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Abstract: The global temperature gradually decreased from the Cretaceous Santonian to Campa-
nian, while angiosperms evolved rapidly and gradually became dominant. The Songliao Basin, NE
China, contains abundant fossil palynomorphs from the Santonian to Campanian age. A thorough
investigation of fossil palynomorphs in borehole ZKY2-1 of the SW Songliao Basin was performed,
reconstructing the vegetation and paleoclimate transition from the Santonian–earliest Campanian
(lower Nenjiang Formation) to the late Campanian (Sifangtai Formation). Eighty form-genera from
borehole ZKY2-1 have been identified. Three palynomorph assemblages were identified: the Schiza-
eoisporites–Cyathidites–Inaperturopollenites assemblage, Schizaeoisporites–Classopollis–Retitricolporites
assemblage, and Schizaeoisporites–Aquilapollenites–Tricolporopollenits assemblage, from bottom to top.
Based on palynological analysis from ZKY2-1 and other boreholes in the Songliao Basin, angiosperm
pollen proportion in the Sifangtai Formation is significantly higher than in the lower Nenjiang
Formation, indicating rapid angiosperm spread from late Santonian to Campanian. Palynological
records indicate relatively humid climate during this period; the content of cool palynological types
increased from the lower Nenjiang Formation to the Sifangtai Formation, suggesting a transition
from warm to cool climate during the late Santonian–earliest Campanian to the late Campanian. The
new palynological evidence from the Songliao Basin reveals a global cooling on land and sea during
the late Santonian–Campanian period. This climate change may further promote angiosperm spread
during the Late Cretaceous period.

Keywords: Songliao Basin; palynomorphs; Cretaceous; Campanian; paleoclimate; vegetation

1. Introduction

The Cretaceous was a typical greenhouse climate period with a series of major geo-
logical events, such as large igneous provinces, the Cretaceous Normal Superchron, the
Oceanic Anoxic Event, the explosion of life, and mass extinctions [1–6]. Among them,
climate change from a hot greenhouse to a cool greenhouse is remarkable [1,7]. The Middle
Cretaceous is a typical hot greenhouse; however, the global temperature decreased gradu-
ally during the Santonian to Campanian periods [1,7,8]. The Late Cretaceous temperature
data are mainly from marine sediments [1,9,10], with only a few records coming from
nonmarine Cretaceous [11,12]. Therefore, studying the terrestrial response to climatic
change during the Cretaceous period is very important.

Palynology has played a significant role in reconstructing terrestrial vegetation
evolution and climate during the Cretaceous period [1,13–16]. Furthermore, the paly-
nomorphs are widely distributed during the Late Cretaceous, with angiosperm pollen
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radiation [15,17–19]. Thus, palynology plays an essential role in understanding the
evolution of paleoclimate and vegetation during the Late Cretaceous period.

The Songliao Basin in northeast China is one of the largest nonmarine basins world-
wide, with a continuous Cretaceous terrestrial sedimentary record [20–23] (Figure 1). Mi-
crofossils such as palynomorphs, ostracods, and charophyta are abundant in the Songliao
Basin [15,22,24–32]. The Cretaceous Continental Scientific Drilling borehole in the Songliao
Basin (SK1) and other boreholes provide ideal materials for nonmarine Upper Cretaceous
stratigraphy, paleoenvironment, and paleoclimate [12,19,21–28,33]. With the detailed study
of borehole SK1 and other boreholes in the Songliao Basin, significant progress has been
achieved in the chronostratigraphy of the Songliao Basin, and a high-precision year-end
stratigraphic framework has been established [15,22,23,34–39]. This provides a reliable
basis for studying paleoclimate, paleoenvironment, biota evolution, and major geological
events in the Songliao Basin. Furthermore, the paleoclimatic characteristics of the Cre-
taceous in the Songliao Basin are generally studied based on the palynomorphs [17,26].
However, previous studies do not clearly state the climate change from the Santonian to
Campanian periods.
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Figure 1. (A) Schematic diagram of Songliao Basin (SLB) and (B) the location of borehole ZKY2-1.
I—North Plunge Zone; II—Northeast Uplift Zone; III—Central Deposition Zone; IV—West Slope
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Research concerning the Songliao Basin is mainly concentrated in the center and
north, and less concentrated in the south, especially in the southwest [27]. Ostracods from
the lower Nenjiang Formation (K2n) (late Santonian to earliest Campanian) and Sifangtai
Formation (K2s) (middle to late Campanian) were recently recovered from borehole ZKY2-1
located in the SW Songliao Basin [27].

