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Abstract: This article presents a detailed examination of the methodology and modeling tools
utilized to analyze gas flows in pipelines, rooted in the fundamental principles of gas dynamics. The
methodology integrates numerical simulations with modern neural network techniques, particularly
focusing on the PINN utilizing the continuous symmetry data inherent in PDEs, which is called
the symmetry-enhanced Physics-Informed Neural Network. This innovative approach combines
artificial neural networks (ANNs) integrating physical equations, which provide enhanced efficiency
and accuracy when modeling various complex processes related to physics with a symmetric and
asymmetric nature. The presented mathematical model, based on the system of Euler equations, has
been carefully implemented using Python language. Verification with analytical solutions ensures
the accuracy and reliability of the computations. In this research, a comparative and comprehensive
analysis was carried out comparing the outcomes obtained using the symmetry-enhanced PINN
method and those from conventional computational fluid dynamics (CFD) approaches. The analysis
highlighted the advantages of the symmetry-enhanced PINN method, which produced smoother
pressure and velocity fluctuation profiles while reducing the computation time, demonstrating its
capacity as a revolutionary modeling tool. The estimated results derived from this study are of
paramount importance for ensuring ongoing energy supply reliability and can also be used to create
predictive models related to gas behavior in pipelines. The application of modeling techniques for
gas flow simulations has the potential to improve the integrity of our energy infrastructure and
utilization of gas resources, contributing to advancing our understanding of symmetry principles in
nature. However, it is crucial to emphasize that the effectiveness of such models relies on continuous
monitoring and frequent updates to ensure alignment with real-world conditions. This research not
only contributes to a deeper understanding of compressible gas flows but also underscores the crucial
role of advanced modeling methodologies in the sustainable management of gas resources for both
current and future generations. The numerical data covered the physics of the process related to
the modeling of high-pressure gas flows in pipelines with regard to density, velocity and pressure,
where the PINN model was able to outperform the classical CFD method for velocity by 170% and
for pressure by 360%, based on L∞ values.

Keywords: physics-informed neural networks; artificial neural networks; CFD; gas flow; Euler equation

1. Introduction

The efficient transportation and distribution of natural gas play a pivotal role in the
economic development and energy security of nations worldwide [1]. In Kazakhstan, a
country abundant in oil and gas resources, the modeling of the gas flow in tubes holds
significant importance across various sectors. Understanding and accurately predicting the
behavior of gas within pipelines and distribution networks are paramount for optimizing
infrastructure, ensuring energy supply reliability and promoting environmental sustain-
ability [2,3]. Thus, modeling gas flow in tubes holds critical significance for Kazakhstan,
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impacting its oil and gas industry, energy sector development, infrastructure planning, en-
vironmental situation, research and innovation endeavors, and safety assurance. Through
advanced machine learning and computational fluid dynamics simulations, the country
can optimize its energy resources, promote sustainable development, and bolster resilience
in its energy infrastructure.

The comprehensive modeling of gas flow in tubes relies fundamentally on solving
the partial differential equations (PDEs) governing fluid dynamics. PDEs, such as the
Euler equations, form the mathematical framework for describing the conservation laws of
mass, momentum, and energy in fluid flows. Solving these equations numerically using
advanced computational techniques enables the accurate prediction of gas behavior, includ-
ing shock wave propagation, turbulence effects, and flow characteristics within pipelines
and tubes. In recent years, significant progress has been made in computational fluid dy-
namics (CFD) [4,5] for numerically solving PDEs, particularly in solving the Navier–Stokes
equations [6–8], which has revolutionized the ability to simulate and analyze complex
fluid flow phenomena using techniques like finite difference (FD) [9–11] and finite volume
(FV) methods [12,13]. Even though models such as the Navier–Stokes equations [14–18]
are able to describe the underlying problem, at this point, modeling still requires a high
computation cost to achieve a high precision.

The rapid growth in data, the parallel emergence of computing, and the advent of
graphics processors (GPUs), together with the advanced theoretical results in numerical
analysis, have resulted in the explosive growth of machine learning (ML) [19,20], particu-
larly in the area of physical problems and mathematical physics. Physics-Informed Neural
Networks (PINNs) [21–25] are a type of artificial neural network that can dramatically
reduce the computational complexity of modeling physical processes. The further need
for developing the potential of these models is still relevant and they are still not a uni-
form method of CFD, but in the field of forward problems, they have a higher precision
and a promising future. In recent advancements, PINNs have been employed to solve
nuclear physics problems [26], astrophysics [27], and compressible flows governed by
the Navier–Stokes equations [28,29], offering efficient simulations for different aspects of
nature. However, despite these advancements, achieving optimal results in compressible
flows remains a difficult process and requires skill.

