observation. All components have their optimum at unity and the KGE’ gives the lower limit of the
three components [64].

The expected value of the predictive distribution is calculated as the mean of 1%-quantiles of the
predictive distribution.

3. Results and Discussion

We applied the COP introduced here and the other uncertainty processors to estimate the PU
of the observed daily mean flow values conditional on model predictions at two gauges located in
the Moselle river basin for the 1 October 2000 to 30 September 2015 analysis period. To ensure that
no flow values are simultaneously used for parameter estimation and validation of the predictive
distribution, we used a Leave-One-Out Cross Validation (LOOCYV) procedure. For each validation
year, the parameters of the uncertainty processors were estimated from the values of the study period,
by excluding the values of the validation year. In total, the parameters of each uncertainty processor
were updated once per validation year.
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3.1. Model Predictions

The goodness-of fit of the three model predictions is reported in Table 2 for the whole 1 October
2000 to 30 September 2015 study period. All models are in better agreement with observations at
gauge Trier, which has the seven-fold upstream catchment area of gauge Bollendorf, based on the
goodness-of-fit measure modified Kling-Gupta Efficiency KGE’ and its components. From the values
in the table, it is evident that the KGE’ provides the lower limit of its respective components. At both
gauges, the predictions of the HBV model show significant bias, whereas the ESN model has difficulties
in capturing the variability of the observations at both gauges. The REW predictions show a significant
bias only at the gauge Bollendorf. Concentrating on the linear relationship between observations
and predictions in terms of cross-correlations, the HBV model shows the best results at both gauges.
Overall, no model outperforms the others at both gauges and for all measures.

Table 2. Goodness-of-Fit (GoF) measure KGE’ and its components for the two hydrological model
predictions HBV, REW and the prediction with the echo state network model ESN for the period
1 October 2000 to 30 September 2015 at the gauges Bollendorf and Trier.

GoF Measure Bollendorf Trier
HBV ESN REW HBV ESN REW
KGE’ 0.85 0.78 0.75 0.83 0.87 0.85
Correlation p 0.94 0.89 0.89 0.95 0.95 0.89
Bias-Ratio B 1.10 0.99 1.22 0.84 1.03 1.01
CV-Ratio v 0.91 0.80 1.05 0.95 0.88 1.10

3.2. Estimation of the Marginal Distributions

In a first step of the PU estimation using the COP (Equation (6)), the marginal distributions of the
random variables need to be estimated. Mixture probability distributions (Equations (8) and (9)) have
been fitted to the observed mean daily flow values as well as to the HBV, REW and ESN predictions at
the two gauges.

In the parameter estimation process, a flow rate 0 m>/s was used as lower and three times the
maximum rate as the upper boundary. For the distribution of the observed values, the maxima shown
in Table 1 and for the distributions of the predictions the maximum values of the simulated time series
1 October 2000 to 30 September 2015 were used. The types of the central distributions have been
selected based on the AIC, using the maximum likelihood method for parameter estimation.

Figure 3 shows the cumulative distribution function (cdf) plots of the mixture distributions fitted
to the observed daily mean flow at gauges Bollendorf and Trier and the two thresholds u; and uj.
At Bollendorf, the identified central distribution of the mixture distribution was the log-Pearson3
and, at Trier, the generalized Pareto distribution using all data of the 1 October 2000 to 30 September
2015 analysis period. The selection of the type of the central distribution is relatively stable. When
using the LOOCYV subsample sets at gauge Bollendorf, the same distribution (log-Pearson3) was
identified 10 times out of 15 subsamples and, at gauge Trier, the same distribution (generalized Pareto
distribution) was identified for all subsamples. The variability of the fitted distributions and the two
thresholds u; and u; for the different subsamples in the LOOCYV are shown in Figure 3 as dotted lines.

