
Citation: Knizhnik, A.; Komarov, P.;

Potapkin, B.; Shirabaykin, D.; Sinitsa,

A.; Trepalin, S. Gas Barrier Properties

of Multilayer Polymer–Clay

Nanocomposite Films: A Multiscale

Simulation Approach. Minerals 2023,

13, 1151. https://doi.org/

10.3390/min13091151

Academic Editors: Mokhtar Adel,

Boukoussa Bouhadjar and

Mohamed Abboud

Received: 5 August 2023

Revised: 25 August 2023

Accepted: 27 August 2023

Published: 30 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

minerals

Article

Gas Barrier Properties of Multilayer Polymer–Clay
Nanocomposite Films: A Multiscale Simulation Approach
Andrey Knizhnik 1,2, Pavel Komarov 3,4,* , Boris Potapkin 1,2, Denis Shirabaykin 1, Alexander Sinitsa 1,2

and Sergey Trepalin 1,5

1 Kintech Lab Ltd., 123298 Moscow, Russia
2 National Research Center “Kurchatov Institute”, 123182 Moscow, Russia
3 Institute of Organoelement Compounds RAS, 119991 Moscow, Russia
4 General Physics Department, Tver State University, Sadovy Str. 35, 170002 Tver, Russia
5 All Russian Institute for Scientific and Technical Information RAS, 125215 Moscow, Russia
* Correspondence: pv_komarov@mail.ru

Abstract: The paper discusses the development of a multiscale computational model for predicting
the permeability of multilayer protective films consisting of multiple polymeric and hybrid layers
containing clay minerals as fillers. The presented approach combines three levels of computation:
continuous, full atomic, and quantitative structure–property correlations (QSPR). Oxygen and water
are chosen as penetrant molecules. The main predictions are made using the continuum model, which
takes into account the real scales of films and nanoparticles. It is shown that reliable predictions of
the permeability coefficients can be obtained for oxygen molecules, which is not always possible
for water. The latter requires the refinement of existing QSPR methods and interatomic interaction
potentials for the atomistic level of calculations. Nevertheless, we show that the maximum effect on
permeability reduction from the addition of clay fillers to the hybrid layer can be achieved by using
nanoparticles with large aspect ratios and a high degree of orientational order. In addition, the use of
the hybrid layer should be combined with the use of polymer layers with minimal oxygen and water
permeability. The constructed model can be used to improve the properties of protective coatings for
food and drug storage and to regulate the gas permeability of polymeric materials.

Keywords: multilayer polymer films; nanocomposites; clay minerals; barrier films; full atomistic
simulations; continuous model; molecular dynamics; Monte Carlo

1. Introduction

Gas permeability is one of the most important properties in assessing the operational
performance of packaging and protective materials designed to ensure long-term storage of
food and pharmaceuticals [1–14]. The choice of polymers for these applications is explained
by their high manufacturability and design flexibility, while products based on them have
a lower weight that cannot be offered by glass and metal.

One of the main problems associated with the preservation of foods and drugs is their
relatively rapid degradation when in contact with oxygen-containing molecules in the
environment [5,8,10,15–17]. This is due to the fact that all organic materials (oils, lipids,
sugars, and proteins) are susceptible to oxidation and many of them can bind to water.
In turn, medicines contain biologically active molecules (enzymes, hormones, vitamins,
antibiotics, etc.) that have many chemically active functional groups (-S-, -OH, -C(O)OH,
-C(O)O-, -NH-, -NH2, -NO2, etc.). Therefore, the penetration of even a small amount
of oxygen or water molecules into the packaging can significantly reduce the consumer
properties of the products and gradually lead to their complete deterioration.

Recently, flexible multilayer films have been increasingly used in the production of
packaging for fresh vegetables and meat, as well as bags and containers for the storage
of young wine, drugs, medicines, etc. [4,7,9,11,13,18,19]. Commercial multilayer films
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typically consist of three to nine layers of different polymers with or without an aluminum
interlayer. The outer layers consist of polymers with suitable mechanical properties, such
as polyethylene terephthalate (PET), polypropylene (PP), and high-density polyethylene.
The inner layer is the sealing layer, which provides a hermetic seal to protect the product.
Copolymers consisting of ethylene are often used as sealants due to their low melting
points [20,21]. These layers are typically bonded together with various types of adhesives.
To ensure the long-term preservation of some drugs, the used packaging materials must
have extremely low water vapor and oxygen permeabilities of less than 10−1 g/(m2·day)
and 10−1 cm3/(m2·day), respectively. Furthermore, flexible coatings have to withstand
repeated bending loads. Typically, thin aluminum interlayers are introduced to achieve the
required ultra-low permeability [5,22].

Today, some biopolymer films are also being adapted with synthetic polymers to meet
the current trends to reduce polymer waste and facilitate recycling [13–15,23,24]. At the
same time, the use of aluminum layers increases the environmental impact and reduces the
recyclability of such protective coatings.