This research considers a transient gas flow in pipelines using symmetry-enhanced
Physics-Informed Neural Networks, with manual selection of the necessary hyperparame-
ters using a weighted loss function [30]. The PINN leverages the continuous Lie symmetry
information inherent in PDEs, wherein the invariant surface conditions (ISCs) induced by
these symmetries are integrated into the PINN’s loss function [31]. When PDEs, along with
their initial and boundary conditions, possess a Lie symmetry, the solutions remain invari-
ant under such symmetry and also satisfy the ISCs. These ISCs, being intrinsic properties
of the PDEs, impose crucial additional constraints on the solutions. Since the standard loss
function in the PINN is the mean square error of the PDE residual, adding the ISCs to the
loss function will definitely increase the number of constraints for the objective function
during the optimization process and improve the accuracy of the solutions. In addition to
this, after an evaluation of the PINN model’s performance, the following problems will be
solved to demonstrate the effectiveness of the method: Burgers’ equation [32,33], viscous
Burgers’ equation [33,34] and Euler’s equations of gas dynamics [35,36], where the main
focus will be on the compressible flow problem.

The article is organized as follows. Section 2 introduces the physical problem in the
general form of a PDE with initial and boundary conditions. The following Section 3
illustrates the numerical continuous PINN model with a forward propagation procedure
for predictions of true solutions and the multi-objective loss for optimization, in addition
to the architecture of the model. In addition to this, the discrete CFD model, which
applies the four-step Runge–Kutta method with a general form and space derivative
discretization. In Section 4, one-dimensional problems are solved with short discussions
of their mathematical form: a PDE with initial and boundary conditions and physical
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descriptions with graphical comparisons to analytical solutions and L norm error measures.
It is also worth noting the modeling approach in comparison with other works; for example,
the authors of [37] use the sequence-to-sequence (seq2seq) technique, which splits the
domains into parts, while in our case, the model is trained on all time segments, which will
be shown to be a valid approach.

2. Physical Problem

The physical problem involves the gas flow in a pipe, which is described by a system
of Euler’s equations. Equations govern the motion of adiabatic, inviscid, and compress-
ible fluids, providing a powerful model for analyzing fluid dynamics in many practical
scenarios. In order to capture the speed of the rarefaction wave, the discontinuity and the
shock contacts, the problem is considered in a chamber that is separated into regions with
high pressure and low pressure by interface points at x = 0.5, as shown in Figure 1. The
physical process is observed for the time domain t ∈ [0, 0.1]. The space domain is defined
as x ∈ [0, 1].

High Pressure Low Pressure

Interface

High Pressure Low Pressure

0 0.5 1

Figure 1. Illustration of the pipe physical domain.

Euler’s system of equations represents the conservation of mass, momentum, and
energy. The conservation of mass in the system is described by the continuity equation. It
determines how changes in the density affect the fluid flow and ensures that the total mass
within a fluid volume remains constant over time:

∂ρ

∂t
+

∂( ρu )

∂x
= 0, (1)

where the density of gas ρ
[

kg ·m−3 ] changes with respect to time and space as influenced
by the flow velocity component u

[
m · s−1 ].

The conservation of momentum is based on Newton’s laws of motion:

∂( ρu )

∂t
+

∂( ρu2 + p )
∂x

= 0. (2)

The momentum equation describes how the velocity of the fluid changes in response
to convection and pressure p

[
kg ·m−1 · s−2 ]. It influences the formation of shocks and

determines the acceleration of the gas flow.
The general form of the energy equation is derived from the principles of the conser-

vation of energy, which is expressed as:

∂E
∂t

+
∂[ u(E + p) ]

∂x
= 0. (3)

The energy equation describes the conservation of energy in fluid flows; it influences the
system by determining how energy is transferred through advection and how work is done
by pressure forces, where E

[
J ·m−3 ] is the total energy and is defined as,

E =
p

γ − 1
+

1
2

ρu2, (4)

with a specific heat ratio γ
[
−

]
equal to 1.4.
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Taking into account shock phenomenon generation, the following initial conditions
are used:

( ρ, u, p )|t=0 =

{
( 1, 0, 1 ) , 0 ≤ x ≤ 0.5 ,
( 0.125, 0, 0.1 ) , 0.5 ≤ x ≤ 1 .