At gauge Bollendorf, several values are above the theoretical distribution at the upper tail. This is
due to the fact that the highest observed flood in the last 56 years at gauge Bollendorf falls within the
15-year study period. The daily flow rates of this flood have therefore a lower probability of occurrence
than the empirical probabilities shown in Figure 3. The overall fit of the modeled distributions is
satisfactory on visual inspection. For the mixture distributions of the individual model predictions,
other central distributions have been identified in the selection process.
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Figure 3. Cumulative distribution function (cdf) plots of the mixture distributions (red) fitted to the
observed daily mean flow at (a) Gauge Bollendorf; and (b) Gauge Trier and the two thresholds 14
(blue) and u; (green) using all data (solid) and Leave-One-Out Cross Validation (LOOCV) subsample
sets (dotted) for parameter estimation. The probabilities on the x-axis of the cdf are in a log-log scale.

3.3. C-Vine Copula Selection and Estimation

In the next step of the COP estimation, the C-Vine structure needs to be defined. As the central
variate 1 in Figure 2, we chose the “observations” because it is directly linked to the other variables in the
first tree. The other random variables in Figure 2 are HBV (2); ESN (3); and REW (4). Other combinations
of variates 2—4 would lead to slightly different but overall similar results. The bivariate copula
families have been selected based on the AIC using the canonical maximum likelihood method for
parameter estimation.

The scatter plots in the second column of Figure 4 show that all bivariate random samples have a
different dependence structure but all of them indicate an upper tail dependence, implying that the
two variates behave similarly at the upper tail of the distribution. Hence, we use only bivariate copulas,
which allow modeling upper tail dependence. The frequently used Clayton and Frank copulas are not
selected because of their poor capability to represent upper tail dependence.
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Figure 4. Estimated bivariate copulas of the first tree of the C-Vine for the bivariate samples observation
and HBV prediction (first row); observation and ESN prediction (second row); observation and REW
prediction (third row) of (a) gauge Bollendorf; and (b) gauge Trier using all data of the analysis
period. Shown are the scatter plots of the bivariate sample (red) and a random sample (10 times the
size of the bivariate sample) from the fitted copula (black) in the copula space (first column) and
back-transformed to the real space (second column). In the third column, the empirical A-functions
(black) and the theoretical A-functions (grey) are shown. The dashed lines are bounds corresponding
to independence and comonotonicity (A = 0), respectively.

Figure 4 illustrates the goodness-of-fit of the estimated bivariate copulas of the most important
first tree of the C-Vine copula at both gauges using all data of the 1 October 2000 to 30 September 2015
analysis period.

In the first column, the scatter plots of random pairs chosen from the selected pair-copulas with
the sample values in the copula space are compared, while in the second one the back-transformed
values using marginal distributions are compared in the real space. The size of the respective random
samples is 10 times the size of the bivariate sample. Comparing simulated and sample values in the two
scatter plots, we can conclude that the fitted copulas are able to capture the dependence structure of the
bivariate samples. In the third column the empirical A-functions (black) of the bivariate samples and
the theoretical A-functions (grey) of the estimated pair-copulas are shown. The dashed lines below and
above are bounds corresponding to independence (lower line) and comonotonicity (A = 0), i.e., perfect
positive dependence, respectively. As the empirical A-functions are near the line of co-monotonicity, there
is a strong dependence between all considered combinations of the random variables. Overall, the fitted
copulas show good agreement with empirical values. We note that for nearly all pair-copulas estimated at
both gauges, there is a deviation between theoretical and empirical functions when the random variable v
= C (u1, up) takes on values between 0.1 and 0.3. No theoretical copula function exists, which is able to
capture the irregularity in the A-function of the bivariate sample data present at both gauges.

Table 3 shows the identified pair-copula families using all data and the LOOCYV subsample sets
for the gauge Trier. It is evident that the identification of the pair-copulas is relatively stable as the
same copulas are identified for nearly all subsamples. In the LOOCYV procedure, these copula families
are used to estimate the PU.
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Table 3. Pair-copula families of the C-Vine identified using all data and LOOCYV (validation year as
identifier) at gauge Trier.