In this study, palynomorphs from borehole ZKY2-1 are investigated to establish
the palynological biostratigraphy of the area, and provide the palynological data in the
southwest, which makes the research data from the Songliao Basin more perfect. The study
reveals the late Santonian to Campanian paleovegetation and paleoclimate significance of
borehole ZKY2-1 in the southern part of the basin.
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2. Geological Setting

The Songliao Basin extends from northeast to southwest, spanning the central part of
Heilongjiang Province, the northeast part of Liaoning Province, the eastern part of Inner
Mongolia Autonomous Region, and the western part of Jilin Province. It is about 750 km
long from north to south, 370 km wide from east to west, and covers an area of about 26 km
× 104 km [33] (Figure 1). The Songliao Basin has three evolution stages: a fault depression
period (Huoshiling–Yingcheng Formations), a depression period (Denglouku–Nenjiang For-
mations), and a tectonic inversion period (Sifangtai–Yi’an Formations). The former belongs
to the volcanic rift basin and the intracontinental depression basin [40]. The Songliao Basin
can be divided into five first-order tectonic units: the western slope area, northern dip area,
central depression area, northeast uplift area, and southwest uplift area. Borehole ZKY2-1
is located in the southwest uplift area (Figure 1). The Cretaceous sediments formed in the
basin are predominantly clastic rocks. From bottom to top, the rock stratigraphic framework
consists of the Huoshiling Formation (K1h), Shahezi Formation (K1s), Yingcheng Formation
(K1y), Denglouku Formation (K1d), Quantou Formation (K2q), Qingshankou Formation
(K2qn), Yaojia Formation (K2y), Nenjiang Formation (K2n), Sifangtai Formation (K2s), and
Mingshui Formation (K2m) [23,41]. The Songliao Basin is rich in fossils, especially the
Late Cretaceous strata [22]. The chronostratigraphic framework of the Songliao Basin has
been established using magnetic, astronomical, isotopic, biostratigraphic, and quantified
stratigraphic data [15,17,22,23,25,26,32,42,43] (Figure 1). K2n is divided into five distinctive
members, including K2n1, K2n2, K2n3, K2n4, and K2n5, from bottom to top [17]. K2n is
considered late Santonian to middle Campanian, with the Santonian/Campanian boundary
at the lower K2n2 [22,35,36,40,44]. K2n1 and the lower K2n2 sequences mainly consist of
dark gray or black mudstones and grayish to green silty mudstones intercalated with thin
carbonates and deposited in deep to subdeep lake environments [30]. The upper K2n2 and
K2n3, K2n4, and K2n5 consist of grayish mudstones, gray argillaceous siltstones, brownish
red mudstones, and sandstones deposited in a shallow lake to delta environment [41].
K2s comprises sedimentary facies representing riverine and lacustrine systems and other
associated environments [45]. The K2s is considered late Campanian in age [22,35,37].

With large-scale oil and gas drilling in the Songliao Basin since the 1950s, abundant
fossils, especially microfossils, were discovered and accumulated. More than 20 fossil
groups have been identified, of which palynomorphs are the most abundant [17,46]
(Figure 2). Kong [47] summarized the main characteristics of three significant biotas:
Jehol biota during the sedimentation of the Huoshiling to Shahezi Formations, the
Songhuajiang biota during the depression of Yingcheng to Nenjiang Formations, and
the Mingshui biota during the Sifangtai to Mingshui Formations. Gao et al. [17] summa-
rized the palynomorph assemblages of the Late Cretaceous in the Songliao Basin, from
bottom to top: 1. Trilobosporites–Cyathidites–Tricolporopollenites (K2q1-K2q2), 2. Schiza-
eoisporites–Quantonenpollenites–Tricolporopollenites (K2q3-K2q4), 3. Cicatricosisporites–
Cyathidites–Pinuspollenites (K2qn1), 4. Balmeisporites–Cyathidites–Classopollis (K2qn2-
K2qn3), 5. Cyathidites–Schizaeoisporites–Tricolpites (K2y1), 6. Beaupreaidites–Cyathidites–
Schizaeoisporites (K2y2-K2y3), 7. Proteacidites–Cyathidites–Dictyotriletes (K2n1),
8. Lythraites–Aquilapollenites–Schizaeoisporites (K2n2-K2n5), 9. Schizaeoisporites
–Betpakdalina–Tricolporopollenites (K2s), 10. Laevigatosporites–Aquilapollenites–Wodehouseia
(K2m1), and 11. Tricolporopollenites–Ephedripites–Ulmoideipites (K2m2). Li et al. [15]
divided seven biozones from bottom to top according to the characteristics of paly-
nomorphs in borehole SK1 (Toronian to early Danian).
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3. Materials and Methods