(5)

The Dirichlet boundary conditions are applied as boundary conditions, meaning that
the quantities take on the values prescribed by the initial conditions at both boundaries,
which ensures that the flow at the boundaries remains consistent with the initial conditions.

The transient gas flow in pipelines can be expressed in general form as:

∂U
∂t

+ N [U; λ ] = 0, x ∈ Ω, t ∈ [ 0, t f ] , (6)

U( x, 0 ) = I( x ), x ∈ Ω , (7)

U( x, t ) = B( t ), x ∈ ∂Ω, t ∈ [ 0, t f ]. (8)

The solution is denoted by Û( x, t ) ∈ R with spatial coordinate x ∈ R, time t and parameter
of the PDE λ, where Ω is the computational domain and ∂Ω is the boundary. Here, N (·)
is a linear or nonlinear differential operator, the initial condition operator is I(·) and the
boundary condition operator is B(·). Note that this form of representation of a parametrized
PDE can be used for other problems as well.

3. Methodology
3.1. Continuous PINN Time Model

The continuous symmetry-enhanced PINN time model is used as framework for
solving PDEs; the left-hand side of the equation is defined as,

f ( x, t ) =
∂U
∂t

+ N [U; λ ], (9)

and the fully connected deep L neural network with inputs din and outputs dout is de-
fined as,

G : Rdin → Rdout , (10)

The forward propagation procedure will be used to approximate solution Û( x, t )
as follows,

G [l] = ( x, t ) ∈ Rdin , l = 0

G [l] = σ(W [l]G [l−1] + b[l] ) ∈ Rnl , 1 ≤ l ≤ L− 1,

G [l] = W [l]G [l−1] + b[l] ∈ Rdout , l = L,

(11)

Here, activation value G [l] denotes the output of the lth layer with weight matrix W [l] ∈
Rnl×nl−1 , bias vector b[l] ∈ Rnl and nonlinear activation function σ(·), where nl denotes the
number of neurons in the lth layer. For the last layer L, a linear activation function with dout
outputs is used to approximate the solution, as Û( x, t ) ≈ U( x, t ) = W [L]G [L−1] + b[L].

The construction that converts the PDE into an optimization problem is the combined
multi-objective weighted squared loss L,

L = ( 1− α )(LI + LB) + αLF , 0 ≤ α ≤ 1, (12)
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where the individual loss terms are defined as:

LI =
1

NI

NI

∑
i=1

( I( xi
I ) − U( xi

I , ti
I ) )

2, (13)

LB =
1

NB

NB

∑
i=1

(B( ti
B ) − U( xi

B, ti
B ) )2, (14)

LF =
1

NF

NF

∑
i=1

f ( xi
F, ti

F )
2, (15)

Weights and biases denoted by θ can be trained by minimizing,

θ∗ = arg min
θ
L( θ ), (16)

This minimization process is performed via the gradient-based ADAM Algorithm 1.

Algorithm 1 ADAM Optimization Algorithm

1: Input: γ (learning rate lr), β1 = 0.9, β2 = 0.999 (coefficients), ϵ = 10−8 (numerical
stability term), θ0 (parameters), L( θ ) (objective)

2: Initialize: m0 ← 0 (first moment), v0 ← 0 (second moment)
3: for i = 1 to ... do
4: gi ← ∇θLi( θi−1 )
5: mi ← β1mi−1 + ( 1 − β1)gi
6: vi ← β2vi−1 + ( 1 − β2)g2

i
7: m̂i ← mi/( 1 − βi

1 )

8: v̂i ← vi/( 1 − βi
2 )

