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Abstract: The concept of symmetry has played a major role in Hilbert space setting owing to the
structure of a complete inner product space. Subsequently, different studies pertaining to symmetry,
including symmetric operators, have investigated real Hilbert spaces. In this paper, we study the
solutions to multiple-set split feasibility problems for a pair of finite families of β-enriched, strictly
pseudocontractive mappings in the setup of a real Hilbert space. In view of this, we constructed an
iterative scheme that properly included these two mappings into the formula. Under this iterative
scheme, an appropriate condition for the existence of solutions and strong and weak convergent
results are presented. No sum condition is imposed on the countably finite family of the iteration
parameters in obtaining our results unlike for several other results in this direction. In addition, we
prove that a slight modification of our iterative scheme could be applied in studying hierarchical
variational inequality problems in a real Hilbert space. Our results improve, extend and generalize
several results currently existing in the literature.

Keywords: strong convergence; variational inequality; enriched nonlinear mapping; split feasibility
problem; multiple-set split feasibility problem; fixed point; iterative scheme; hierarchical problem;
Hilbert space

1. Introduction

Fixed point theory has no doubt proven to be a rich and complex field, always giving
rise to several extensions and applicable results. Nowadays, it has become incredibly
convincing that this domain of study is far from reaching its end as regards procreating
new ideas or connecting existing ones.

Let H be a real Hilbert space with the inner product ⟨.⟩ and the induced norm ∥.∥. Let
∅ ̸= K ⊂ H be closed and convex.

Definition 1 ([1]). A nonlinear mapping Γ : K −→ K is called β-enriched Lipschitzian if
there exist β ∈ [0, ∞) and L > 0 such that the following inequality

∥β(ϱ − ω) + Γϱ − Γω∥ ≤ (β + 1)L∥ϱ − ω∥, ∀ϱ, ω ∈ K. (1)
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It is worthy to mention that every Lipschitz mapping is 0-enriched Lipschitzian with β = 0.

However, if β ̸= 0 ρ ∈ (0, 1) are chosen such that β =
1
ρ
− 1, then inequality (1) becomes

∥∥∥1 − ρ

ρ

(
ϱ − ω

)
+ Γϱ − Γω

∥∥∥ ≤ L
ρ
∥ϱ − ω∥

⇔ ∥(1 − ρ)(ϱ − ω) + ρΓϱ − ρΓω∥ ≤ L∥ϱ − ω∥
⇔ ∥(1 − ρ)ϱ + ρΓϱ − [(1 − ρ)ω + ρΓω]∥ ≤ L∥ϱ − ω∥. (2)

Set Γρ = (1 − ρ)I + ρΓ. Then, the last inequality becomes

∥Γρϱ − Γρω∥ ≤ ∥ϱ − ω∥. (3)

Here, the average operator Γρ is L-Lipschitzian.

Remark 1. The class of β-enriched Lipschitz mappings is between the class of Lipschitz mappings
and the class of (β, ΦΓ)-enriched Lipschitz mappings studied in [1]. (Recall that a nonlinear
mapping Γ : K −→ K is called a (β, ΦΓ)-enriched Lipschitz mapping (or ΦΓ-enriched Lipschitzian)
if for all ϱ, ω ∈ K, there exist β ∈ [0,+∞) and a continuous nondecreasing function ΦΓ : R+ −→
R+, with Φ(0) = 0, such that ∥β(ϱ − ω) + Γϱ − Γω∥ ≤ (β + 1)ΦΓ(∥ϱ − ω∥).) If ΦΓ(r) = r,
then we recover inequality (1); if L ∈ (0, 1), then inequality (1) reduces to an important class of
nonlinear mappings called enriched contraction mappings, and if L = 1 in inequality (1), we obtain
the class of β-enriched nonexpansive mappings. (Recall that a nonlinear mapping Γ : K −→ K
is called a β-enriched nonexpansive mapping if for all ϱ, ω ∈ K, there exists β ∈ [0,+∞) such
that ∥β(ϱ − ω) + Γϱ − Γω∥ ≤ (β + 1)∥ϱ − ω∥. Every nonexpansive mapping is 0-enriched
nonexpansive).
These two classes of mappings were introduced in [2,3] by Berinde. He proved that if K is a nonempty,
bounded, closed and convex subset of a real Hilbert space H and Γ : K −→ K is a β-enriched
nonexpansive and demicompact mapping, then Γ has a fixed point in K.

Example 1. Consider R2 denote the 2-dimensional Euclidean plane. Define Γ : R2 −→ R2 by

Γϱ = Γ((ϱ1, ϱ2)) = (ϱ1, ϱ2) + (ϱ2,−ϱ1) = (ϱ1 + ϱ2, ϱ2 − ϱ1), ∀ϱ = (ϱ1, ϱ2) ∈ R2.

Then, for all ϱ = (ϱ1, ϱ2), ω = (ω1, ω2) ∈ R2 and β = 1, we have

∥β(ϱ − ω) + Γϱ − Γω∥2 = ∥β((ϱ1, ϱ2)− (ω1, ω2)) + (ϱ1 + ϱ2, ϱ2 − ϱ1)

−(ω1 + ω2, ω2 − ω1)∥2

= ∥β((ϱ1 − ω1), (ϱ2 − ω2)) + (ϱ1 + ϱ2, ϱ2 − ϱ1)

−(ω1 + ω2, ω2 − ω1)∥2

= ∥(2(ϱ1 − ω1) + (ϱ2 − ω2)), 2(ϱ2 − ω2 − (ϱ1 − ω1))∥2

= (2(ϱ1 − ω1) + (ϱ2 − ω2))
2 + (2(ϱ2 − ω2 − (ϱ1 − ω1))

2

= 4(ϱ1 − ω1)
2 + (ϱ2 − ω2)

2 + 4(ϱ2 − ω2)
2 + (ϱ1 − ω1)

2

= 5[(ϱ1 − ω1)
2 + (ϱ2 − ω2)

2]

= 5∥ϱ − ω∥2

= (β + 1)∥ϱ − ω∥2.

Hence, Γ is a 1-enriched
√

5
2

Lipschitz mapping.