Borehole ZKY2-1 is located in the southwestern Songliao Basin (43◦56′59′ ′N, 122◦33′45′ ′ E),
east of the Central Asia orogenic belt. The borehole is buried shallowly, and the fossils are well
preserved, forming a continuous stratum from the Cretaceous Yaojia Formation to the Paleogene
Taikang Formation in the southwest part of the basin. This study mainly focuses on the lower
K2n to the K2s (240–495 m). The samples were collected at intervals of approximately 1–3 m.
Twenty-five samples were selected for analysis. The lower K2n (346–495 m) is mainly black or
dark gray silty mudstone, while K2s (240–345 m) is mainly gray-green argillaceous siltstone. All
research materials are stored in the Microbiology Paleontology Laboratory of China University
of Geosciences (Beijing).

Palynological analyses were performed using samples weighing 30–50 g. The samples
were first treated with 10% HCl and 40% HF to remove carbonates and silicates, followed by
KOH treatment to discolor organic matter. Then, KI and ZnCl2 were combined into a heavy
liquid (2.0 g/cm3) that was used to separate the palynomorphs by flotation. Palynomorph
identification and counting were performed at 650× magnification and, if necessary, at
800×magnification by using a Carl Zeiss microscope (Axiolab 5, Carl Zeiss AG, Oberkochen,
Germany). Photos were taken using an AxioCam MRc5 digital camera (Carl Zeiss AG,
Oberkochen, Germany). Considering the region’s nature, palynomorph identification in
this study was mainly based on relevant books [15,19,20].
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CorelDRAW (2019, Corel, Ottawa, Canada) was used for drawings. The data shown
were analyzed using Excel (Word Processing System 2019, Kingsoft, Beijing, China) to make
line charts, and then the whole picture was drawn in CorelDRAW.

4. Results
Palynomorphs from Borehole ZKY2-1

In borehole ZKY2-1, 80 form-genera palynomorphs were preliminarily identified.
(Figures 3–5, Table 1).
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Figure 4. Typical palynomorphs from borehole ZKY2-1. 1 Cyathidites minor. 2 Triphyllopollis trigonos.
3 Laevigatosporites. 4 Punctatisporites. 5 Piceaepollenites. 6 Rugubivesiculites. 7 Retitricolpites. 8 Schiza-
eoisporites. 9 Integricorpus. 10 Brenneripollis. 11 Triporoletes laevigatus. 12 Gabonisporites. 13 Todisporites
minor. 14 Cycadopites. 15 Polyporites. 16 Paleoconiferus. 17 Cerebropollenites. 18 Liliacidites. 19 Classopollis
classoides. 20 Aquilapollenites. 21 Cicatricosisporites. 22 Osmundacidites. 23 Jugella. 24 Callistopollenites.
25 Exesipollenites.
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Table 1. Original data table.
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240 K2s 1 1 2 10 8 10 1 2 4 1 4 2 8 2 10 4 2 3 1 1 3 80
246 K2s 4 7 9 1 2 10 6 39
249 K2s 8 153 30 191
266 K2s 1 1
268 K2s 46 24 12 2 84
276 K2s 1 2 3 6
279 K2s 1 1
285 K2s 6 1 3 16 5 1 32
296 K2s 6 18 5 7 1 2 39
299 K2s 1 1 1 7 3 1 1 1 2 1 30 10 4 1 16 2 4 86
315 K2s 12 3 2 2 2 1 7 2 2 4 37
319 K2s 2 6 1 1 1 3 1 1 1 2 3 4 26
330 K2s 2 1 3
338 K2s 1 2 29 5 1 1 5 1 6 1 1 1 5 1 1 1 1 2 1 1 67
351 K2n2 1 1 2
354 K2n2 5 2 1 1 1 1 11
359 K2n2 8 1 2 1 12
365 K2n2 19 19
371 K2n2 0
441 K2n1 0
444 K2n1 0
446 K2n1 0
451 K2n1 0
462 K2n16 10 10 3 1 1 2 1 34
474 K2n1 0
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Table 1. Cont.
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268 K2s 2 4 1 2 1 1 11
276 K2s 1 9 2 12
279 K2s 1 1
285 K2s 11 4 11 1 2 6 4 4 43
296 K2s 2 12 2 2 18
299 K2s 1 2 2 1 3 1 2 7 1 1 5 26
315 K2s 1 3 2 8
319 K2s 1 2 9 29 31 3 8 1 2 8 2 1 1 1 4 1 1 25 1 1 1 2 135
330 K2s 4 8 2 3 2 2 1 2 2 39 1 2 1 69
338 K2s 2 6 2 3 1 1 2 1 2 1 14 1 1 1 6 1 1 46
351 K2n2 1 1
354 K2n2 1 3 6 3 2 1 1 2 3 7 57
359 K2n2 2 4 1 1 5 20 6 1 1 41
365 K2n2 21 33 2 12 68
371 K2n2 0
441 K2n1 0
444 K2n1 0
446 K2n1 0
451 K2n1 0
462 K2n12 28 48 20 20 2 4 11 1 40 8 8 2 14 2 6 18 3 4 271
474 K2n1 0
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Table 1. Cont.