9: θi ← θi−1 − γm̂i/(
√

v̂i + ϵ )
10: end for

Here, to train the initial conditions, { xi
I , ti

I }
i=NI
i=1 is used as input and { I( xi

I ) }
i=NI
i=1 is

used as output; for the boundary conditions, { xi
B, ti

B }
i=NB
i=1 is the input and { B( ti

B ) }i=NB
i=1

is the output. For training, only the residual inputs are required { xi
F, ti

F }
i=NF
i=1 , where all

data points are picked at random either from the entire computational domain or some
subset without repetitions and NI + NB ≪ NF. The multi-objective optimization goal
is to train both supervised LI , LB and unsupervised LF losses, where the residual loss
LF plays a role as a regularization term that allows the model to generalize information
outside of some local region and prevent overfitting by penalizing the physical constraints
and α is the balance between loss importances. It can be seen that with a higher number of
initial and boundary data, the physics loss becomes less important α→ 0 and vice versa,
i.e, with less available data, physics loss becomes more important α→ 1.

For the calculations of the partial derivatives for LF , automatic differentiation (AD)
is applied, which means that outputs of the neural network u( x, t ) are directly used to
calculate its derivatives with respect to the inputs ( x, t ), as [ ∂u/∂x, ∂u/∂t, ... ].

In Figure 2, a schematic representation of the PINN is shown with key elements (neural
network, automatic differentiation AD, loss) and inputs ( x, t ) and outputs u and v. AD
outputs are differentiated with respect to their inputs in order to construct the LF loss;
then, the outputs are directly used to compute LI andLB losses. Then, the final loss L
is computed.
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Neural Network AD

Loss

Figure 2. Physics-Informed Neural Network.

3.2. Discrete-Time Model

The Runge–Kutta (RK4) method for time integration is used as a discrete time model
in CFD; it is particularly effective in addressing nonlinear problems. This method is
characterized by a fourth-order accuracy in time. The RK4 method is applied to the general
form of the case problem:

∂U
∂t

= N (U ). (17)

The Runge–Kutta method’s four steps are written as:

U(1) = Un +
∆t
2
N n

U(2) = Un +
∆t
2
N (1)

U(3) = Un + ∆tN (2)

Un+1 = Un +
∆t
6
(N n + 2N (1) + 2N (2) + N (3)) (18)

Given the fact that the RK4 scheme only affects time, schemes are needed to approximate
the space for convective and viscous terms in order to achieve second-order accuracy in
space. Thus, the upwind scheme is used for the flux terms:

−u
∂ξt

i
∂x

= −uRξR − uLξL
∆x

, (19)

where uR and uL are the average of the nodal point values and are defined as follows:

uR =
ut

i + ut
i+1

2
, uL =

ut
i + ut

i−1
2

, (20)

The functions ξR and ξL depend on the signs of uR and uL and are defined as follows:

ξR =

{
ξt

i , uR ≥ 0
ξt

i+1, uR < 0
, ξL =

{
ξt

i−1, uL ≥ 0
ξt

i , uL < 0
(21)

This approach, specifically employed for convective terms, calculates the average values
of velocities at the cell boundaries of the spatial grid around each node point. It uses the
directions of these velocities to establish at which grid node the values of ξ need to be
calculated, forming the differences in the flow. The central difference scheme is used for
derivatives not involving non-linearity:

∆F(u)t
i

∆x
=

F(u)t
i+1 − F(u)t

i−1
2∆x

, (22)
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The central difference scheme provides an approximation of spatial derivatives for the
viscous part of the equations, where F is the flux function.

4. Computational Experiments

First, the viscid and inviscid Burgers equations are considered as a reference method
to verify both approaches. The computational experiments of the PINN and RK4 models
will be compared to its analytical solutions graphically and with L norm measures. The
following are the results of the case study problem.

The input data for the PINN model, such as the NN setup, the number of initial
conditions points NI

[
−

]
, the number of boundary conditions points NB

[
−

]
, the number

of interior points NF
[
−

]
, the nonlinear activation function σ(·), the learning rate lr for the

ADAM optimizer, value α
[
−

]
, and the number of iterations epochs, are given in Table 1,

where Nx
[
−

]
, Nt

[
−

]
are the grid sizes for the space and time domain, respectively. In

addition to this, input data for the CFD model, which are the grid size Nx and the Courant–
Friedrichs–Lewy (CFL)

[
−

]
number, are presented in Table 2.

For the PINN model, all parameters were found either manually or through a grid
search [21,30]. The RK4 model usually does not require any sophisticated parameter search;
usually, a larger grid size is used to approximate the derivatives and a smaller CFL number
is used to ensure the stability is sufficient.