LOOCV Tree 1 Tree 2 Tree 3
Sample Covs,HBV Cobs,ESN Cobs,REW Cupviesniobs CHBVREWIObs CESN,REW|Obs,HBV
All Data Gumbel BB1 BB8 Student t Student t Student t
2001, 2014 Gumbel BB1 BB8 Student t Student t Independence
2002, 2004 BB1 Student t BB8 Student t Student t Independence
2003, 2005, 2006,
2007, 2008, 2009, Gumbel BB1 BBS8 Student t Student t Student t
2010, 2013, 2015
2011 Gumbel Student t BB8 Student t Student t Independence
2012 BB1 BB1 BB8 Student t Student t Independence

3.4. Verification

The quality of the estimated predictive distributions using the COP (Equation (6)) and results
of BMA, QR and MTN distribution (Equations (16), (17) and (19)) are verified and compared below.
Based on the verification metrics presented before, the measures sharpness, reliability and accuracy
of the estimated predictive distributions are verified and compared for the whole study period.
All verification results are based on the estimated predictive distributions from the LOOCYV strategy.
Hence, no values are used simultaneously for parameter estimation and verification.

In Figure 5, the reliability of the estimated predictive distributions is depicted as Probability
Integral Transform (PIT)-histograms. For the predictive distribution estimated with the COP, the
number of observations in the lower quantile ranges (10%-40%) are slightly below and the number of
observation in the lowest quantile range (0%—-10%) are above the optimal value of 10% at both gauges.
The shape of the COP PIT-histogram at both gauges could be an indication of a small negative bias.
The shapes of the PIT-histograms of BMA and MTN indicate over-dispersion at both gauges, which
suggests that the estimated variance of the distributions is too large. The highest reliability indicated
by the flat shape of the histogram is that of the QR approach, which is reasonable since the parameters
of QR quantiles are optimized based on reliability. Moreover, in QR, the number of fitted parameters
is considerably higher than that of the other methods. For each quantile, four parameters need to be
estimated. This means that, in total, 36 parameters have been estimated for the nine quantiles 10%-90%
used for reliability verification. Despite small overall differences, we conclude that all estimated
predictive distributions can be considered reliable with outperformance of COP and QR.
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Figure 5. PIT-histograms (a) gauge Bollendorf; (b) gauge Trier. Upper left COpula uncertainty
Processor (COP), lower left quantile regression (QR) upper right Bayesian Model Averaging (BMA),
lower right Multivariate Truncated Normal (MTN) distribution.

Verification of reliability as well as calibration is only meaningful in combination with the
assessment of sharpness, which is an attribute of the prediction alone. For sharpness assessment of the
predictive distributions, the width of the 5%-95% quantile range is calculated for each verification day.
The smaller the widths of the quantile range the sharper and more adherent the predictive distribution
is. Figure 6 shows important quantiles of the distribution of the widths as modified box plots.

The upper part of Figure 6 illustrates the coverage, which measures the proportion of observations
that fall within the 5%-95% quantile range. In principle, 90% of observations should fall within
this interval, which is the case in all applied methods. QR and COP provide sharper predictions
than MTN and BMA. Other quantile ranges analyzed (10%-90%, 25%-75%, not shown here) show
similar tendencies.
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Figure 6. Distributions of the 5%-95% quantile widths are shown as modified boxplots at (a) gauge
Bollendorf; (b) gauge Trier. The box represents the 25% to 75% quantile, the median is the band inside
the box and the whiskers represent the 5% and the 95% quantile. Outliers are not shown. In the upper
part of the figure, bars represent the “coverage”, i.e., the percentage of observations falling in the
5%-95% quantile range.

To assess the predictive performance of the estimated distributions for different runoff situations
(low flow, mean flow, high flow), we calculate the Brier Skill score for the non-exceedance probabilities
of different flow rate thresholds, ranging from the 5%-95% quantile of the observations. Figure 7
shows the BSS values at the two gauges.
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At both gauges, all methods show similar skill in terms of BSS for all flow rate thresholds.
At gauge Bollendorf, QR and MTN show a higher skill for higher quantiles and a lower skill for smaller
quantiles than COP and BMA. Overall, the predictive performance of all methods is comparable at
both gauges. We note a local maximum at the 25% quantile of all methods at both gauges. For larger
quantiles, the BSS decreases and then rises again with threshold values higher than the 50% quantile.
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Figure 7. Brier Skill Score for different flow rate thresholds (a) gauge Bollendorf; (b) gauge Trier.
COpula uncertainty Processor (COP) blue line, Bayesian Model Averaging (BMA) green line, quantile
regression (QR) orange line and Multivariate Truncated Normal (MTN) distribution brown line.