C
upuliferoipollenites

C
upuliferoidaepollenites

U
lm

oideipites

U
lm

ipollenites

Liquidam
barpollenites

C
eltispollenites

M
agnolipollis

Liliacidites

M
argocolporites

P
otam

ogetonacidites

G
ranw

ellia

C
allistopollenites

A
steropollis

C
lavatipollenites

A
quilapollenites

A
.m

inor

A
.spinulosus

Lythraites

Integricorpus

X
uippllis

B
renneripollis

P
olyporites

Sabalpollenites

Triphyllopollis
trigonos

R
etitrescolpites

R
etitricolpites

Tricolpopollenites

T.m
ollis

R
etitricolporites

A
ngiosperm

pollen

240 K2s 1 3 4 2 4 4 4 4 6 6 2 3 3 4 12 6 5 77
246 K2s 1 1
249 K2s 1 1
266 K2s 4
268 K2s 1 1 7 9
276 K2s 5 5
279 K2s
285 K2s 1 1 1 3 2 8
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In K2n1, there were 26 form-genera. Fern spores belonged to Cyathidites, Klukisporites,
Triporoletes, Foraminisporis, Osmundacidites, and Schizaeoisporites, among others. The follow-
ing gymnosperm pollen taxa were also identified: Podocarpidites, Pinuspollenites, Abietineae-
pollenites, Piceaepollenites, Cedripites, Inaperturopollenites, Classopollis, and Pinaceae, among
others. The angiosperm pollen primarily belonged to Callistopollenites, Retitricolpites, and
Ricolpopollenites, among others.

In K2n2, there are 20 form-genera. The fern spores belonged to Triporoletes, Schiza-
eoisporites, and Laevigatosporites. Among the gymnosperm pollen taxa identified were
Pinuspollenites, Abietineaepollenites, Pinaceae, Inaperturopollenites, and Classopollis. The
angiosperm pollen primarily belonged to Asteropollis, Triphyllopollis, Tricolpopollenites,
and Retitricolpites.

Seventy-seven form-genera were identified in K2s. Fern spores belonged to Cyathidites,
Trilobosporites, Abdiverrucospora, Osmundacidites, Gabonisporites, and Schizaeoisporites, among
others. Podocarpidites, Inaperturopollenites, Araucariacites, Pinaceae, Jugella, Cycadopites, and
Classopollis were among the identified gymnosperms. The angiosperm pollen primarily be-
longed to Callistopollenites, Ulmoideipites, Retitrescolpites, Asteropollis, Polyporites, Tricolpopol-
lenites, Aquilapollenites, and Retitricolpites, among others.

Three assemblages are divided by identification and analysis of palynomorphs of the
index taxa.

K2n1 is represented by the Schizaeoisporites–Cyathidites–Inaperturopollenites assem-
blage. The frequency of gymnosperm pollen is high (0%–85.7%), followed by fern spores
(0%–10.7%), and angiosperm pollen (0%–3.6%). Among the fern spores, Cyathidites are
dominant (0%–38.2%), and Schizaeoisporites have a large concentration (0%–29.4%); Os-
mundacidites are common. Among the gymnosperm pollen are Pinuspollenites, Abietineaepol-
lenites, and Classopollis. The percentage of Inaperturopollenites is relatively high (0%–27.6%),
while Pinuspollenites (0%–17.7%), Abietineaepollenites (0%–7.3%), Piceaepollenites (0%–7.3%),
and Classopollis (0%–8.7%) all have a certain amount. Among the angiosperm pollen, Tri-
colpopollenites (0%–54.5%) have a certain amount, while Retitricolpites and Callistopollenites
are common.

The Schizaeoisporites–Classopollis–Retitricolporites assemblage belongs to K2n2. Gym-
nosperm pollen is most abundant (33.3%–78.1%), followed by fern spores (14.8%–66.6%),
and angiosperm pollen (0%–8.2%). Schizaeoisporites are dominant (0%–100%) among the
fern spores. Among the pollen of gymnosperms, including Paleoconiferus, Classopollis,
and Inaperturopollenites, Classopollis possesses a larger percentage (21.1%–82.3%), while
Paleoconiferus and Callialasporites are common. The angiosperm pollen, including Aster-
opollis, Retitricolpites, Retitricolporites, Triphyllopollis, and Retitricolporites (0%–33.3%), have a
certain amount.