Table 1. Input data for the PINN model.

Model NN Setup Nx
[
−

]
Nt

[
−

]
NI

[
−

]
NB

[
−

]
NF

[
−

]
σ(·) lr α

[
−

]
Epochs

Burgers [ 3× 64 ] 128 128 128 256 16,384 Tanh 10−3 0.25 23,000

Viscous Burgers [ 3× 64 ] 128 128 128 256 16,384 Tanh 10−3 0.1 8000

Euler 1D [ 10× 20 ] 256 256 30 50 13,600 Tanh 3× 10−4 5.3×
10−4 40,000

Table 2. Input data for the CFD model.

Model Nx
[
−

]
CFL

[
−

]
Burgers 600 0.25

Viscous Burgers 200 0.25

Euler 1D 1000 0.01

The precision of the proposed models will be measured with the L∞ norm computed
for the time t f and defined as follows:

L∞ = || û − u ||∞, (23)

where û and u are analytical and numerical solutions, respectively.

4.1. Verification

Inviscid Burgers’ Equation
Despite the simplicity of Burgers’ equation without a viscous part, it plays a significant

role in physics due to its ability to capture essential fluid phenomena such as turbulence
and wave propagation. This equation describes the behavior of non-linear waves and
shock waves:

∂u
∂t

+ u
∂u
∂x

= 0, x ∈ [ 0, 1 ], t ∈ [ 0, 1 ], (24)

with the initial condition:

u( x, 0 ) =
1

2πts
sin( 2πx ), x ∈ [ 0, 1 ], (25)
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where the time at which a shock forms is indicated by the ts
[
−

]
parameter and set equal

to 1. Next, periodic boundary conditions are used:

u( 0, t ) = u( 1, t ) = 0, t ∈ [ 0, 1 ], (26)

which lead to the next analytical solution û( x, t ):

û( x, t ) =
1

2πts
sin[ 2π( x − û t )], (27)

which can be solved numerically due to implicity by a simple fixed-point iteration for time
tn and location point xi with the initial condition as û0

i :

ûk+1
i =

1
2πts

sin[ 2π( xi − ûk
i tn )], k = 0, 1, ..., (28)

with the following convergence criterion:

|ûk+1
i − ûk

i | < 10−15.

This solution can be used continuously to measure the numerical accuracy up to shock
formation as well as to test the shock-capturing capability after shock formation.

f ( x, t ) and N (U ) are given by:

f ( x, t ) : =
∂u
∂t

+ u
∂u
∂x

,

N (U ) : = −u
∂u
∂x

.

The time step stability criterion for the CFD model is defined through the CFL condi-
tion and recalculated for each time iteration n:

s(n)max = maxi| un
i |

∆t(n) =
CFL∆x

s(n)max

(29)

Figure 3 illustrates the comparison of the numerical solutions of the inviscid Burgers
equation with its analytical solution û. The graph highlights the accuracy of both numerical
approaches in capturing the complex behavior of this fluid dynamics problem. The L∞
norm is computed for the time t f = 1 for both models.

0.0 0.2 0.4 0.6 0.8 1.0
x [ ]

0.15

0.10

0.05

0.00

0.05

0.10

0.15

u
[

]

t = 0.3
u
upinn

urk4

0.0 0.2 0.4 0.6 0.8 1.0
x [ ]

0.15

0.10

0.05

0.00

0.05

0.10

0.15

u
[

]

t = 0.7
u
upinn

urk4

0.0 0.2 0.4 0.6 0.8 1.0
x [ ]

0.15

0.10

0.05

0.00

0.05

0.10

0.15

u
[

]

t = 1.0
u
upinn

urk4

Figure 3. Numerical u solutions and analytical û solution for the 1D Burgers equation at time t = 0.3,
t = 0.7, t = 1 from left to right. The L∞ error at time t f = 1 for the PINN and CFD models is 0.0449
and 0.0185, respectively.

Figure 4 shows a contour plot of the u distribution over the entire computational
domain t ∈ [0, 0.1] and x ∈ [0, 1]. Here, from time t = 0, the smooth solution turns into a
shock at t = 1.0, which is also in high accordance with the analytical solution. Thus, these
methods capture all shock formations during the entire time period.
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Figure 4. Contour plot for the entire computational domain for the CFD model for the Burgers equation.