If a mapping is (β, k)-enriched, strictly pseudocontractive (for short, (β, k)-ESPCM), then
for all ϱ, ω ∈ K, there exist β ∈ [0, ∞) and k ∈ [0, 1) such that the following inequality holds:

∥βϱ + Γϱ − (βω + Γω)∥2 ≤ (β + 1)2∥ϱ − ω∥2 + k∥(I − Γ)ϱ − (I − Γ)ω∥2. (4)
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For some special cases in which β = 0 in one part and k = 0 in another part, inequality (4)
reduces to two classes of mappings known as strictly pseudocontractive mappings (recall
that a nonlinear mapping Γ : K −→ K is called a strictly pseudocontractive mapping if
for all ϱ, ω ∈ K, there existsk ∈ [0, 1) such that ∥Γϱ − Γω∥2 ≤ ∥ϱ − ω∥2 + k∥(I − Γ)ϱ −
(I − Γ)ω∥2) and β-enriched nonexpansive mappings, respectively. Hence, the class of
(β, k)-ESPCM is larger than the class of β-enriched nonexpansive mappings and the class
of k-strictly pseudocontractive mappings; see [1,4–15] for more details.

Now, by substituting β =
1
ρ
− 1 into inequality (4) and simplifying, we obtain

∥Γρϱ − Γρω∥2 ≤ ∥ϱ − ω∥2 + k∥(I − Γρ)ϱ − (I − Γρ)ω∥2, (5)

where ρ ∈ (0, 1], and Γρ is as defined in inequality (3). Note that the average operator Γρ is
k-strictly pseudocontractive.

In [10], Berinde introduced the concept of (β, k)-ESPCM and showed that this class of
mappings is more general than the class of k-strictly pseudocontractive mappings studied
in [12,16]. It is of interest to note that the Lipschitz properties enjoyed by the class of strictly
pseudocontractive mappings (due to the structure of their definition) are far from the reach
of Lipschitz pseudocontractive mappings.

Example 2. Let X = R2 be equipped with the Euclidean norm, and we have the following:

C = {(ϱ1, ϱ2) ∈ R2, ϱ1, ϱ2 ≥ 0, ϱ2
1 + ϱ2

2 ≤ 1}.

Define the mapping Γ : C −→ C by

Γ(ϱ, ω) =
(ϱ

2
,

ω

2

)
.

It is not difficult to see that X is a uniformly convex Banach space and that C is a bounded,
closed and convex subset of X. Let β ∈ [0, ∞) and α ∈ [0, 1). It is shown in [1] that Γ is a
(β, α)-enriched strictly pseudocontractive mapping and F(Γ) = (0, 0).

Remark 2. If, we take k = 1 in inequality (4), then we obtain a class of nonlinear mappings called
β-enriched pseudocontraction mappings. Thus, the class of (β, k)-ESPCM is smaller than the class
of β-enriched pseudocontractive mappings.

Let Ha and Hb be two Hilbert spaces and W and V be nonempty, closed and convex
subsets of Ha and Hb, respectively. Consider two nonlinear mappings: Γ : Ha −→ Hb and
Υ : Hb −→ Hb. The split feasibility problem (for short, SFP) is given as follows: find a point
q ∈ Ha such that

q ∈ W and Bq ∈ V, (6)

where B : Ha −→ Hb is a bounded operator. If the solution of (6) exists, then it can be
shown that ϱ ∈ W solves (6) if and only if it solves the following fixed point equation:

ϱ = PW((I − λB⋆(I − PV)B)ϱ), ϱ ∈ W, (7)

where PW and PV are projections of W and V, respectively, λ is a positive constant, and B⋆

represents the adjoint of B. When W and V in (6) (where ∅ ̸= W ⊂ Ha and ∅ ̸= V ⊂ Hb
are closed and convex) are sets of fixed points of nonlinear mappings Γ and Υ, then the
split feasibility problem is also called the common fixed point problem (for short, SCFPP)
(see, [17,18]); that is, given m nonlinear operators {Γi}m

i=1 : Ha −→ Ha and n nonlinear
operators {Υj}n

j=1 : Hb −→ Hb, the SCFPP for finitely many operators, which is desirable
in practical situations, is to find a point

ϱ ∈ ∩m
i=1F(Γi) such that Bϱ ∈ ∩n

j=1F(Υj). (8)
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In a special case for which Γi = PWi and Υj = PVj , the SCFPP reduces to the multiple-
set split feasibility problem (for short, MSSFP): that is, to find ϱ ∈ ∩m

i Wi such that
Bϱ ∈ ∩n

j Vi, where {Wi}m
i=1 and {Vj}n

j=1 are nonempty, closed and convex subsets of Ha

and Hb, respectively. We shall denote the solution to problem (8) in this special case by
D = {ϱ ∈ ∩m

i Wi : Bϱ ∈ ∩n
j Vi}.

In the setup of a real Hilbert space, problems (6) and (8) have been studied extensively
by different authors; see, for example, [17–28].

In [22], Censor and Segal introduced the following algorithm:

ϱn+1 = Υ(I − λB⋆)(I − Γ)Bϱn, (9)

which solves problem (6) for directed operators.
Recently, Chang et al. [28] introduced and studied the following fixed point algorithm:

for an arbitrary ϱ0 ∈ H1, let {ϱn}∞
n=1 be a sequence generated iteratively as follows:

ϱ0 ∈ H1 chosen arbitrarily ;
ϱn+1 = δn,0ωn + ∑∞

j=1 δn,jΓj,βωn;

ωn = ϱn + λB⋆(Sn(modN) − I)Bϱn,

(10)

where {δn,j}∞
n=1 is a countably infinite family of real sequences in [0, 1]; ∑∞

j=1 δn,j = 1, Γj,β =

βI + (1− β)Γj, β ∈ (0, 1) is a constant; {Γj}∞
j=1 : H1 −→ H1 is an infinite family of αi-strictly

pseudononspreading mappings; {Sj}N
j=1 is a finite family of γi-strictly pseudononspreading

mappings; and λ > 0. Using (10), they proved weak and strong convergence theorems.
Subsequently, different researchers have extended and generalized (9) in different

directions. Alsulami et al. [19] proved some strong convergence theorems for finding a
solution of problem (6) in Banach spaces; in [23], (9) was extended to the case of quasi-
nonexpansive mappings, which was later extended to the case of demicontractive mappings
in [24,25]; Takahashi generalized the results in [22] to Banach spaces. For more works
relating to split feasibility problems, the interested reader is referred to [20,25–27] and the
references therein.