The Schizaeoisporites–Aquilapollenites–Tricolporopollenits assemblage belongs to K2s,
which is dominated by fern spores (3.9%–96.4%), followed by gymnosperm pollen
(3%–90.7%), and angiosperm pollen (0.6%–46.5%). Among the fern spores, including
Schizaeoisporites, Cyathidites, Pterisisporites, and others, Cyathidites (10.8%–84.2%) predom-
inates, while Schizaeoisporites and Gabonisporites are common. Among the gymnosperm
pollen, including Classopollis, Araucariacites, Pinuspollenites, and others, Pinuspollenites
(2.8%–75%) are dominant, whereas Classopollis and Araucariacites are common. Finally,
among the angiosperm pollen, Callistopollenites, Tricolpopollenites (6–77.8%), and Retitri-
colporites (6.4%–33.3%) have the highest content, while Callistopollenites, Asteropollis, and
others are common.

5. Discussion
5.1. Stratigraphic Correlation between Boreholes ZKY2-1 and SK1

The Late Cretaceous integrated stratigraphic framework has been established based
on borehole SK1 [22,23,36,37,39]. Therefore, comparing other boreholes and borehole SK1
is very important (Figure 6). A large-scale lake invasion occurred during sedimentation
of the lower K2n1 and lower K2n2, depositing two sets of black mudstone, shale, and
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oil shale [48,49]. The bottom of both K2n1 and K2n2 in boreholes SK1 and ZKY2-1 are
mainly characterized by black shale and mudstone. Thus, the boundary of K2y/K2n1 and
K2n1/K2n1 can be easily recognized [50]. Owing to tectonic uplift, there is a widespread
stratigraphic hiatus between K2n and K2s [51]. From K2n to K2s of borehole SK1, there
may be 3.8 myr of stratigraphic hiatus [38]. In borehole ZKY2-1, the stratigraphic hiatus
is much longer than that of borehole SK1 because there are no K2n3 to K2n5 strata [27].
K2s is composed of dark gray, gray mudstone, and grayish green, light gray siltstone [52].
Borehole SK1 mainly revealed greenish gray mudstone and silty mudstone, light gray fine
sandstone and siltstone, and grayish brown silty mudstone [53]. ZKY2-1 revealed mainly
gray and dark gray mudstone, siltstone, fine sandstone, and medium sandstone, similar to
borehole SK1.
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Palynomorphs and ostracods play an important role in biostratigraphic correlation
in the Songliao Basin. In borehole ZKY2-1, K2n1 is represented by the Schizaeoisporites–
Cyathidites–Inaperturopollenites assemblage, with gymnosperm pollen predominating. High
concentrations of Cyathidites and Schizaeoisporites are found in the fern spores, while Os-
mundacidites were found to a lesser level. Pinuspollenites dominate in the gymnosperm
pollen, while Pinaceae and Classopollis have varying content levels. Tricolpopollenites from
angiosperm pollen were found. In borehole SK1 [24], Schizaeoisporites were predominant
in the fern spores, while Cyathidites and Osmundacidites were found in varying propor-
tions. The gymnosperms pollen was abundant in Pinaceae, Classopollis, and Pinuspollenites.
The abundance of Tricolpopollenites distinguishes angiosperm pollen. Generally, the paly-
nomorph assemblage of K2n1 in borehole ZKY2-1 is similar to that in borehole SK1. A
simple comparison was made between borehole ZKY2-1 and borehole SK1. In borehole
SK1, K2n1 is represented by the Cypridea gracila–Cypridea gunsulinensis assemblage [30]. In
borehole ZKY2-1, K2n1 is represented by the Mongolocypris magna–Cypridea ardua–Cypridea
acclinia assemblage [27]. The two are very similar and comparable.