Viscous Burgers Equation
The viscosity introduces additional mathematical complexity, allowing for the study

of phenomena such as the dissipation of kinetic energy, boundary layer separation, and
the transition to turbulence. This transition provides valuable insights into the behavior of
fluid flows near solid boundaries and in regions with a high velocity gradient. The viscous
Burgers equation is described as:

∂u
∂t

+ u
∂u
∂x

= ν
∂2u
∂x2 , x ∈ [ 0, 1 ], t ∈ [ 0, 1 ], (30)

where ν
[
−

]
affects the diffusion term, which characterizes the viscosity in the equation,

and is set to 0.01. Next, the initial conditions are prescribed:

u( x, 0 ) = sin(πx ), x ∈ [ 0, 1 ], (31)

followed by the boundary conditions:

u( 0, t ) = u( 1, t ) = 0, t ∈ [ 0, 1 ]. (32)

The analytical solution û( x, t ) is defined as follows:

û( x, t ) =
2πν ∑∞

n=1 an exp(−n2π2νt )n sin( nπx )
a0 + ∑∞

n=1 an exp(−n2π2νt ) cos( nπx )
, (33)

where a0 and an are defined as follows:

a0 =
∫ 1

0
exp

[
− 1

2πν
(1 − cos(πx ))

]
dx

an = 2
∫ 1

0
exp

[
− 1

2πν
(1 − cos(πx ))

]
cos( nπx )dx, n = 1, 2, ...

(34)

f ( x, t ) and N (U ) are given by:

f ( x, t ) : =
∂u
∂t

+ u
∂u
∂x
− ν

∂2u
∂x2 ,

N (U ) : = −u
∂u
∂x

+ ν
∂2u
∂x2 ,
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The time step stability criterion for time iteration n for the CFD model through the
CFL condition is defined as follows:

s(n)max = maxi| un
i |

∆t(n) = min

[
CFL∆x

s(n)max

,
∆x2

2ν

]
(35)

Figure 5 demonstrates the comparison of the numerical solutions and the analytical
solution of the Burgers equation with viscosity with the L∞ norm measures at time t f = 1.
The presence of a viscous term in the equation has a distinct impact on the solution. Both
methods show a high accuracy in capturing shock waves.

0.0 0.2 0.4 0.6 0.8 1.0
x [ ]

0.0

0.2

0.4

0.6

0.8

1.0

u
[
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t = 0.3
u
upinn

urk4

0.0 0.2 0.4 0.6 0.8 1.0
x [ ]

0.0

0.2
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0.6

0.8

u
[

]

t = 0.7
u
upinn

urk4
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x [ ]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

u
[

]

t = 1.0
u
upinn

urk4

Figure 5. Numerical u solutions and analytical û solutions for the 1D viscous Burgers equation at
time 0.3, 0.7, 1 from left to right. The L∞ error at time t f = 1 for the PINN and CFD models is 0.0019
and 0.0005, respectively.

Figure 6 demonstrates the behavior of the fluid flow for the entire computational
domain. The flow exhibits the same pattern as in the previous case; from time t = 0, the
smooth solution turns into a shock at t = 1.0. The shock formations are captured over the
entire time period as well.

Figure 6. Contour plot for the entire computational domain for the CFD model for the viscous
Burgers equation.

4.2. Case Study

Since both methods have been verified, a case study is presented for a further analysis
of their ability to capture the unique characteristics of gas flows in pipes, which involves
contact discontinuity and shock waves. The analytical solutions ( ρ̂, û, p̂ ) for the case
study are taken from Section 2.4.1 in [35]. In Case 1, the rarefaction shock, the whole tube
region/computational domain is divided into five regions and in each part, the solution is
found through thermodynamical equations.
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f ( x, t ) and N (U ) are given by,

f ( x, t ) : =
∂

∂t

 ρ
ρu
E

 +
∂

∂x

 ρu
ρu2 + p

u( E + p )

,

N (U ) : = − ∂

∂x

 ρu
ρu2 + p

u( E + p )

,

In this case, the time stability condition for the CFD model for time iteration n is found
through the CFL condition as follows:

s(n)max = maxi

[
|un

i | +
√

γpn
i

ρn
i

]

∆t(n) =
CFL∆x

s(n)max

(36)

Figure 7 illustrates plots of the density ρ, velocity u and pressure p with comparisons
to the analytical solutions.
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Figure 7. Numerical solutions ( ρ, u, p ) and analytical solutions ( ρ̂, û, p̂ ) for the 1D Euler’s equations
of gas dynamics at time 0.08, 0.09, and 0.1. The L∞ norms at time t f = 0.1 for the PINN and CFD
models are 0.018977 and 0.08876 for the density ρ, 0.163342 and 0.447174 for the velocity u, and
0.026128 and 0.121339 for the pressure p.