Symmetry is an important concept used in Hilbert spaces and plays a crucial role in
the structure of a complete inner product space. Also, the concept of symmetry, which
includes symmetric operators, has been investigated in real Hilbert spaces. In this paper,
inspired and motivated by the results in [29,30], we propose a horizontal iteration technique
for solving the multiple-set split feasibility problem in the more general cases of a pair of
finite families of β-enriched strictly pseudocontractive mappings in an infinite-dimensional
Hilbert space and establish strong and weak convergence theorems for approximating
a common solution for the aforementioned problem. From recent studies, it has been
observed (see, for instance, [31]) that iteration techniques involving more than one auxiliary
mapping are more robust against certain numerical errors than the ones in which only one
auxiliary mapping is used. Consequently, our method is more efficient in application than
some of the methods in related works. Finally, it is worth mentioning that the technique
presented in this paper does not require a ’sum condition’, which has been the case for most
of the iterative methods in this direction. Concerning application, we consider the algorithm
for hierarchical variational inequality problems through slightly modifying our iterative
scheme. Our results improve and generalize several results in the current literature.

The rest of the manuscript is organized as follows: Section 2 is devoted to some
preliminary results that will be required to establish our main results; Theorems 1 and 2
will be the subjects of Sections 3–5 and will conclude the paper.

2. Preliminary

In the following, we first recall some notations, definitions and known results that
are currently in the literature, which will be required to prove the main results of this
present paper.
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Assumption 1. Throughout the remaining sections, H, K, N,R,→,⇀ and B : H −→ H
shall represent a real Hilbert space, a nonempty closed and convex subset of H, the set of natural
numbers, the set of real numbers, strong convergence, weak convergence and a bounded linear
operator, respectively.

Also, for the sake of convenience, we restate the following concepts and results.
Let H and K be defined as in Assumption 1. For every ϱ ∈ H, there exists a unique

nearest point in K, represented as PKϱ, such that

∥ϱ − PKϱ∥ ≤ ∥ϱ − ω∥, ∀ω ∈ K

and it has been established that for every ϱ ∈ H,

⟨ϱ − PKϱ, ω − PKϱ⟩ ≤ 0, ∀ω ∈ K. (11)

Definition 2 ([32]). Let Z be a real Banach space and Γ : Z −→ Z be a self-mapping on Z. Then,
the following is considered:

(i) I − Γ is said to be demiclosed at zero if for any sequence {ϱn}n≥1 ⊂ Z with ϱn →
ϱ⋆ and ∥ϱn − Γϱn∥ → 0 as n → ∞, we obtain ϱ⋆ = Γϱ⋆;

(ii) Γ is called semicompact if for any bounded sequence {ϱn}n≥1 ⊂ Z with ∥ϱn − Γϱn∥ →
0 as n → ∞, there exists a subsequence {ϱnj}j≥1 of {ϱn}n≥1 such that ϱnj → ϱ⋆ ∈ Z.

Definition 3 ([32]). Let Z be a uniformly convex Banach space and K a closed and convex subset
of Z. A mapping Γ : K −→ K is called asymptotically regular on K if for each x ∈ K,

∥Γn+1x − Γnx∥ → 0 as n → ∞.

Definition 4 ([32]). Let Z be a uniformly convex Banach space and C a closed and convex subset
of E. A mapping Γ : K −→ Z is called demicompact if it has the property that if {ωn}n≥1 is a
bounded sequence in Z and {Γωn − ωn}n≥1 is strongly convergent, then there exists a subsequence
{ωnk}k≥1 of {ωn}n≥1 that is strongly convergent.

Lemma 1. Let ∅ ̸= K ⊂ H, where H is a real Hilbert space, closed and convex, and let Γ : K −→ K
be an α-strictly pseudocontractive mapping. Then, the following applies:

(i) If F(Γ) ̸= ∅, then f (Γ) is closed and convex;
(ii) I − Γ is demiclosed at zero.

Lemma 2 ([12]). Let {δn}n≥1, {τn}n≥1, {λn}n≥1 ⊂ [0, ∞), satisfying the inequality

δn+1 = (1 − λn)δn + τn, n ≥ 1. (12)

If ∑∞
i=1 λn < ∞ and ∑∞

i=1 τn < ∞, then the limn→∞ δn exists.

Lemma 3 ([7,26]). Let H be as in Assumption 1; then, for all ϱ, ω ∈ H, the following inequal-
ity holds:

∥ϱ + ω∥2 ≤ ∥ϱ∥2 + 2⟨ω, ϱ + ω⟩. (13)

Proposition 1 ([30]). Let {δi}∞
i=1 ⊆ N be a countable subset of the set of real numbers R, where

k is a fixed non-negative integer and N is any integer with k + 1 ≤ N. Then, the following
identity holds:

δk +
N
∑

j=k+1
δj

j−1

∏
i=k

(1 − δi) +
N
∏
i=k

(1 − δi) = 1. (14)
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Proposition 2 ([30]). Let t, u and v be arbitrary elements of a real Hilbert space H. Let k be
any fixed non-negative integer and N ∈ N be such that k + 1 ≤ N. Let {vi}N−1

i=1 ⊆ H and
{δi}N

i=1 ⊆ [0, 1] be countable finite subsets of H and R, respectively. Define

y = δkt +
N

∑
i=k+1

δi

i−1

∏
j=k

(1 − δj)vi−1 +
N

∏
j=k

(1 − δj)v.

Then,

∥y − u∥2 = δk∥t − u∥2 +
N

∑
j=k+1

δj

j−1

∏
i=k

(1 − δi)∥vj−1 − u∥2 +
N

∏
i=k

(1 − δi)∥v − u∥2

−δk

[ N

∑
j=k+1

δj

j−1

∏
i=k

(1 − δi)∥t − vj−1∥2 +
j−1

∏
i=k

(1 − δi)∥t − v∥2
]

−(1 − δk)
[ N

∑
j=k+1

δj

j−1

∏
i=k

(1 − δi)∥vj−1 − (δj+1 + wj+1)∥2

+δN

j−1

∏
i=k

(1 − δi)∥v − vN−1∥2
]
,

where wk = ∑N
j=k+1 δj ∏

j−1
i=k (1− δi)vj−1 + ∏N

i=k(1− αi)v, k = 1, 2, · · · , N and wn = (1− cn)v.

Lemma 4 ([2]). Let K be a nonempty, bounded, closed and convex subset of a real Banach space
Z, Γ : K −→ K a nonexpansive mapping and F(Γ) ̸= ∅; then, for any given β ∈ (0, 1), the
mapping Γβ = (1 − β)I + βΓ, where I is the identity operator, has the same fixed point as Γ and is
asymptotically regular.