To fulfill the requirements of environmental safety on the one hand and to ensure the
barrier properties required on the other, it is proposed to use hybrid multilayer films that
include pure polymers, clay-based polymer nanocomposites (Figure S1a), and continuous
inorganic layers (see Figure S1b; note that “S” indicates any reference to the Supporting
Materials file) [3,25–28]. In the first case, the permeability of the hybrid layer depends on
the filler properties, its concentration, and the permeability of the matrix. In the second
case, permeability is mainly defined by defects in the inorganic layer [29,30], such as
pinholes (see Figure S1b). These can be caused by impurity particles on the substrate
surface on which the barrier films are deposited. Experimental data show that the scale of
these pinholes is (sub)micron, and their density for ultrabarrier films (whose permeability
is approximately 10−6 cm3/(m2·day)) should not exceed 100 pcs/cm2 [30]. In addition,
defects in pure polymers and hybrid films can be induced by the crystallization of polymer
molecules. This process causes the formation of grain boundaries and leads to a significant
increase in the diffusion rate [3,31,32]. Inorganic coatings based on nanolaminates, in which
the amorphous phase is stabilized, can be used as a way to suppress crystallization [33,34].
In addition, additional defects in inorganic layers can be caused by cracks when flexible
coatings are bent [35,36] (see Figure S2). Therefore, hybrid protective layers based on
polymer nanocomposites, as shown in Figure S1a, are more suitable for flexible barrier
coatings because they are less subject to mechanical degradation. These coatings are chosen
as the objects of our study.

Two types of clay–polymer nanocomposite films are possible, as shown in Figure 1:
nanocomposites with a more or less random orientation of the clay fillers (Figure 1a),
and systems with an enforced orientation order of the clay particles (Figure 1b). The first
structure can be obtained by mixing polymer/clay in solution or melting followed by film
formation. The second can be obtained, for example, by the layer-by-layer deposition
method, where the substrate is sequentially treated with anionic and cationic aqueous
solutions of polymers and clay particles [37], which eventually leads to the formation of the
nanolaminate structure [38]. Experimental studies have shown that such materials have
very low permeability. In particular, less than 0.005 cm3/(m2·day) for oxygen has been
demonstrated [37].

Therefore, further improvement of packaging materials requires research aimed at
the simultaneous optimization of the structures of the hybrid protective layer and the
protective multilayer film as a whole. In addition, there is a separate problem of selecting a
suitable polymer for each layer of the film. These issues require long-term experimental
studies that combine the efforts of large teams of chemists and engineers, as well as the use
of various laboratory equipment. In this situation, the use of theoretical models describ-
ing mass transfer through multilayer hybrid polymeric media [6,39–42] can significantly
reduce the overall duration of the development process. However, building adequate
theoretical models is a nontrivial problem, since it is necessary to consider the structure
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of each polymer, the inorganic fillers, the entire barrier material, and the properties of the
interactions of all components with the molecules of penetrating gases. In this case, the
use of computer simulation is a compromise solution, since it can work with models that
combine several theoretical methods. At the same time, for laboratory use conditions, ready
software solutions are in great demand which allow predicting the properties of materials
in automatic mode. Typically, available software packages allow for the study of monolayer
films only [43–46].
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Figure 1. Models of a barrier layer based on hybrid organic–inorganic multilayer films: (a) orienta-
tionally disordered filler particles and (b) laminate structure with orientationally ordered filler par-
ticles. Different colors of the layers schematically show the use of different materials for the for-
mation of the multilayer protective films. 
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Figure 1. Models of a barrier layer based on hybrid organic–inorganic multilayer films: (a) orien-
tationally disordered filler particles and (b) laminate structure with orientationally ordered filler
particles. Different colors of the layers schematically show the use of different materials for the
formation of the multilayer protective films.

The goal of the present study was to develop a computational technique for the rapid
quantitative evaluation of oxygen and water vapor permeation through multilayer organic–
inorganic barrier films. It is based on a multiscale modeling approach that combines
several computational methods [47,48]. We developed a continuum model of a multilayer
coating film consisting of several polymer layers and one polymer/clay nanocomposite
layer. The model is parameterized using the quantitative structure–property correlation
(QSPR) methods of Bicerano [49] and Askadskii [50]. For additional verification of these
two methods, full-atom modeling methods based on molecular dynamics (MD) and Monte
Carlo (MC) methods are used. They allow the study of the gas permeability of polymers,
based only on the structure of the chemical components and a composition of the material
with minimal external parametrization [51]. However, MD and MC are limited to relatively
small systems on the nanometer scale. This fact reduces their applicability to the modeling
of multilayer polymer films and nanocomposites. Therefore, we have paid special attention
to exploring the possibility of using these methods to make predictions of water and oxygen
permeability when using material samples of small size.

The article is organized as follows: Section 2 describes the hierarchy of levels of the
model to determine the water vapor and oxygen permeability of the multilayer protective
film. We give a detailed description of each level of modeling: continuum, QSPR, and full
atomic based on MD and MC methods. In Section 3, we describe the results of calculating
the transport properties of selected polymers using the full atomic approach and QSPR.
Section 4 discusses the results obtained using the continuum model. Section 5 discusses the
obtained results and the problems associated with the use of the selected methods. In the
final, Section 6, a summary of the work and conclusions on the results obtained are given.

2. Model and Methods
2.1. Multiscale Model Description

As mentioned above, a typical flexible barrier coating consists of several polymer
layers, each providing specific functionality. The outer layer protects against mechanical
damage and has hydrophobic properties. The substrate layer, which contains materials
such as polyethylene terephthalate (PET), provides mechanical strength. All parts must be
firmly bonded together, and special adhesive layers are used for this purpose.
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The fastest predictions of the properties of multilayer polymer films can be made
using continuum models, where each layer is considered as a nonporous membrane or
as a continuous medium. The concept of dissolution and diffusion, which describes the
phenomena of gas transport in each layer, was first formulated in [52–55]. According to
this concept, the penetration of small molecules through a membrane consists of three
stages: (1) gas adsorption on the surface of the material, (2) diffusion of the sorbed gas
molecules through the volume of the l layer, and (3) desorption from the opposite surface
(see Figure S1a). Thus, the transport properties of a multilayer barrier are determined by
the sum of the reverse transport resistances of each layer. To use this model, it is necessary
to know the properties of all the polymeric materials in the system, primarily their water
vapor and oxygen permeabilities. In the case of a nanocomposite polymer layer with fillers,
the permeability is determined by the distribution of filler particles in the layer and the
diffusion of penetrant molecules through the polymer matrix. Therefore, we developed a
continuum model that solves the diffusion problem of small gas molecules in the case of an
arbitrary distribution of clay particles in a polymer matrix.