In borehole ZKY2-1, the lower K2n2 is represented by the Schizaeoisporites–Classopollis–
Retitricolporites assemblage. The fern spore Schizaeoisporites predominates. Gymnosperm
pollen contains a significant content of Classopollis. Angiosperm pollen, such as Asteropollis,
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Retitricolpites, and Retitricolporites, are present in certain amounts. The abundance and
diversity of palynomorphs increased gradually from bottom to top. In borehole SK1, the
palynomorph assemblage of the lower K2n2 is represented by the Lythraites–Callistipollehites–
Schizaeoisporites assemblage [24], with fern spores of Schizaeoisporites predominating in
K2n2. The content of Classopollis is high in gymnosperm pollen, and three colpi characterize
angiosperm pollen. The number and species of palynomorphs gradually increase from
K2n1 to K2n2. Generally, the palynomorph assemblage of K2n2 in borehole ZKY2-1 is
similar to that of borehole SK1. A simple comparison was made between borehole ZKY2-1
and borehole SK1. In borehole SK1, K2n2 is represented by the Mongolocypris magna–
Mongolocypris heiluntszianensis assemblage [30]. In borehole ZKY2-1, the lower K2n2 is
represented by Ilyocyprimorpha netchaevae–Scabriculocypris trapezoids [27]. It is suggested
that the ostracod assemblage of the two boreholes is similar. Compared with borehole SK1,
the ostracod and palynomorphs from the upper K2n2 to K2n5 are not identified.

In borehole ZKY2-1, the palynomorph assemblage of K2s belongs to the Schizaeois-
porites–Aquilapollenites–Tricolporopollenits assemblage. Cyathidites is dominant in the fern
spores, Schizaeoisporites and Gabonisporites are common. Pinuspollenites and Inaperturopollen-
ites are high in gymnosperms pollen; Classopollis and Araucariacites are common. Tricolpopol-
lenites and Retitricolporites are high in angiosperm pollen; Callistopollenites and Asteropollis
are common. In borehole SK1 [43], the fossil palynomorphs in the K2s assemblage are dom-
inated by gymnosperm pollen, followed by fern spores and angiosperm pollen. Generally,
the palynomorph assemblage of K2s in borehole ZKY2-1 is similar to that of borehole SK1.
A simple comparison is made between borehole ZKY2-1 and borehole SK1. In borehole SK1,
K2s is represented by the Talicypridea amoena–Metacypriskaitunensis–Ziziphocyprissimakovi
assemblage [30]. In borehole ZKY2-1, K2s is represented by the Lycopterocypris profunda–
Talicypridea reticulata–Renicypris? Renalata [27]. The ostracod is very similar and comparable.

The widespread distribution of Schizaeoisporites is an important characteristic of the
Late Cretaceous palynomorph assemblage [26]. Nichols and Sweet [54] regarded the tri-
porate type as an indication of the age of Santonian. Callistopollenites are common in Late
Cretaceous palynomorph assemblages in the Northern Hemisphere (e.g., in the Edmonton
Formation, Alberta, Canada) [55]; Li et al. [15] regarded Callistopollenites as late Santonian
to Campanian. Rugubivesiculites are often found in the Campanian [18]. In the Lower
Cretaceous sediments of Spain [56] and Sweden [55], Appendicisporites may have survived
up to the Santonian period [57]. According to Nichols and Jacobson [57], Aquilapollenites
first appeared during the Campanian. In contrast, according to Nichols and Sweet [54],
Aquilapollenites originated during the Santonian–Campanian. The Aquliapollen type cre-
ated by Gao and others in 1976 includes Aquilapollenites, which are widely distributed
globally and mainly concentrated in Asia, North America, and in Europe north of 35◦ N.
Aquilapollenites have also been found in central Africa, Malaysia, and Australia. In the Late
Cretaceous, the Aquliapollen type was reported in the Rocky Mountains of the United
States, Alaska, and the lower reaches of the Mississippi River; and Canada, Siberia, Japan,
France and the United Kingdom; It is mainly found in the Songliao Basin, Sanjiang Basin,
and Jiayin Region of Heilongjiang Province in northeast China [17]. The palynomorphs in
borehole ZKY2-1 have typical characteristics of the Late Cretaceous.

By comparing borehole ZKY2-1 with borehole SK1 and analyzing the age of the
palynomorph assemblages, K2n1 in borehole ZKY2-1 is dated as late Santonian, K2n2 is
determined as the latest Santonian–earliest Campanian, the period of K2s is assigned as late
Campanian. The age of the lower Nenjiang Formation to Sifangtai Formation of borehole
ZKY2-1 lasted from late Santonian to late Campanian, but the middle Campanian strata
are missing. The established chronostratigraphic framework provides the basis for the
following vegetation analysis and climate change.

5.2. Vegetation Change during the Santonian–Campanian Period

The Cretaceous period was critical for the origin and spread of angiosperms [58,59].
Although angiosperms may have appeared for a long time [60], angiosperm pollen is diffi-
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cult to identify until after deposition of the Barremian strata [19]. The late Early Cretaceous
epoch is considered significant for the early distribution of angiosperm pollen; nevertheless,
the number and diversity are still relatively limited [17,58,61]. Angiosperms proliferated
and flourished rapidly, replacing gymnosperms as the dominant group gradually during
the Late Cretaceous. In the Late Cretaceous, the Santonian–Lower Campanian period
was crucial for rapid angiosperm proliferation [14]. Based on the data from borehole
ZKY2-1 and other boreholes/outcrops in the Songliao Basin, the rapid radiation process of
angiosperms is described in detail.