Remark 3. When Γ is nonexpansive, so is Γβ, and both have the same fixed point; however, Γβ has
more felicitous asymptotic behavior than the original mapping (see [2] for details).

3. Main Results

First, we provide an iterative scheme as well as a convergence study regarding this
scheme with respect to the solutions to the split feasibility problem for a pair of finite
families of β-enriched strictly pseudocontractive mappings.

Assumption 2. Consider the following:

(a) Let H1 and H2 be two real Hilbert spaces: B : H1 −→ H2, a bounded linear operator; and
B⋆ : H2 −→ H1, the adjoint of B;

(b) Let {Γi}N
i=1 : H1 −→ H1 be a finite family of (αi, β)-enriched strictly pseudocontractive and

demicompact mappings with α = max
i∈N

{αi} ∈ (0, 1);

(c) Let {Si}N
i=1 : H1 −→ H1 be a finite family of (γi, β)-enriched strictly pseudocontractive and

demicompact mappings with γ = max
i∈N

{γi} ∈ (0, 1);

(d) Let W = ∩N
i=1F(Γi) ̸= ∅ and V = ∩N

i=1F(Si) ̸= ∅;
(e) Let D be a set of solutions of (MSSFP); that is, D = {ϱ⋆ ∈ W : Bϱ⋆ ∈ V}.

Now, we present our iteration scheme as follows.
Let H1, H2, B, B⋆, {Γi}∞

i=1, {Si}∞
i=1, W, V, α and γ be as in Assumption 2. For an arbitrary

point ϱ1 ∈ H1, construct the sequence {ϱn}n≥1 iteratively as follows:
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ϱ1 ∈ H1 chosen arbitrarily ;

ϱn+1 = δn,1ωn + ∑N
j=2 δj ∏

j−1
i=1(1 − δi)Γj−1ωn + ∏N

i=1(1 − δi)ΓNωn, n ≥ 1;

ωn = ϱn + λB⋆(Sn(modN) − I)Bϱn,

(15)

where {{δn,j}∞
n=1}N

j=1 is a countably finite family of real sequences in [0, 1].

Theorem 1. Let H1, H2, B, B⋆, {Γi}∞
i=1, {Si}∞

i=1, W, V, α and γ be as stated in Assumption 2. Let
{ϱn}n≥1 be a sequence given by (15). If {{δn,j}∞

n=1}N
j=1 ∈ [0, 1] satisfies the following conditions:

(1) δn,1 > α > max{αi}N
i=1; δn,1 < δ < 1, for each i;

(2) lim inf
n→∞

∏
j−1
i=1(1 − δi)(δn,1 − αi−1) > 0, j = 2, · · · , N;

(3) lim inf
n→∞

∏
j−1
i=1(1 − δi)(δn,1 − αN) > 0;

(4) λ ∈
(

0,
1 − γ

∥B∥2

)
.

then both {ϱn}n≥1 and {ωn}n≥1 converge strongly and weakly to some ϱ⋆ ∈ D.

Proof. Since {Γj}N
i=1 is (β, αj)-ESPCM for each j, by setting β =

1
ρ
− 1 for β > 0 and

ρ ∈ (0, 1], we obtain from (5) that

∥1 − ρ

ρ
(ϱ − ω) + Γjϱ − Γjω∥2 ≤ 1

ρ2 ∥ϱ − ω∥2 + αj∥ϱ − ω − (Γjϱ − Γjω)∥2,

which upon simplifying yields

∥Γj
ρϱ − Γj

ρω∥2 ≤ ∥ϱ − ω∥2 + αj∥ϱ − ω − (Γj
ρϱ − Γj

ρω)∥2, (16)

where Γj
ρ = (1 − ρ)I + ρΓj, and I denotes the identity mapping on H. It is clear that the

finite family of the average operator {Γj}n
i=1 is an αj-strictly pseudocontractive mapping.

Again, since {Sj}N
i=1 is (β, γj)-ESPCM for each j, by following a similar approach as in

(16), we obtain

∥Sj
ρϱ − Sj

ρω∥2 ≤ ∥ϱ − ω∥2 + γj∥ϱ − ω − (Sj
ρϱ − Sj

ρω)∥2, (17)

where Sρ = Sρ = (1− ρ)I + ρS, and I denotes the identity mapping on H. It is obvious that
the finite family of the average operator {Sj}n

i=1 is again an γj-strictly pseudocontractive
mapping.

Recall that for each j ∈ N,

∥Γj
ρϱ − Γj

ρω∥2 = ∥ϱ − ω − [ϱ − Γj
ρϱ − (ω − Γj

ρω)]∥2

= ∥ϱ − ω∥2 − 2⟨ϱ − ω, ϱ − Γj
ρϱ − (ω − Γj

ρω)⟩

+∥ϱ − Γj
ρϱ − (ω − Γj

ρω)∥2. (18)

Inequality (16) and Equation (18) imply that for each j ∈ N,

⟨ϱ − ω, Pjϱ − Pjω⟩ ≥
1 − αj

2
∥Pjϱ − Pjω∥2, (19)

where Pj = I − Γj
ρ.

Let Q be a convex subset of a linear space Z and {Γj
ρ}N

j=1 : Q −→ Q be a given map.
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Then, for any δ ∈
[

1
ρ + 1

, 1

)
with ρ > 0 and for each j ∈ N, the mapping Pj

δ : Q −→ Q is

defined by

Pj
δ = ϱ − δPjϱ = (1 − δ)ϱ + δΓj

ρϱ = (1 − τ)ϱ + τΓjϱ, (20)

where τ = δρ ∈
[

1
1 + δρ

, 1

)
for δρ > 0 denotes a translation of δΓρϱ through the vector

(1 − δ)ϱ.
Now, since

∥Pj
δϱ − Pj

δω∥2 = ∥ϱ − ω − δ(Pjϱ − Pjω)∥2

= ∥ϱ − ω∥2 − 2δ⟨Pjϱ − Pjω, ϱ − ω + δ2∥Pjϱ − Pjω∥2,

it follows from inequality (19) that

∥Pj
δϱ − Pj

δω∥2 ≤ ∥ϱ − ω∥2 − δ(1 − αi)∥Pjϱ − Pjω∥2 + δ2∥Pjϱ − Pjω∥2,

so that for any δ with 0 < δ < 1 − αj, for each j ∈ N, we obtain

∥Pj
δϱ − Pj

δω∥2 ≤ ∥ϱ − ω∥2, ∀ϱ, ω ∈ W. (21)