However, in some cases, data on the transport properties of penetrant molecules in a
polymer layer may not be available, e.g., when new polymers are synthesized. To solve
parameterization problems, we consider using the well-established quantitative structure–
property relationship (QSPR) regression models of Bicerano and Askadskii [49,50]. These
models allow us to make quick estimates based only on the chemical structure of the
repeated polymer unit. They are also convenient for screening polymers by designing new
variants of chemical structures. In addition, they are well described and have an open
parameterization, which makes them portable and verifiable.

If the chemical structure of selected polymers is too different from that of the types of
polymeric materials used to parameterize the QSPR models, these models may produce
predictions with a large error. In such cases, atomistic methods based on molecular dynam-
ics and Monte Carlo methods can be used to test the predictions for selected polymers. For
our multilayer polymer coatings model, we used the implementation of these methods in
our MULTICOMP package [48].

Thus, our model is a multiscale computational scheme based on the use of a hierarchy
of three approaches: continuum, QSPR, and atomistic. Let us describe each of the modeling
levels in detail.

2.2. Continuous Level

Methods to model the transport properties of multilayer hybrid films at the continuum
level typically assume that permeability is determined by the product of solubility and
diffusion (see Section S2). Inorganic additives to polymers are assumed to be imperme-
able barriers to permeating molecules that increase their diffusion path, i.e., decrease the
permeability of the film.

The effect of diffusion barriers is determined by both the volume fraction of inorganic
fillers and their shape and orientation. Thus, for the simple case of an impermeable layered
filler orientated perpendicular to the flow, the effective diffusion coefficient decreases as
(Nielsen’s model [56]):

D0/D = 1 + αϕ, (1)

where α and ϕ are the aspect ratio and volume fraction of the filler particles, and D0 and D
are the diffusion coefficients in the pure polymer matrix and nanocomposite, respectively.
In Nielsen’s model, permeability decreases linearly with increasing filler aspect ratio, which
explains the widespread use of plate-like fillers, such as clay particles or graphene, in
nanocomposite barrier films [57,58]. The Nielsen approximation is accurate in the dilute
regime but may be inaccurate in the semi-dilute case where the volume fraction of the filler
is small ϕ << 1 but its overlap is large αϕ >> 1, as suggested by Cussler et al., who derived
the following approximation for 2D geometry [59]:

D0/D = 1 + αϕ/2σ + α2 ϕ2/4(1 − ϕ), (2)
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where σ is the aspect ratio of a slit between clay particles (ratio of the width of the slit
to slit thickness). The stronger dependence of the effective diffusion coefficient on the
overlap factor compared to that of Nielsen’s model is related to the reduced cross-sectional
area between the clay plates. More complex expressions have been obtained for certain
configurations of 2D layered fillers [59,60], but a general analytical solution cannot be
obtained for an arbitrary configuration. Therefore, numerical simulation methods are used
as a good compromise to analyze transport in more realistic configurations of inorganic
fillers.

There are two main approaches for the numerical modeling of the transport properties
of multilayer hybrid coatings at the continuum level: the deterministic method, based on
the solution of partial differential equations, and the stochastic method, based on the Monte
Carlo technique. The use of the first method is limited by the presence of fillers with a
large aspect ratio or a large difference in the characteristic sizes in the system (for example,
between the hole size in the inorganic layer and the thickness of the polymer layer). This
leads to high computational costs and the need to use complex adaptive grids to solve the
diffusion equation. Therefore, Monte Carlo methods are often used to analyze transport in
complex configurations of inorganic layers. For example, they have been used to calculate
diffusion in polymers with layered fillers [61]. Since this approach is well established, we
use it in our continuum model to describe gas transport.

In our model, the protective coating film consists of alternating polymer and hybrid
polymer/leather layers (see Figure 1). Each polymer material is characterized by its
diffusion coefficient D of penetrant molecules and their solubility S, as well as the thickness
of the layer. In addition, it is assumed that different filler particles do not intersect and do
not stick out from the layer.

Now let us discuss the implementation of the chosen model. It is based on tracking the
random motion of a molecule, taking into account the presence of impenetrable barriers. In
the initial state, the molecule is located in the first polymer layer near the outer surface of
the film, and then the molecule makes microsteps, i.e., random displacements whose value
depends on the distance d to the nearest barrier:

d = 1⁄2 max (min (d), dmin). (3)

The minimum step size dmin depends on the minimum geometric size in the system
(e.g., the size of the hole or the thickness of the layered filler). After displacement, the total
diffusion time increases by the value

∆t = d2/6 Di, (4)

which is determined by the diffusion coefficient Di of a molecule in an i-th layer.
The probability of a molecule passing from one polymer layer to another is determined

by the ratio of its solubilities:

wi,i+1 = min(Si+1/Si, 1), (5)

where Si is the solubility of the current layer and Si+1 is the solubility of the layer into
which the molecule is trying to penetrate.