The significance of these plots lies in their ability to demonstrate the accuracy of the
numerical methods in capturing the complex behavior of compressible flows. It can be
seen that the RK4 model has some oscillations in velocity u and pressure p profiles, while
the PINN model is more smooth. The L∞ norms were computed at time t f = 0.1. Given
that L∞ norms for the PINN and CFD models for the velocity u are 0.1633 and 0.4472 and
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0.0261 and 0.1213 for the pressure p, the PINN model significantly outperformed the CFD
model by 170 % for the velocity u and by 360 % for the pressure p relatively, which is the
main advantage of the PINN model.

In Figure 8, a contour plot for the density ρ over the entire computational domain
with the interface, a left nonlinear wave, a right nonlinear wave, rarefaction, and shock
formations are shown, where a high pressure is present in the left zone from the disconti-
nuity point x = 0.5, shown in red, and the right zone with a low pressure is shown in blue.
The distribution looks similar at the initial time t = 0, as shown in the physical domain in
Figure 1.

Figure 8. Contour plot for the entire computational domain for the CFD model for Euler’s equations.

In order to understand the physics behind the estimated results, let us consider the
case before any wave has reached the left or right boundary, for instance, at time t = 0.15.
Figure 9 illustrates density, velocity and pressure formation in this case.

Figure 9. Analytical solutions ( ρ̂, û, p̂ ) for the 1D Euler equations of gas dynamics at time t = 0.15.

Regions I and V show values of the physical quantities that are the same as the
initial conditions. Region II denotes the position where the head and tail of the rarefac-
tion wave move leftward. While the solution remains continuous within this region,
certain derivatives of the fluid quantities might not exhibit continuity. Region III shows
the element position of the fluid that is initially at interface point x = 0.5 reached at
time t = 0.15. The right end points of Region III and Region IV are called a contact
discontinuity. It is observed that the pressure and the normal component of velocity
remain continuous across the contact discontinuity. However, the density is not contin-
uous across a contact discontinuity. The end point of Region IV is the location of the
shock wave moving to the right. During the shock, all of the quantities will in general
be discontinuous.

The pressure results reveal the locations and strengths of the shock waves and rarefac-
tion waves as they propagate through the tube. The density results provide information
about the compression and expansion of the fluid as the waves pass through it. The
velocity results show how the fluid velocities change as waves propagate through the
tube, including its acceleration due to compression and deceleration due to expansion.
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All the results obtained from computational experiments are sufficient for both models
in terms of comparing them with analytical plots and using L norms. The results show
that the CFD model outperforms the PINN model, but this was achieved due to the higher
number of points for space discretization. The CFD model starts to exhibit oscillations
for velocity and pressure, while the PINN model gives a smoother solution. This effect
could be explained by the PINN’s nature, where it integrates physical laws into the nu-
merical solution. Thus, it creates smooth and continuous solutions. Although the CFD
model gives better computational and optimal results for the case of one-dimensional
problems, as the dimensionality of the problem and the number of equations increase,
the CFD model will require a large grid size and a long computational process and the
obtained solutions may exhibit oscillations. Meanwhile, the PINN model can generalize
the information using a subset of the entire computational domain in a relatively small
number of iterations compared to the CFD model, resulting in a smoother and more
optimal solution.

5. Discussion

In the realm of numerical techniques for solving differential equations, both classical
CFD and PINN methods are unique and offer distinct advantages. Understanding the
comparative strengths and limitations of these methods is crucial for selecting the most
appropriate approach for a given problem.

Accuracy and Precision:
Classical CFD methods are renowned for their ability to achieve a high accuracy,

especially when employing fine grid resolutions. These methods excel in problems where
the underlying physics is well understood and can be accurately represented by explicit
equations. However, CFD methods may encounter challenges near discontinuities or sharp
gradients, leading to accuracy degradations in such regions.