Using the above information, we restate the iterative scheme defined by (15) as follows:
ϱ1 ∈ H1 chosen arbitrarily ;

ϱn+1 = δn,1ωn + ∑N
j=2 δj ∏

j−1
i=1(1 − δi)Pj−1

δ ωn + ∏N
i=1(1 − δi)PN

δ ωn, n ≥ 1;

ωn = ϱn + λB⋆(Sρ

n(modN)
− I)Bϱn,

(22)

with the conditions on the iteration parameters still as in (15).
Now, we show that the sequences {ϱn}n≥1, {ωn}n≥1 and {Pj−1

δ ωn}n≥1 are bounded.
By the definition of D, for a given q ∈ D, we obtain

q ∈ W = ∩N
j=1F(Γj) = ∩N

j=1F(Pj
δ)

and
q ∈ V = ∩N

j=1F(Sj) = ∩N
j=1F(Sj

δ).

Thus, Bq = Sn(modN)Bq.

Since {Pj
δ}

N
j=1 is a finite family of an αj-strictly pseudocontractive mapping for each j,

it follows from Lemma 1 that W = ∩N
j=1F(Pj

δ) is closed and convex. Consequently, using

Proposition 2 with y = ϱn+1, t = ωn, vj−1 = Pj−1
δ ωn, v = PN

δ ωn, k = 1 and u = q, for each
n ≥ 1 and q ∈ D, we obtain from (22) that
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∥ϱn+1 − q∥2 = ∥δn,1ωn +
N

∑
j=2

δj

j−1

∏
i=1

(1 − δi)Γj−1ωn +
N

∏
i=1

(1 − δi)ΓNωn − q∥2

≤ δn,1∥ωn − q∥2 +
N

∑
j=2

δj

j−1

∏
i=1

(1 − δi)∥Pj−1
δ ωn − q∥2 +

N

∏
i=1

(1 − δi)∥PN
δ ωn − q∥2

≤
(

δn,1 − q∥2 +
N

∑
j=2

δj

j−1

∏
i=1

(1 − δi) +
N

∏
i=1

(1 − δi)

)
∥ωn − q∥2

= ∥ωn − q∥2. (by Proposition 1) (23)

Also, from (22), we have

∥ωn − q∥2 = ∥ϱn − q + λB⋆(Sρ

n(modN)
− I)Bϱn∥2

= ∥ωn − q∥2 + 2λ⟨ωn − q, B⋆(Sρ

n(modN)
− I)Bϱn⟩

+λ2∥B⋆(Sρ

n(modN)
− I)Bϱn∥2. (24)

Since

λ2∥B⋆(Sρ

n(modN)
− I)Bϱn∥2 = λ2⟨B⋆(Sρ

n(modN)
− I)Bϱn, B⋆(Sρ

n(modN)
− I)Bϱn⟩

= λ2⟨BB⋆(Sρ

n(modN)
− I)Bϱn, (Sρ

n(modN)
− I)Bϱn⟩

≤ λ2|B∥2∥(Sρ

n(modN)
− I)Bϱn∥2 (25)

and since using inequality (17)

⟨ωn − q, B⋆(Sρ

n(modN)
− I)Bϱn⟩ = ⟨B(ωn − q), (Sρ

n(modN)
− I)Bϱn⟩

= ⟨B(ωn − q) + (Sρ

n(modN)
− I)Bϱn

−(Sρ

n(modN)
− I)Bϱn, (Sρ

n(modN)
− I)Bϱn⟩

= ⟨(Sρ

n(modN)
− I)Bϱn − Bq, (Sρ

n(modN)
− I)Bϱn⟩

−∥(Sρ

n(modN)
− I)Bϱn∥2

=
1
2

{
∥(Sρ

n(modN)
− I)Bϱn = Bq∥2 + ∥(Sρ

n(modN)
− I)Bϱn∥2

−∥Bϱn − Bq∥2

}
− ∥(Sρ

n(modN)
− I)Bϱn∥2

≤ 1
2

{
∥BϱnBq∥2 + γ∥(Sρ

n(modN)
− I)Bϱn∥2

}

+
1
2

{
∥(Sρ

n(modN)
− I)Bϱn∥2 − ∥Bϱn − Bq∥2

}
− ∥(Sρ

n(modN)
− I)Bϱn∥2

=
γ − 1

2
∥(Sρ

n(modN)
− I)Bϱn∥2,

it follows from Equation (24) that

∥ωn − q∥2 = ∥ϱn − q + λB⋆(Sρ

n(modN)
− I)Bϱn∥2

= ∥ϱn − q∥2 − λ(1 − γ − λ∥B∥2)∥B⋆(Sρ

n(modN)
− I)Bϱn∥2. (26)
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Based on condition 4 from the statement, it is clear that (1 − γ − λ∥B∥2) > 0, and as a
consequence, Equation (26) reduces to

∥ωn − q∥ ≤ ∥ϱn − q∥, ∀n ≥ 1. (27)

Inequalities (23) and (27) imply that

∥ϱn+1 − q∥ ≤ ∥ϱn − q∥, ∀n ≥ 1. (28)

The last inequality implies that the lim
n→∞

∥ϱn − q∥ exists; from (27), it again follows that

the lim
n→∞

∥ωn − q∥ exists. Thus, the sequences {ϱn}n≥1 and {ωn}n≥1 are bounded. Since for

each j ≥ 1, {Pj
δ}

N
j=1 is nonexpansive, we have

∥Pj
δωn − q∥ ≤ ∥ωn − q∥.

Therefore, {Pj
δ}

N
j=1 is also bounded for each j ∈ N.