The model gives the diffusion time τdiff of the molecule throughout the thickness
of the multilayer coating. This time is then averaged over the number of attempts for a
set of molecules. By comparing the average diffusion times in a multilayer system with
inorganic fillers, <τdiff>, and without them, <τdiff>free, we can estimate the change in the
permeability of the coating as:

P/Pfree= <τdiff>free/<τdiff>, (6)
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where Pfree is the permeability of the multilayer system without fillers and inorganic layers:

Pfree =(∑i 1/Pi
free)−1, (7)

and Pi
free = Si·Di is the permeability of the i-th layer of the multilayer system without

fillers.
Therefore, to predict and optimize the protective properties of the barrier coating, it

is necessary to determine the parameters of the transport properties (Si and Di) for each
polymer layer. To solve this problem, we used quantitative structure–property correlations
(QSPR) and atomistic modeling methods discussed in the following sections.

2.3. The Quantitative Structure–Property Correlations

For rapid evaluations of polymer permeability, we used the QSPR regression models
of Bicerano and Askadskii [49,50]. These models are well known and tested and allow us to
calculate many properties of polymeric materials (such as gas transport, Young’s modulus,
etc.). Previously, we implemented Bicerano’s models to predict polymer properties in
our MULTICOMP software package [48]. However, the Bicerano approach lacks a model
corresponding to the permeability of polymers to water P(H2O). Therefore, we use the
Bicerano model only to estimate the oxygen permeability P(O2). To estimate P(H2O), we
selected the Askadskii model [62,63].

The structural formulas of the monomers are used as input information for the Askad-
skii and Bicerano models (see Figure S3). To prepare input data, the structures of the
monomers are decomposed into predefined atoms (Askadskii) or structural fragments
(Bicerano), and then their number is counted. The water vapor permeability in the Askad-
skii method is determined by the following expression:

P(H2O) = p0 exp (−∆E·1000/(R·T·VVdw)), (8)

where p0 is a constant value equal to 3.002 (in Barrer units) for all polymers, ∆E is the activation
energy, R is the gas constant, VVdw is the van der Waals volume, and T is the temperature.
The value ∆E is calculated as the sum of the atomic and group contributions ∆Ej:

∆E = ∑nj·∆Ej. (9)

For the parameterization of the atomic and group contributions, we use the values
presented in Table S1. Analysis of this table leads to the conclusion that the lowest perme-
ability value may be obtained for aliphatic polymers (with a small positive contribution
to the activation energy) and for polymers with the maximum number of chlorine atoms,
which gives a negative contribution to the activation energy.

The Bicerano model [49] for predicting oxygen permeability includes the following
expressions:

Log(PO2) = 8.515520 − 0.017622 v, (10)

v = Ecoh/V − 196 V/VVdW + 110 Nrot/N − 57 NPer/N, (11)

NPer= 2NC=C − 14 Nbb,ester + 5 X4
′ − 7Nhheq,σ − 6Ncyanideeq,σ − 12 Nhb,ar. (12)

These equations contain the following parameters: cohesion energy (Ecoh), molecular
volume (V), number of rotating bonds (Nrot), number of non-hydrogen atoms (N), number
of acyclic carbon–carbon double bonds (NC=C), number of ester groups in the main polymer
chain (Nbb,ester), number of substituents in aromatic cycles in the main chain (X4

′), the sum
of Cl and Br atoms attached to sp3 carbon atoms (Nhheq,σ), the sum of cyanide groups
attached to sp3 carbon atoms (Ncyanideeq,σ), and number of hydroxyl hydrogen atoms and
aromatic cycles with hydrogen bonds (Nhb,ar). For the compounds studied, the calculation
of P(O2) requires knowledge of the values of the parameters Ecoh, V, VVdW, Nrot, N, X4

′, and
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Nhheq,σ. The other parameters are zero. The parameters Ecoh, V, and VVdW are estimated
using the Bicerano method (implemented by us in the MULTICOMP package [48]). Nrot, N,
X4
′, and Nhheq,σ are estimated from 2D structural formulas (see description in Ref. [49]). We

used atomistic modeling as a computational experiment to verify the results of predictions
made using regression QSPR models.

It should be noted that these models are useful for analyzing polymer databases to
screen for materials with optimal properties. This analysis can be extensive, using databases
of known polymers, or intensive, based on virtually constructed polymer structures. We
considered the second possibility (see Section S4) when selecting polymeric materials to
parameterize our continual model. We wrote a special program for this purpose and took
into account the resulting ambiguities when determining the uniqueness of the generated
polymer structures using the InChIkey identifier (see Section S4.1) [64,65].

2.4. Full Atomic Level

One of the most widely used theoretical approaches to estimate the transport prop-
erties of polymeric materials is atomistic modeling based on a combination of molecular
dynamics and Grand Canonical Monte Carlo (GCMC) [66–70]. The implementation of this
scheme is shown in Figure 2.
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In the first stage, samples of the polymeric materials to be studied are generated
and optimized. The MD-GCMC procedure is then performed for the chosen number of
NGCMCMD steps to obtain the optimized structure with penetrant molecules (in this study,
for O2 and H2O).

In the GCMC method, the solubility coefficient is estimated by calculating an adsorp-
tion isotherm curve at fixed temperature and volume. The number of molecules in the
ensemble can vary (only the chemical potential µ is fixed). The solubility coefficient is
obtained by approximating the adsorption curve with a straight line (as the pressure tends
to zero) and calculating the slope of the constructed straight line Ncell(p), where Ncell is the
calculated equilibrium number of penetrant molecules in the simulation cell for a given
injection pressure p.