Coniferous forest, evergreen broadleaf forest, deciduous broadleaf forest, shrub, and
herb are the classification of palynomorphs vegetation types [17].

According to the palynomorph assemblage reaction of the late Santonian–Campanian
period in borehole ZKY2-1, the K2n1+2 record comprises high amounts of coniferous forest
and some content of herb. Coniferous forest and herb are the dominant vegetation types.
As herb content increases, coniferous and evergreen broadleaf forests have some content
throughout the sedimentation of the K2s. The vegetation types were herb and broadleaf
mixed forest during this period. A comparison analysis between K2n1+2 and K2s reveals
that from late Santonian–earliest Campanian to late Campanian, the vegetation type of NE
Asia changed from coniferous forest and herb to herb and herb–broadleaf mixed forest
(Figure 7, Table 2).
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Table 2. Vegetation-types table. References: (1): [17].

Vegetation Types

Coniferous Forest Evergreen Broadfeaf
Forest

Deciduous Broadleaf
Forest Shrub Herb

Classopollis Cyathidites Ulmoideipites Concavissimisporites Laevigatosporites
Podocarpidites Cibotiumspora Liquidambarpollenites Klukisporites Schizaeoisporites

Cedripites Cycadopites Ulmipollenites Lygodiumsporites Deltoidospora
Piceaepollenites Magnolipollis Lygodioisporites Osmundacidites
Abietspollenites Aquilapollenites Todisporites
Pinuspollenites Integricorpus Densoisporites
Araucariacites Polyporites
Parvisaccites Lythraites

Palaeoconiferus Cicatricosisporites
Piceites Ephedripites

Inaperturopollenites
Psophosphaera
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Late Santonian to early Campanian angiosperm pollen Callistopollenites, Retitricolpites,
Tricolpopollenites, Asteropollis, and Triphyllopollis are found in K2n1 and K2n2 of borehole
ZKY2-1. In K2n1+2 of borehole ZKY2-1, the content of angiosperm pollen is very low
(0%–4.4%). Considering that the number of K2n1+2 in borehole ZKY2-1 is small and there
may be errors, we compare and comprehensively analyze the palynomorph data for K2n1

and lower K2n2 in the Houjingou section with Yan Jingjing, and show the average pro-
portion of angiosperm pollen (0%–12.3%) [42]. In contrast, during the middle and late
Campanian periods, angiosperm pollen Aquilapollenites are found in K2s of borehole ZKY2-
1. In K2s of borehole ZKY2-1, the content of angiosperm pollen increases significantly
(0.5%–46.4%). The number and abundance of angiosperm pollen increases significantly
from K2n1+2 to K2s (Figure 8), among which Tricolpopollenites and Retitricolporites flourished
gradually, and Aquilapollenites appeared in K2s. The angiosperm pollen also increased
rapidly in the Songliao Basin and Jiayin Basin (NE China) from Santonian to late Cam-
panian, [15,26,43,62,63]. In summary, in East Asia, angiosperm pollen experienced rapid
radiation from late Santonian to late Campanian.
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5.3. Climate Change during the Late Santonian–Campanian Period

Palynomorphs are abundant in the Songliao Basin, which can reflect the nonmarine
Cretaceous paleoclimate, especially the paleoclimatic of East Asia [17,26,43]. The paly-
nomorphs from borehole ZKY2-1 reveal minimal humidity change from K2n1+2 to K2s (or
the early Santonian to late Campanian). However, there is an obvious drop in temperature
from K2n1+2 to K2s.

Classopollis thrives in an arid and hot environment [64–66]. The content of Classopollis
decreased from K2n1+2 to K2s. Pinaceae was the most common in semiarid- to subhumid-
type climate [67–70] in borehole ZKY2-1. Abietineaepollenites and Pinuspollenites were
dominant in the semiarid-type climate [68,69]. From K2n1+2 to K2s, the contents of semiarid–
semihumid, semiarid, and semihumid components are relatively stable. The Ephedripites,
representing a dry climate, are very low in both K2n1+2 and K2s, suggesting the climate
was not very arid. Briefly, the dry and humid conditions during the late Santonian to
Campanian periods are mainly semiarid–semihumid, with fluctuations from arid to humid.
However, further study of humidity is needed in the future.