For each j = 1, 2, · · · , N, denote η
j
µ = (1 − µ)I + µPj

δ. Since Pj
δ is nonexpansive for

each j = 1, 2, · · · , N, it follows from Lemma 4 that ηµ is asymptotically regular. That is,

∥ϱn − η
j
µϱn∥ → 0 as n → ∞. (29)

Also, for each j ∈ N, we have

η
j
µϱ − ϱ = µ(Pj

δϱ − ϱ) = δρµ(Γjϱ − ϱ). (30)

Hence, for each j ∈ N,

∥ϱn − Pj
δϱn∥ → 0 as n → ∞. (31)

Next, we show that for each j = 1, 2, · · · , N,

lim
n→∞

∥ωn − Pj
δωn∥ = 0 and lim

n→∞
∥Sρ

n(modN)
− I)Bϱn∥ = 0. (32)

Now, for any given q ∈ D, we obtain, using (22) and Proposition 2 with y = ϱn+1,
t = ωn, vj−1 = Pj−1

δ ωn, v = PN
δ ωn, k = 1 and u = q, that

∥ϱn+1 − q∥2 = ∥δn,1ωn +
N

∑
j=2

δj

j−1

∏
i=1

(1 − δi)Γj−1ωn +
N

∏
i=1

(1 − δi)ΓNωn − q∥2

≤ δn,1∥ωn − q∥2 +
N

∑
j=2

δj

j−1

∏
i=1

(1 − δi)∥Pj−1
δ ωn − q∥2 +

N

∏
i=1

(1 − δi)∥PN
δ ωn − q∥2

−δn,1

[
N

∑
j=2

δj

j−1

∏
i=1

(1 − δi)∥ωn − Pj−1
δ ωn∥2 +

N

∏
i=1

(1 − δi)∥ωn − PN
δ ωn∥2

]
. (33)
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Using a strict pseudocontraction condition on each {Pj
δ}

N
j=1, we obtain

∥ϱn+1 − q∥2 ≤ δn,1∥ωn − q∥2 +
N

∑
j=2

δj

j−1

∏
i=1

(1 − δi)
[
∥ωn − q∥2 + αj∥ωn − Pj−1

δ ωn∥2
]

+
N

∏
i=1

(1 − δi)
[
∥ωn − q∥2 + ∥αN∥ωn − PN

δ ωn∥2
]

−δn,1

[
N

∑
j=2

δj

j−1

∏
i=1

(1 − δi)∥ωn − Pj−1
δ ωn∥2 +

N

∏
i=1

(1 − δi)∥ωn − PN
δ ωn∥2

]

=

(
δn,1 +

N

∑
j=2

δj

j−1

∏
i=1

(1 − δi) +
N

∏
i=1

(1 − δi)

)
∥ωn − q∥2

−
[
(δn,1 − αj)

N

∑
j=2

δj

j−1

∏
i=1

(1 − δi)∥ωn − Pj−1
δ ωn∥2 + (δn,1 − αN)

N

∏
i=1

(1 − δi)∥ωn − PN
δ ωn∥2

]
,

which by Proposition 1 and Equation (26) yields

∥ϱn+1 − q∥2 ≤ ∥ϱn − q∥2 − λ(1 − γ − λ∥B∥2)∥B⋆(Sρ

n(modN)
− I)Bϱn∥2

−
[
(δn,1 − αj)

N

∑
j=2

δj

j−1

∏
i=1

(1 − δi)∥ωn − Pj−1
δ ωn∥2

+(δn,1 − αN)
N

∏
i=1

(1 − δi)∥ωn − PN
δ ωn∥2

]
,

Set

M =

(
N

∑
j=2

δj

j−1

∏
i=1

(1 − δi)(δn,1 − αj)∥ωn − Pj−1
δ ωn∥2 + (δn,1 − αN)

N

∏
i=1

(1 − δi)∥ωn − PN
δ ωn∥2

)
+λ(1 − γ − λ∥B∥2)∥B⋆(Sρ

n(modN)
− I)Bϱn∥2.

Then, we obtain from the last inequality that

M ≤ ∥ϱn − q∥2 − ∥ϱn+1 − q∥2. (34)

Applying conditions 2 and 3 from the statement and the fact that λ(1−γ−λ∥B∥2) > 0
in inequality (34), we obtain

lim
n→∞

∥ωn − Pj
δωn∥ = 0 and lim

n→∞
∥(Sρ

n(modN)
− I)Bϱn∥ = 0. (35)

Furthermore, we show that

lim
n→∞

∥ωn+1 − ωn∥ = 0 and lim
n→∞

∥ωn+1 − ωn∥ = 0.

Using (22) and Proposition 2 with y = ϱn+1, t = ωn, vj−1 = Pj−1
δ ωn, v = PN

δ ωn,
k = 1 and u = ϱn, we have
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∥ϱn+1 − ϱn∥2 = ∥δn,1ωn +
N

∑
j=2

δj

j−1

∏
i=1

(1 − δi)Γj−1ωn +
N

∏
i=1

(1 − δi)ΓNωn − ϱn∥2

≤ δn,1∥ωn − ϱn∥2 +
N

∑
j=2

δj

j−1

∏
i=1

(1 − δi)∥Pj−1
δ ωn − ϱn∥2 +

N

∏
i=1

(1 − δi)∥PN
δ ωn − ϱn∥2

≤ δn,1∥λB⋆(Sρ

n(modN)
− I)Bϱn∥2 +

N

∑
j=2

δj

j−1

∏
i=1

(1 − δi)
[
∥Pj−1

δ ωn − ωn∥+ ∥ωn − ϱn∥
]2

+
N

∏
i=1

(1 − δi)
[
∥PN

δ ωn − ωn∥+ ∥ωnϱn∥
]2

. (36)

Since

∥ωn − ϱn∥ = λ∥B⋆(Sρ

n(modN)
− I)Bϱn∥ → 0 as n → ∞ (by (32)), (37)

it follows from Equation (35), inequality (36) and Equation (37) that

lim
n→∞

∥ϱn+1 − ϱn∥ = 0. (38)

Also, observe from (22) that

∥ωn+1 − ωn∥ ≤ ∥ϱn+1 − ϱn∥+ λ∥B⋆(Sρ

n(modN)
− I)Bϱn+1∥

+λ∥B⋆(Sρ

n(modN)
− I)Bϱn∥ → 0 as n → ∞. (39)

Considering the above information, we are ready to present our strong and weak conver-
gent results.

Now, since {Γj}N
j=1 is demicompact (by hypothesis) for each j, it follows from (30)

that {η
j
µ}N

j=1 is demicompact for each j. Therefore, using (29), we can find a subsequence

{ϱnk}k≥1 of {ϱn}n≥1 such that ϱnj → q as j → ∞. Further, by the continuity of {Pj
δ}

N
j=1, for

each j, it follows that {η
j
µ}N

j=1 is also continuous for each j, and hence,

η
j
µϱnk → η

j
µq as k → ∞.