For the resulting matrix + penetrant model, MD simulation is performed to calcu-
late the mean square displacement (MSD) of the penetrating molecule. MSD allows the
calculation of the diffusion coefficient D [66,67] using the Einstein formula:

D = 1/6 N lim(t→∞) d/dt ∑(i = 1)
N <(ri (t) − ri (0))2>, (13)

where ri (t) is the position of the center of mass of a selected molecule at time t and N is
the number of diffusing molecules. If the root-mean-square displacement curve can be
approximated with a straight line with slope k, the equation given above can be simplified
as follows:

D = k/6. (14)
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The resulting permeability coefficient P of the polymeric material is calculated as

P = D·S. (15)

The described combination of MD+GCMC and MD simulations is implemented using
the LAMMPS code as part of a new “Permeability” module (developed specifically for this
study) and included in our MULTICOMP package [48]. This module performs the two-step
atomistic simulation (see Figure 2) that allows estimating the solubility coefficient S and the
diffusion coefficient D for the selected structure of the solvent and the selected penetrant
molecule, and uses them to calculate the permeability coefficient P using Equation (15).
Unlike previous similar studies using the MD-GCMC method [66,71–74], the atoms in the
polymer matrix and the penetrant molecules are not fixed during the MD-GCMC or MD
simulation runs. This allows us to describe the structural changes due to the addition of
penetrant molecules to the matrix.

3. Results of Full Atomistic Calculations

As a first step in the implementation of the designed multilevel simulation of protective
films, we selected and performed a comparative study of the transport properties of several
polymers at the atomistic level. The diffusion, solubility, and permeability coefficients were
calculated. Oxygen (O2) and water (H2O) molecules were used as penetrants. The SPC/E
model was used for water molecules [75]. Furthermore, the permeability coefficients were
predicted using QSPR methods.

To select suitable polymers for our continuous model, we generated a series of poly-
mers and screened them using QSPR methods, showing that organochlorine materials
have the best barrier properties (see Section S4). However, such polymers do not meet
environmental requirements, as they release toxic gases during degradation [76]. Other
obtained polymers have higher vapor permeability values, which limits the possibility
of improving the barrier properties of polymer films by modifying the chemical compo-
sition of the matrices. In this situation, it seems more promising to improve the barrier
properties of polymer films by using hybrid layers with inorganic fillers, such as clays and
standard polymer matrices. Therefore, the choice of polymeric materials was based on
data on their availability and use in the composition of protective materials (see Section
S4.2). As a result, we selected common plastics such as polyethylene terephthalate (PET),
polyethylene (PE), and two fluorinated polymers: polyvinylidene fluoride (PVDF) and
polytetrafluoroethylene (PTFE). A large amount of experimental data is also available for
these materials.

Therefore, the calculation of the transport properties of PET, PE, PVDF, and PTFE
serves on the one hand to parameterize our continual model, and on the other hand, the
comparison with the experiment is used to verify the adequacy of the chosen methods.

3.1. Generation of Polymer Matrices

Polymer matrices were prepared using constructor modules (integrated into our
previously developed MULTICOMP package [48]) and the Class II Polymer Consistent
Force Field (PCFF) [77]. Polymer chains were constructed using the “Polymer Chain”
module. The degree of polymerization of the chains was set to 33 for PE, PTFE, PVDF,
and 11 for PET. The length of the polymer chains was chosen so that each chain contains
approximately 200 atoms, as this value is sufficient to predict the transport properties
of polymers [78]. The samples of matrices were then obtained from 10 polymer chains
using the “Polymer/Composite Constructor” module. They were subjected to geometry and
relaxation optimization to bring them to an equilibrium state (T = 300 K), and an additional
100 ps annealing step was used in the NVT ensemble with an Andersen/Behrendsen
thermostat [79,80]. The models of the polymer chains and sample matrices are shown in
Figure 3.
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Density is an important parameter that can affect the accuracy of polymer permeability
results. In our simulations, the density of each sample is assumed to be fixed. Therefore,
when we build polymer samples, their final sizes correspond to the experimental density
values. The densities and fractions of free volume in the obtained samples, calculated using
the “Structure Properties” module of the MULTICOMP package, are given in Table 1. It can
be seen from the table that among the selected polymers, PET has the smallest free volume,
which should lead to low gas permeability.

Table 1. Densities and free volume fractions for PET, PE, PVDF, and PTFE.

Material
Property PET PE PVDF PTFE

Density (g/cm3) 1.4 ± 0.05 0.9 ± 0.05 1.8 ± 0.1 2.1 ± 0.1
Free volume fraction 0.13 ± 0.05 0.30 ± 0.05 0.23 ± 0.09 <0.25

3.2. Gas Permeability of Selected Polymers

The gas barrier properties of PET, PE, PVDF, and PTFE were calculated using the
“Permeability” module integrated into the MULTICOMP package. All calculations were
performed using the PCFF force field [77]. As a separate issue, we considered the sensitivity
of our results to the choice of the valence force field. For this purpose, the solubility of
oxygen and water molecules was calculated using VFF COMPASS [81] and DREIDING [82]
(see Section S5).

3.2.1. Calculations of the Diffusion Coefficients

The diffusion coefficients for oxygen and water molecules were estimated from
the slope of the lines approximating their MSDs calculated from the MD simulations
(see Table 2). A total of 10–50 ns MD runs were performed for each material. The MSD
dependencies obtained, shown in Figure 4, have strong fluctuations that can be related to
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the relatively small number of diffusion trajectories realized for a single molecule. This is
limited by the size of the chosen polymer matrix structure (~2000 atoms in the simulation
cell). However, we can state that all the dependencies reached the asymptotic regime within
the computational time.
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The observed trend (PTFE > PVDF > PE > PET) of the diffusion coefficients of both
O2 and H2O molecules is determined by the characteristics of the interaction of dissolved
molecules with polymers and the free volume values in the created samples. The results in
Table 2 also allow us to conclude that our results are qualitatively in agreement with the
experiment. In terms of quantitative agreement, the values obtained are in agreement with
the experimental data within one order of magnitude. In general, all diffusion coefficients
are higher, which can also be attributed to the limited number of available diffusion
trajectories [83]. However, it should be noted that accuracy within one or two orders
of magnitude is characteristic of experimental measurement of diffusion coefficients in
polymers [84]. Comparison with previous theoretical studies also shows that our results
are within orders of magnitude [85].