This effect could correspond to the irregularities observed in the empirical A-function of the
bivariate samples at both gauges in Section 3.3 related to the prediction performance of the applied
prediction models, which cannot be captured by the theoretical functions.

Table 4 shows the probabilistic verification measure CRPSS together with the deterministic
goodness-of-fit measure KGE’ and its components. These are indicators of the accuracy of the expected
value of the predictive distributions. Noting that the CRPS is the integral of the BS over all threshold
values, the CRPSS values in Table 4 confirm the results of the BSS analysis above. At both gauges,
the skill scores of the different methods are similar. A comparison of the results with goodness-of-fit
measures for model predictions in Table 2 reveals that all methods lead to a significant improvement
of model predictions in deterministic terms. By focusing on the bias ratio, it becomes evident that the
post-processing methods also act as bias-correction. At gauge Trier, also the variability of the expected
value of the predictive distributions is very similar to that of observations. In general, all methods
perform similarly based on the verification measures in Table 4 with no particular method clearly
outperforming the other.

Table 4. Deterministic Goodness-of-Fit (Gof) measure KGE’ and its components of the expected values
of the predictive distributions estimated with the COpula uncertainty Processor (COP), Bayesian Model
Averaging (BMA), Quantile Regression (QR), Multivariate Truncated Normal (MTN) distribution and
the probabilistic skill score CRPSS of the predictive distributions for the gauges Bollendorf and Trier.

Bollendorf Trier
GoF Measure
cor BMA OR MTN cop BMA QR MTN
KGF' 0.91 0.90 0.90 0.93 0.96 0.96 0.96 0.96
Correlation p 0.94 0.94 0.94 0.94 0.97 0.97 0.97 0.97
Bias-Ratio 1.03 1.05 0.99 1.00 1.00 1.01 1.00 1.00
CV-Ratio ¢ 0.95 0.94 0.92 0.95 0.99 0.98 0.97 0.98

CRPSS 0.61 0.62 0.63 0.63 0.71 0.71 0.72 0.72
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To highlight the effect of different model ensemble combinations on PU estimation, we show
the verification results of the predictive distribution at gauge Trier using COP for different model
combinations in Table 5. It is clear that the combination HBV-ESN and ESN-REW performs similarly
compared to the case in which all three models are used. Adding another model prediction improves the
results only marginally. When comparing the results of only HBV against the HBV-REW combination,
there is no significant increase in performance, implying that the REW model prediction does not add
information with respect to HBV. On the other hand, the performance increases considerably when
adding the ESN model to either HBV or REW, indicating that the completely different type of model
structure, which is of statistical black-box type, contains complementary information.

Table 5. Deterministic Goodness-of-Fit (GoF) measure KGE’ and its components of the expected
values of the predictive distributions estimated with the copula uncertainty processor with different
combinations of model predictions and the probabilistic skill score CRPSS of the predictive distributions
for the gauge Trier.

HBV HBV ESN

GoF Measure =~ HBV REW ESN HBV ESN REW ESN REW REW
KGE' 0.96 0.95 0.95 0.86 0.96 0.95 0.96
Correlation p 0.97 0.95 0.96 0.90 0.96 0.96 0.96
Bias-Ratio 1.00 1.00 1.00 1.01 1.00 1.00 1.00
CV-Ratio 7y 0.99 0.98 0.97 0.90 0.99 0.98 0.97
CRPSS 0.71 0.64 0.66 0.49 0.70 0.66 0.69