Thus, {ϱnk − η
j
µϱnk} → 0‘as‘k → ∞. Using the above information, we have η

j
µq = q

for all j = 1, 2, · · · , N. To be precise,

q ∈ ∩N
j=1F(η j

µ) = ∩N
j=1F(Pj

δ) = ∩N
j=1F(Γj

ρ) = ∩N
j=1F(Γj) = W. (40)

Using (28), we obtain that {ϱn}∞
n=1 converges strongly to q ∈ D.

Again, from (36), we obtain

lim
n→∞

∥(Sρ

nk(modN)
− I)Bϱnk∥ = 0. (41)

Thus, for any τ ∈ N, there exists a subsequence njk ∈ nj with njk (modN) = τ such that

lim
n→∞

∥Sρ
τ Bϱnjk

− Bϱnjk
∥ = 0. (42)

Obviously, from the boundedness of B and decompactness and continuity property of
Sρ

τ , it is easy to see from (42), by following the same reasoning as in (40), that

Bq ∈ ∩N
τ=1F(Sρ

τ) = ∩N
τ=1F(Sτ) = V. (43)
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holds.
Finally, we show that every cluster point ϱ⋆ of the sequence {ϱn}n≥1 is a member of D.
Now, since {ωn}n≥1 is a bounded sequence in H1, this means that we can find a

subsequence {ωnk}k≥1 of the sequence {ωn}n≥1 such that ωnk → ϱ⋆ ∈ H1.
Using (35), we have

lim
n→∞

∥ωnk − Pj
δωnk∥ = 0 (44)

for each j ∈ N. Observe from (20) that for each j ∈ N,

(I − Pj
δ) = δ(I − Γj

ρ), (45)

which immediately guarantees that (I − Pj
δ) is also demiclosed at zero by the demiclosed-

ness of Γρ (see Lemma 1). Consequently, ϱ⋆ ∈ F(Pj
δ) for each j ∈ N. Since j is arbitrary, it

follows that
ϱ⋆ ∈ ∩N

j=1F(Pj
δ) = ∩N

j=1F(Γj
ρ) = ∩N

j=1F(Γj) = W.

Conversely, from (22) and (35), we obtain

ϱnk = ωnk − λB⋆(Sρ

nk(modN)
− I)Bϱnk ⇀ ϱ⋆. (46)

In view of the boundedness of the linear operator B, we obtain

Bϱnk ⇀ Bϱ⋆. (47)

Again, from (35), we have

lim
k→∞

∥(Sρ

nk(modN)
− I)Bϱnk∥ = 0.

Thus, for any τ ∈ N, there exists a subsequence nkj
∈ nk with nkj

(modeN) = τ such
that

lim
kj→∞

∥Sρ
τ Bϱnkj

− Bϱnkj
∥ = 0.

Following the demiclosedness of Γ = S (see Lemma 1), we are guaranteed that
(I − Sρ

τ) = ρ(I − S) is also demiclosed at zero. From the above information and (47), we
obtain that βϱ⋆ ∈ F(Sρ

τ). By the arbitrariness of τ ∈ N, we have

Bϱ⋆ ∈ ∩N
τ=1F(Sρ

τ) = ∩N
τ=1F(Sτ) = V.

This completes the proof.

If λ = 0 in Theorem 1, then the following corollary emerges.

Corollary 1. Let H1, {Γi}∞
i=1, W and α be as in Assumption 2. Let {ϱn}n≥1 be a sequence given by{

ϱ1 ∈ H1 chosen arbitrarily ;

ϱn+1 = δn,1ϱn + ∑N
j=2 δj ∏

j−1
i=1(1 − δi)Γj−1ϱn + ∏N

i=1(1 − δi)ΓNϱn, n ≥ 1;
(48)

If {{δn,j}∞
n=1}N

j=1 ∈ [0, 1] satisfies following the conditions:

(1) δn,1 > α > max{αi}N
i=1; δn,1 < δ < 1, for each i;

(2) lim inf
n→∞

∏
j−1
i=1(1 − δj)(δn,1 − αi−1) > 0, j = 2, · · · , N;

(3) lim inf
n→∞

∏
j−1
i=1(1 − δi)(δn,1 − αN) > 0,

then {ϱn}n≥1 converges strongly and weakly to some ϱ⋆ ∈ W.
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4. Application

In this section, following the same approach as in [33,34], we shall make use of the
results of Section 3 to study the hierarchical variational inequality problem.

Let H and {Γj}N
j=1 be as in Assumption Q with F ∩N

j=1 F(Γj) ̸= ∅. Let S : H −→ H be
a nonexpansive mapping. The well-known hierarchical variational inequality problem for
the countably finite family of the mappings {Γj}N

j=1 with respect to the mapping S is to
find a point ϱ⋆ ∈ F such that

⟨ϱ⋆ − Sϱ⋆, ϱ⋆ − ϱ⟩ ≤ 0, ∀ϱ ∈ F . (49)

It is not difficult to see that (49) is equivalent to the fixed point problem below:
find ϱ⋆ ∈ F such that

ϱ⋆ = PFSϱ⋆, (50)

where PF is the metric projectiom of H onto F . In setting W = F and V = F(PFS) (the
set of fixed point of PFS) and B = I (the identity mapping on H), then the problem (50)
is equivalent to the multiple-set split feasibility problem defined as follows: find ϱ⋆ ∈ W
such that

ϱ⋆ ∈ V. (51)

Consequently, Theorem 2 below follows immediately from Theorem 1.

Theorem 2. Let H1, H2, B, B⋆, {Γi}∞
i=1, {Si}∞

i=1, W, V, α and γ be as stated in Theorem 1. Let
{ϱn}n≥1 and {ωn}n≥1 be the sequences are given by

ϱ1 ∈ H1 chosen arbitrarily ;

ϱn+1 = δn,1ωn + ∑N
j=2 δj ∏

j−1
i=1(1 − δi)Γj−1ωn + ∏N

i=1(1 − δi)ΓNωn, n ≥ 1;

ωn = ϱn + λ(S − I)ϱn,

(52)

where {{δn,j}∞
n=1}N

j=1 is a countably finite family of real sequences in [0, 1], and λ > 0, satisfying
the following conditions:

(1) δn,1 > α > max{αi}N
i=1; δn,1 < δ < 1, for each i;

(2) lim inf
n→∞

∏
j−1
i=1(1 − δi)(δn,1 − αi−1) > 0, j = 2, · · · , N;

(3) lim inf
n→∞

∏
j−1
i=1(1 − δi)(δn,1 − αN) > 0;

(4) λ ∈ (0, 1).