Table 2. Diffusion coefficients of oxygen and water molecules for PET, PE, PVDF, and PTFE.

D(O2) (cm2/s) D(H2O) (cm2/s)
Material Calculation Experiment [84] Calculation Experiment [84]

PET 2.0 ± 0.4 × 10−8 3–80 × 10−9 2 ± 0.5 × 10−8 0.3–13 × 10−8

PE 2.7 ± 0.7 × 10−7 0.2–12 × 10−7 3.8 ± 0.7 × 10−7 0.6–13 × 10−7

PVDF 2.3 ± 0.4 × 10−7 1.7 × 10−7 2.5 ± 1.0 × 10−7 5–8 × 10−7

PTFE 2.6 ± 0.4 × 10−6 1.5 × 10−7 2.6 ± 0.6 × 10−6 1.5–12 × 10−7

The small difference observed between the diffusion coefficients for the H2O and O2
molecules has also been confirmed experimentally [86] and theoretically [87,88]. Therefore,
it can be concluded that the atomistic approach provides reliable qualitative and, within an
order of magnitude, quantitative estimates for the diffusion coefficients of small molecules
in polymers.

3.2.2. Calculations of the Solubility Coefficients

The combined GCMC/MD approach is used to estimate the solubility coefficient S.
The MC method is used to model the H2O and O2 adsorption processes in the polymer
matrix samples described above (see Section 3.1). Solute molecules can be created and
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destroyed with random probabilities, and the well-known Metropolis algorithm is used
to accept or reject these configurational moves of a penetrant molecule [89]. The GCMC
simulation is invoked every 100 times. The motion of the inserted molecules is described
in the subsequent MD run, which is performed to obtain the optimized configuration of
the matrix/penetrant solution. These steps are used to reach the equilibrium state at a
given temperature and chemical potential. When the penetrant insertion pressure p is
changed, and thus the chemical potential of the system, we can obtain the dependence
for the equilibrium number of penetrant molecules in the polymer Ncell(p) and extract the
solubility coefficient by linear approximation. The calculated Ncell(p) for oxygen and water
molecules are shown in Figure 5, with each point averaged over 10 ns MD-GCMC runs.
The experimental values [84] and estimated values of the solubility coefficients are given in
Table 3.
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Table 3. Solubility coefficients of oxygen and water molecules for PET, PE, PVDF, and PTFE.

S(O2) (cm3(STP)/(cm3Pa)) S(H2O) (cm3(STP)/(cm3Pa))
Material Calculation Experiment [84] Calculation Experiment [84]

PET 2.2 ± 0.8 × 10−8 6–10 × 10−7 7.2 ± 0.7 × 10−6 3–8 × 10−9

PE 2.0 ± 1.0 × 10−8 2–5 × 10−7 1.5 ± 2 × 10−6 5.8 × 10−8

PVDF 2.5 ± 1.5 × 10−8 3.6 × 10−7 6.5 ± 0.6 × 10−6 –
PTFE 6.0 ± 1.0 × 10−7 6–9 × 10−7 8 ± 1.5 × 10−6 –

It should be noted that in our calculations we consider relatively small matrices
consisting of ~2000 atoms. This was done to minimize the required computational resources.
For the system sizes used, the solubility of the order of S ~ 10−7 (cm3(GC)/(cm3Pa))
corresponds to only 1–10 molecules of the penetrant gas in the simulation cell (for the
interval considered p). In the present study, we considered p ~ 10–1000 atm, because for
this pressure interval, for the chosen system size, the dependence of Ncell(p) is linear so that
Henry’s law can be applied for solubility estimation. At lower pressures, gas molecules
occupy only a small number of the most accessible positions for dissolution (“adsorption
sites”), so a strong penetrant–matrix interaction can lead to a large overestimation of
the coefficient S. Furthermore, for pressures p below 1 atm, for the prepared material
samples, only one or zero penetrant molecules are present in the simulation cells during
the productive runs, making the calculated solubility values unreliable. As we increase
the insertion pressure p above 103–104 atm, the molecules penetrate tiny pores with poor
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connectivity. Moreover, because of the decrease in distance between the penetrants, strong
interactions occur between the dissolved molecules.

In the case of water, this can even lead to the formation of water clusters inside the
polymer matrix at penetrant penetration pressures p ~ 500–1000 atm. Such phenomena
are often observed in atomistic simulations with water molecules and can be attributed
to the consideration of hydrogen bonding [89] and dipoles [90,91], which is expected for
water molecules [92]. The formation of large water clusters can also affect the structure
of the polymer matrix by inducing local polymer swelling. These two effects, among
others [93], lead to noticeable nonlinearities in the dependence of Ncell(p) and can strongly
bias the value of the solubility coefficient. Thus, the values of the solubility coefficient can
be very sensitive to many parameters, especially those defining the interactions between
the penetrant molecules and the polymer matrix. A detailed discussion of the sensitivity of
the calculated solubility coefficients to the parameters of the chosen interatomic potentials
is given in Section S5.