The palynomorphs from borehole ZKY2-1 can indicate the temperature of climate, and
among them are hot-type Cheirolepidiaceae (Classopollis); warm-type Bryophyta (Foraminis-
poris), Osmundaceae (Osmunacidites), Araucariaceae (Callialasporites), Taxodiaceae (Inaper-
turopollenites); and cool-type Taxodiaceae (Concentrisporites, Exesipollenites), Coniferophyta
(Pinaceae, Abietineaepollenites, Pinuspollenites, Cedripites, Parvisaccites, Piceaepollenites, Pi-
ceites) [64–68,71]. In K2n1+2, the content of hot palynomorphs is 30.8%, the content of warm
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palynomorphs is 28.2%, and the cool palynomorphs is 41%. In K2s, the content of hot paly-
nomorphs is 2.1%, the content of warm palynomorphs is 27.7%, and the cool palynomorphs
is 70.2%. Summarizing, in the late Santonian–Campanian period, the vegetation generally
showed that hot and warm types decreased from K2n1+2 to K2s, and the cool-type increased
from K2n1+2 to K2s, indicating that the temperature decreased from late Santonian to early
Campanian K2n1+2 to late Campanian K2s (Table 3).

Table 3. Climate-types table.

Palynomorphs Climate type References

Classopollis Hot Type

[60,64–74]

Foraminisporis Warm Type
Osmundacidites Warm Type
Callialasporites Warm Type

Inaperturopollenites Warm Type
Concentrisporites Cool Type

Exesipollenites Cool Type
Pinaceae Cool Type

Abietineaepollenites Cool Type
Pinuspollenites Cool Type

Cedripites Cool Type
Parvisaccites Cool Type

Piceaepollenites Cool Type
Piceites Cool Type

The change in Santonian to Campanian temperature in the Songliao Basin is supported
by the palynomorphs and plants in Jiayin Basin, which is located northeast of the Songliao
Basin [62]. The Santonian flora of the Jiayin Basin indicate relatively hot to warm climate,
while the late Campanian to Maastrichtian flora of the Jiayin Basin imply a relatively cool
climate [62,75]. The paleoclimate of the Jiayin Basin is consistent with the overall climate-
change response revealed in borehole ZKY2-1 in the late Santonian to Campanian period,
suggesting that palynomorphs of borehole ZKY2-1 indicate adaptation to the climate
during the late Santonian–Campanian period. According to oxygen isotope and TEX86
recorded in marine sediments, the global temperature decreased from late Santonian to
late Campanian [1,7,76–79], which is also consistent with the palynological analysis of
ZKY2-1. In combination with the dryness and humidity, that is, from the late Santonian to
late Campanian period, the overall climate changed from a semiarid–semihumid warm
climate to a semiarid–semihumid cool climate (Figure 9).

A series of evidence confirmed a decline in global temperature [1,7] and rapid radiation
of angiosperm pollen [38,80] during the Late Cretaceous. However, there are few studies
on the relationship between global temperature decline and angiosperm pollen evolution
during the Late Cretaceous. This study on borehole ZKY2-1 clearly shows that the decline
of global temperature during the Santonian–Campanian may have promoted the rapid
radiation of angiosperm pollen. Because angiosperm pollen could adapt to more complex
environments, including changeable or cold temperatures, the cooling during the late
Campanian period may have been conducive to the adaptation and radiation of angiosperm
pollen, and the second is not conducive to the prosperity of ferns spores and gymnosperm
pollen, which objectively further promotes the further radiation of angiosperm pollen.
Nevertheless, this study only puts forward a preliminary hypothesis and the relationship
between the two needs further in-depth study.
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6. Conclusions

Palynomorphs are abundant in the Late Cretaceous stratigraphy in the Songliao Basin,
indicative of climate change and vegetation evolution. Borehole ZKY2-1 provides valuable
materials for studying palynomorphs in the Songliao Basin. Borehole ZKY2-1 can be well
correlated with borehole SK1, with K2n1 dated as late Santonian, K2n2 determined as the
latest Santonian–earliest Campanian, and K2s assigned as late Campanian.

From late Santonian–earliest Campanian to late Campanian, the vegetation type of
NE Asia changed from coniferous forest and herb to herb and broadleaf mixed forest. In
addition, angiosperm pollen was radiated rapidly from late Santonian to late Campanian.

Although humidity was relatively stable, with semiarid to semihumid climate during
the late Santonian to Campanian period, the temperature changed from a warm climate
during the late Santonian–earliest Campanian to a cool climate during the late Campanian.
The decline of global temperature may have promoted the evolution and expansion of
angiosperm pollen.
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