If W ∩ V ̸= ∅, then {ϱn}n≥1 converges weakly to a solution of the hierarchical variational
inequality problem (49). Further, if one of the mappings {Γj}N

j=1 is demicompact, then both {ϱn}n≥1

and {ωn}n≥1 converge strongly to a solution of the hierarchical variational inequality problem (49).

Proof. Based on the fact that S is nonexpansive, by Remark 1, S is a 0-enriched nonexpan-
sive mapping (and, by extension, a 0-enriched pseudocontracive mapping with γ = 0). In
taking N = 1 and B = I (where I is the identity mapping on H) in Theorem 1, then all the
conditions of Theorem 1 are satisfied. Hence, the conclusion of Theorem 2 immediately
follows from that of Theorem 1.

5. Numerical Example

In this section, we illustrate the convergence result of Theorem 1.
The following are examples of (0, αi)-enriched strictly pseudocontractive mappings

and (0, γi)-enriched strictly pseudocontractive mappings.

Example 3. Let H1 = ℓ2 = H2. For each i ∈ {1, 2, · · · , N}, let Γi, Si : ℓ2 −→ ℓ2 be defined by

Γi = −(i + 1)ϱ
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and
Si = −2ϱ

for all ϱ = (ϱ1, ϱ2, · · · , ) ∈ ℓ2. Then,

D = (
N
∩

1=1
F(Γi)) ∩ (

N
∩

1=1
F(Si)) = {0}. (53)

Further, for each i ∈ {1, 2, · · · , N}, {Γi}N
i=1 is (0, αi)-enriched strictly pseudocontractive

mappings. Indeed, for any ϱ, ω ∈ ℓ2 and β = 0, we have

⟨ϱ − Γi − (ω − Γiω), (β + 1)(ϱ − ω)⟩ = ⟨ϱ − Γi − (ω − Γiω), ϱ − ω⟩
= ⟨(i + 1)(ϱ − ω), ϱ − ω⟩ = (i + 2)∥ϱ − ω∥2.

Now, since
∥ϱ − Γi − (ω − Γiω)∥2 = (i + 2)2∥ϱ − ω∥2,

it follows that

⟨ϱ − Γi − (ω − Γiω), (β + 1)(ϱ − ω)⟩ ≥ αi∥ϱ − Γi − (ω − Γiω)∥2,

where αi =
1

(i + 2)
.

Similarly,

⟨ϱ − Si − (ω − Siω), (β + 1)(ϱ − ω)⟩ ≥ γi∥ϱ − Γi − (ω − Γiω)∥2,

where γi =
1
3

.

Thus, {Γi}N
i=1 and {Si}N

i=1 are (0, αi)-enriched strictly pseudocontractive mappings and
(0, γi)-enriched strictly pseudocontractive mappings.

Example 4. Let H1 = ℓ2 = H2, C ⊂ H1 and Q ⊂ H2. For each i ∈ {1, 2, · · · , N}, let
Γi, Si : ℓ2 −→ ℓ2 be defined by

Γi = −(i + 1)ϱ, ∀ϱ ∈ C

and
Si = −2ϱ, ∀ϱ ∈ Q.

Let λ =
1
4

, Bϱ = ϱ, δn,1 =
1
4

, δn,2 = δn,3 =
1
n

and {ϱn}∞
i=1 be a sequence defined by


ϱ1 ∈ H1 chosen arbitrarily ;

ϱn+1 = δn,1ωn + ∑N
j=2 δj ∏

j−1
i=1(1 − δi)Γj−1ωn + ∏N

i=1(1 − δi)ΓNωn, n ≥ 1;

ωn = ϱn + λB⋆(Sn(modN) − I)Bϱn,

(54)

where {{δn,j}∞
n=1}N

j=1 is a countably finite family of real sequences in [0, 1]. Then, {ϱn}∞
i=1 con-

verges to an element of D.

Proof. By Example 3, {Γi}N
i=1 and {Si}N

i=1 are (0, αi)-enriched strictly pseudocontractive

mappings and (0, γi)-enriched strictly pseudocontractive mappings with
N
∩

1=1
F(Γi) = 0 =

N
∩

1=1
F(Si), respectively. Clearly, B is a bounded linear operator on ℓ2, and B = B⋆ = 1.

Hence,

D = {0 ∈
N
∩

1=1
F(Γi) : B(0) =

N
∩

1=1
F(Si)} = {0}. (55)

After simplifying (54) for N = 3 with Sn(modN) = Si, we have
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ϱ1 ∈ H1 chosen arbitrarily ;
ϱn+1 = δn,1ωn + Vn

ωn =
ϱn

4
,

(56)

where Vn = (1 − δn,1)δn,2Γ1ωn + (1 − δn,1)(1 − δn,2)δn,3Γ2ωn + (1 − δn,1)(1 − δn,2)(1 −
δn,3)Γ3ωn. Set α = 1

8
, δn,1 =

1
4

, δn,2 = δn,3 =
1
n

, Γ1ωn = −2ωn, Γ2ωn = −3ωn and

Γ3ωn = −4ωn. Then, (56) reduces to
ϱ1 ∈ H1 chosen arbitrarily ;

ϱn+1 =
1
4

(
1 − n(4n − 1) + 1

4n2

)
ϱn, n ∈ N.

(57)

Now, all the assumptions of Theorem 1 are satisfied. Thus, by Theorem 1, the sequence
{ϱn}∞

i=1 defined by (57) converges to a unique element of D.

6. Conclusions

Finding the fixed points of nonlinear mappings (especially nonexpansive mappings)
has received unprecedented attention due to its numerous applications in a variety of
inverse problems, partial differential equations, image recovery, hierarchical variational
inequality problems and signal processing. Interestingly, strictly pseudocontractive map-
pings (a subclass of the class of (β, α)-enriched strictly pseudocontractive mappings, which
we considered in this paper) have more powerful applications (see [29]) than nonexpansive
mappings. Also, Theorem 3.1 complements and improves the corresponding results in [28]
in the following ways:

(1) For the mapping, we replaced the mapping from a strictly pseudononspreading
mapping to a (β, α)-enriched strictly pseudocontractive mapping.

(2) For the fixed point iterative scheme, we propose a new horizontal iterative scheme for
which the sum condition required for the main results in [28] is not needed. Under
appropriate conditions, strong and weak convergent results are proven.

As an application, a slight modification of our iterative method was shown to be
suitable for the approximation of hierarchical variational inequality problems.
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