In summary, our calculations show that the obtained solubility coefficients for oxygen
are almost one order of magnitude lower than the experimental values (except for PTFE,
which is in very good agreement with the experiment; see Table 3). Overall, the resulting
trend in the value of the solubility coefficient for fluorine-containing materials (obtained
in Section 3.2.1, i.e., PTFE > PVDF > PE > PET) is qualitatively in agreement with both
experiments. At the same time, as we can see, the solubility coefficients for water are
typically higher than the experimental ones. We attribute the latter fact to the effects of the
water–water interaction that leads to cluster formation and the observed overestimation of
the solubility coefficient. Nevertheless, as for the diffusion coefficient estimates, we can
conclude that the atomistic approach provides reliable qualitative and, within an order of
magnitude, quantitative estimates for the solubility coefficients of small molecules in the
selected polymerics.

3.2.3. Calculations of Permeability Coefficients

The diffusion and solubility coefficients obtained for the materials considered allow us
to calculate the permeability coefficients using Equation (15). Their product and comparison
with the experimental and QSPR results are summarized in Table 4. As can be seen,
PET has the lowest value of the permeability coefficients, which correlates well with its
smallest free volume (see Table 1). All permeability coefficients for oxygen molecules are
in good agreement with the experimental data and qualitatively agree with the results
of the Bicerano model. At the same time, the coefficients P(H2O) do not agree with the
Askadskii model. Furthermore, the Askadskii model does not follow the trend observed
experimentally for the selected materials. Such a strong discrepancy in our results may be
related to the difficulty of correctly describing water/polymer interactions.

Table 4. Permeability coefficients of oxygen and water molecules for PET, PE, PVDF, and PTFE.

P(O2) (Barrer) P(H2O) (Barrer)

Material MD-GCMC
Simulations

Bicerano
Model

Experiment
[39,84]

MD-GCMC
Simulations

Askadskii
Model

Experiment
[39,84]

PET 0.01–0.02 0.04 0.013–5 1–2 87 100–1300
PE 0.2–0.6 4.47 0.04–5 2–12 60 20–75

PVDF 0.07–0.2 8.91 0.02–1.8 8–30 193 –
PTFE 17–22 7.65 2.5–6 10–50 328 3–8

It is generally accepted that relatively small changes in the chemical nature of the
polymer chain, which affect the abundance of available polar substituents, can have marked
effects on water transport [94]. Although hydrocarbon polymers exhibit low water uptake
and permeability, polar substituents on polymer chains can significantly increase water
uptake by forming specific interactions with water molecules [95]. Unlike water, gases
such as O2 interact very little or not at all with the absorbent, so the matrix structure does
not undergo swelling strain or other rearrangements. Since the interactions between O2
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molecules and O2/polymer are less complex, the coefficients of solubility, diffusion, and
permeation are much easier to calculate with atomistic simulations [22]. A more accurate
selection of the modeling parameters (system size, valence force field parameters, etc.) and
the extension of the set of statistics will significantly increase the accuracy and, accordingly,
the predictive capabilities of the developed model.

On the basis of these conclusions, the predictions of the QSPR models for oxygen and
water permeability were selected for the parameterization of the continuous model. The
QSPR results appear to be more reliable because the models were trained on a fairly large
representative sample of polymers. Nevertheless, the full-atom approach proved to be a
useful tool for semi-quantitative predictions, especially in the absence of representative
experimental data.

4. Results Based on the Continuous Model

This section presents the results of the analysis of the barrier properties of multilayer
protective coatings using the model described in Section 2.2.

In the previous section, four polymers (PET, PE, PVDF, and PTFE) were selected and
tested as components of a multilayer coating. As can be seen from the results obtained,
they have relatively high water permeability values. Other polymer matrices (see Table S2)
have slightly different vapor permeability values, which limits the ability to improve the
barrier properties of polymer films by modifying their chemical structures. Therefore, it
can be suggested that the main factor in improving the barrier properties of polymer films
is the use of hybrid layers with inorganic fillers.

A four-layer stack, shown in Figure 1, is considered as a model of the flexible protective
coating. It consists of a 30 µm polytetrafluoroethylene (PTFE) top layer, a 10 µm adhesive
layer, a 60 µm polymer layer such as polyethylene (PE) with inorganic fillers, and a 60 µm
substrate layer (PET) [96]. Polymer parameters calculated with the Bicerano and Askadskii
methods (see Table 4) were used to parameterize this model. To investigate the effect of
inorganic fillers on the permeability of hybrid coatings, calculations were performed with
different filler volume contents and degrees of their orientational ordering. Inorganic fillers
were given in the form of thin disks and were characterized by the aspect ratio α = 2R/H,
where R is the radius and H is the thickness of the particle. The orientation of the fillers
was characterized by the direction of the normal to the disk surface and was set to be
uniform in a cone with an angle θmax relative to the normal to the film surface (the isotropic
distribution of fillers corresponds to the angle θmax = π/2).

The lateral size of the system was chosen so that the inorganic layer contained at least
hundreds of filler particles. The number of particles over which the diffusion time was
averaged in the Monte Carlo method was 500, ensuring an error of less than 10% in the
permeability calculations for a given filler distribution. Diffusion time calculations are
averaged over three different filler configurations at a given filler volume fraction.