Figure 8 illustrates the uncertainty bands of the different methods applied for the winter 2002,/2003
flood at gauge Trier. The REW model overestimates the flood peak, while ESN underestimates it. In this
case, the HBV prediction represents the flood event almost perfectly. Besides the large differences
between individual model predictions, the observed values fall well within the 5%-95% uncertainty
range for all PU methods applied. The uncertainty bandwidths show the PU densities of QR and COP
are sharper with respect to those of the other two methods. The wider uncertainty bands of BMA and
MTN confirm the results of the sharpness verification. In summary, we conclude that all methods
provide a satisfactory PU estimate for this event.
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Figure 8. Predictive uncertainty of the flood event 15 December 2002-18 January 2003 at the
gauge Trier estimated with the COpula uncertainty Processor (COP) (a), Bayesian Model Averaging
(BMA) (b), quantile regression (QR) (c) and Multivariate Truncated Normal (MTN) distribution (d).
Model predictions of HBV (continuous), ESN (dashed) and REW (dotted) as red lines.
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4. Conclusions

The assessment of predictive uncertainty (PU) has become increasingly important in hydrological
forecasting over recent years. For this purpose, a variety of methods have been developed and applied
to estimate the PU of variables of interest, conditional on hydrological model predictions. In this
paper, we introduced a COpula uncertainty Processor (COP), which uses the concept of pair-copula
construction to model the multivariate distribution of observation and model predictions. It allows
to adequately model different dependence structures among random variables. For the required
estimation of the marginal distributions of the variables, we apply mixture probability distributions,
given that the flow rates depend on particular hydro-meteorological situations.

We apply the COP to the estimation of the PU for a hydrological and statistical multi-model
ensemble at the gauges Bollendorf and Trier in the Moselle river basin. Predictions by the models
HBV and REW with conceptual and process-based representation, respectively, as well as the
artificial recurrent neural network model Echo State Networks (ESN) serve as random predictors for
conditioning PU estimation.

The verification of the quality of the predictive distribution estimated with the COP and the
comparison with the results of three other uncertainty processors—BMA (1); OR (2); and MTN
(8)—reveals that the COP is very well suitable to estimate the PU. Especially in terms of sharpness,
the performances of the methods show differences. The predictive distributions of the COP and
the QR are considerably sharper than BMA and MTN. The wider uncertainty bands of the BMA
can be explained by use of constant variance for the predictive distributions of individual models,
which cannot account for heteroscedasticity of the error variance, and the superposition of the
predictive distributions. The larger the differences between the individual model predictions the
wider the uncertainty distribution. Results of the sharpness verification are confirmed in the reliability
verification via the “Probability Integral Transform” (PIT)-Histogram. Both PIT-Histograms of MTN
and BMA indicate overdispersion, which means that the estimated variance of the PU distribution
is too large. Due to the calibration of a linear regression model for each quantile, the QR approach
leads to best results in terms of reliability verification. This advantage is simultaneously the most
significant drawback of the approach because of the large number of fitting parameters required and
therefore potentially lower robustness. In summary, the COP provides sharp and yet reliable predictive
distributions and considerably more parsimonious than the similarly performing QR. Depending on
the selected bivariate copula families, 12 parameters need to be estimated at most for the PU assessment,
conditional on three model predictions. Due to the construction of the multivariate probability by
independent selected pair-copulas, COP is a flexible and robust approach to estimate the PU of the
observation conditional on several model predictions with heterogeneous dependence structures.

Comparison of the effects of different combinations of the hydrological and statistical multi-model
ensemble on PU estimation revealed that the results are significantly improved when the purely
statistical model was added to the mix of hydrological models, whereas the two deterministic
hydrological models hold similar information about the PU. Hence, different kinds of models should
be considered in a multi-model approach with the aim to maximize the information content for
PU assessment.

In future work, the presented pair-copula approach will be applied to estimate the predictive
distribution of deterministic and hydro-meteorological ensemble forecasts for individual forecast
values as well as to the multi-temporal case to analyze temporal dependencies between consecutive
forecast values.

As the error structure of hydrological model predictions and forecasts is strongly
event-dependent—i.e., the model error structure in modeling snowmelt is very different from modelling
heavy rainfall events—we aim at using different copula models estimated for particular hydrological
events. In this context, the PU estimation will also be made dependent on the specific event type to
be analyzed.
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