Conversely, PINNs adopt a data-driven approach, leveraging neural networks to
approximate solutions based on available data. While PINNs may sacrifice some accuracy
compared to FDMs, particularly in problems with well-defined physics, they offer advan-
tages in handling complex or data-driven scenarios. PINNs can provide smoother and
more continuous solutions, making them suitable for problems with irregular geometries
or unstructured data.

Computational Efficiency:
Classical CFD methods typically involve explicit grid generation and solving equa-

tions at each grid point, which can be computationally intensive for large-scale problems.
Conversely, PINNs offer computational efficiency once trained, as they can rapidly gener-
ate solutions without the need for explicit grid structures. This efficiency is particularly
advantageous for problems with complex geometries or time-dependent constraints.

Flexibility and Adaptability:
Classical CFD methods are constrained by grids shapes and may struggle with prob-

lems involving complex or irregular geometries. In contrast, PINNs offer greater flexibility
and adaptability, as they can handle unstructured data and irregular domains more ef-
fectively. PINNs have the potential to generalize well to new conditions or scenarios
not explicitly included in the training data, enhancing their applicability to a wide range
of problems.

In conclusion, the choice between classical CFD and PINN methods depends on the
specific requirements of the problem, including the nature of the differential equations, the
availability of data, the complexity of the geometry, and the computational resources. CFD
methods excel in problems with well-understood physics and structured domains, offering
a high accuracy with a fine grid resolution. On the other hand, PINNs provide flexibility,
generalization, and efficiency advantages, especially for complex or data-driven problems
with irregular geometries. By understanding the comparative strengths and limitations of
these methods, researchers and engineers can make informed decisions to select the most
suitable approach for their specific application.
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6. Conclusions

This article investigates gas flow in a pipeline to capture the propagation speed of the
rarefaction wave, the contact discontinuity and the shock discontinuity. First, the physical
model is defined to provide gas characteristics. Initial and boundary conditions were
specified according to the case problem. Then, two numerical models were proposed: a
continuous symmetry-enhanced PINN model and a discrete CFD model (Runge–Kutta
4). The methods were verified through the one-dimensional inviscid and viscous Burgers
equations. This was followed by case study problem estimation, which is described by
a system of one-dimensional Euler equations. The results show a sufficient accuracy in
the graphical comparison with the analytical solution and in the L norm value. According
to the results of numerical studies, it can be seen that for relatively simple problems, the
classical CFD method is still superior to PINNs, but with an increasing complexity of the
problem, CFD suffers from increasing grid sizes and as a result may exhibit oscillations. In
contrast, the PINN presents a smoother solution, which in turn leads to the expectation of a
better result with an increasing dimensionality of the problem and an increasing number
of input equations. Representing the main numerical simulation result, the PINN model
was able to outperform the CFD model in terms of L∞ norms, improving the velocity u by
170% and the pressure p by 360% in a relative comparison. Moreover, graphical results
that are indistinguishable from the analytical solution for both models were obtained; in
the case of the Burgers equations, plots at time 0.3, 0.7, and 1 and also contour plots for
the whole computational domain were obtained, and for the Euler equations, plots at
time 0.08, 0.09, and 0.1 were obtained, along with contour plots for the density over the
whole computational domain. In conclusion, this study highlights the effectiveness of both
Physics-Informed Neural Networks and classical CFD methods in modeling gas flows in
pipelines. By accurately capturing the dynamic flow characteristics such as rarefaction
waves and shock discontinuities, these numerical techniques provide valuable insights
into the behavior of gas transportation systems. The comparison between PINN and CFD
approaches underscores the importance of selecting the most appropriate method based
on the specific requirements of the problem, ensuring reliable and efficient solutions for
modeling gas flows in pipelines.

Future research could be aimed at improving both models: For the continuous PINN
model, a way to find the most appropriate hyperparameters using, for instance, Bayesian
hyperparameter optimization, should be found. For the discrete CFD model, the approx-
imation of derivatives using the finite difference method should be replaced by more
accurate methods with a higher order of approximation over space and a flexibility in
complex domains, such as the finite volume method. In addition to this, the physical
problem case study (Euler’s equations) should be extended to two-dimensional forms and
even further to two-dimensional Navier–Stokes equations.
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