First, the effect of the orientational order of the clay particles on the permeability of
the hybrid organic–inorganic layer was investigated. Figure 6 shows the dependence of
the ratio of the permeability of the filled polymer layer to the permeability of the pure
polymer on the filler volume fraction, ϕ, at different values of the angle θmax = 12.5◦, 25◦,
and 45◦ with a fixed aspect ratio of the clay particle α = 60. As can be seen in Figure 6,
the decrease in layer permeability is about 50% for ϕ = 5%, which is in good agreement
with a large amount of experimental data (see, for example, the review [22]). A larger
change in the permeability of the polymer layer containing disordered clay particles in
some experiments [22] can be attributed to a change in the degree of crystallinity of the
polymer matrix [97], which is not considered in this study. It can be seen that the calculated
effect of a decrease in permeability has a linear dependence on low filler contents, which
is consistent with the Nielsen model [56]. It should be noted that the value of the overlap
parameter αϕ, in this case, can be greater than one (αϕ = 3 for ϕ = 5%), but the Nielsen linear
model describes the numerical results satisfactorily. The difference from the nonlinear
dependence in the analytical model of Cassler et al. [56] for 2D layered structures may be
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due to the three-dimensional nature of the nanocomposite structure and the shape of the
filler particles in the form of disks used in our calculations.
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Furthermore, Figure 6 shows that increasing the degree of orientational order of the
layered filler significantly reduces the permeability of the nanocomposite and also allows
the use of composites with a high filler volume fraction. Therefore, from a practical point of
view, it is important to use a method to obtain a nanocomposite that allows one to obtain
a high degree of orientational order of the filler. As a possible technique, layer-by-layer
deposition of clay–polymer laminates can be used, as in [37,98,99].

Next, we investigate the variant of the protective coating that contains the hybrid layer
of the clay–polymer laminate. The model structure used is shown in Figure 1b. It includes
a 10 nm laminate layer and a 100 nm polymer PE layer.

The calculated permeability of a barrier layer with a clay/polymer laminate as a
function of the number of bilayers is shown in Figure 7 for different sizes of clay particles
(with R of 1, 3, 10, and 30 µm). The permeability of the barrier layer without the laminate
was approximately 2.5× 10−1 (g/m2·day). As can be seen, a layer of 30 bilayers of laminate
for clay particles with R of 30 µm leads to a decrease in vapor permeability by more than
500 times, which is sufficient for use in protective coatings for the long-term storage of
food and medicine. In addition, clay/polymer laminates can be used as organic/inorganic
barrier layers between polymer layers. From the results obtained, it can be estimated
that 10 polymer/clay bilayers (with 10 µm clay particles) provide a vapor permeability of
10−2 g/(m2·day). This is in qualitative agreement with experimental data on the decrease
in permeability of nanolaminate hybrid films [37].

Thus, to obtain the maximum permeability reduction effect from the addition of
inorganic fillers to the polymer matrix, it is necessary to use filler particles with the highest
aspect ratio and degree of their orientational order. The product of the aspect ratio of
the disc-shaped filler and its volume fraction must exceed 10 to achieve a significant
permeability reduction effect. This should be combined with the use of a polymer matrix
with minimal oxygen and water permeability.
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5. Discussion

Our study shows that the full atomistic methods allow us to semi-quantitatively
describe the permeability of the polymers for oxygen molecules, which interact weakly with
the polymer matrix. All obtained results are in reasonable agreement with the experiment
and with the predictions of the Bicerano model. However, in the case of the water vapor
permeability of polymers, our results show a strong dependence on the water/polymer
model of interatomic potentials, which explains the observed discrepancy.

At the same time, the predictions of water permeability coefficients using the Askadskii
method are not in good agreement with the experimental data. This can be explained both
by the use of a limited amount of experimental data to fit the parameters of this regression
scheme and by the presence of parameters that are not taken into account. These are the
density and degree of crystallinity of the matrix, which depends on the preparation method,
and the history of the material samples. The latter is difficult to account for in QSPR models
since they correspond to an idealized (highly averaged) structure of polymer materials.
Nevertheless, such models are in great demand for the explicit prediction of the properties
of pure polymers, which is necessary for the parameterization of the various theoretical
models. They can also be useful for rapid quantitative evaluations of the permeability
properties of components of designed protective coatings in laboratory studies.

The analysis of the transport properties of hybrid films with layered inorganic fillers
using our continuous model has shown that, in the case of the use of orientationally dis-
ordered fillers, their effect makes it possible to reduce the permeability of the polymer
film several times. However, it is difficult to achieve better results because of the mutual
overlapping of the filler particles. Therefore, it is more promising to use nanolaminate
materials with orientationally ordered clay particles. In this case, our model predicts a
strong decrease in the permeability of the protective multilayer film (up to two or three
orders of magnitude), especially when nanoparticles with a high aspect ratio are used
(of the order of 1000). This theoretical result is in reasonable agreement with the experi-
mental data for nanolaminate systems [37].

6. Conclusions

In this work, a multiscale computational model was developed to predict the barrier
properties of multilayer protective films consisting of alternating polymer and hybrid layers
containing clay minerals as fillers. Oxygen and water molecules were used as penetrant
molecules. The model combines three levels of calculation, namely continuum, all-atom,
and QSPR. The use of the continuum level makes it possible to take into account both the
actual scale of the structure of the protective film and the dimensions and aspect ratio of
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the clay particles, which is very difficult to do with all-atom MD and MC simulations. To
quickly parameterize the continuum model, the possibilities of using calculation schemes
based on QSPR and full-atom models were considered. They allow the estimation of the
transport properties of polymer materials for gas molecules (i.e., diffusion, solubility, and
permeability coefficients). In testing the full atomic calculation scheme that combines
MD and GCMC methods, we focused on considering relatively small volumes of matter,
because of the need to minimize computational costs in laboratory studies.

We can conclude that the full atomic level of simulations allows us to make reliable,
qualitative, and, within an order of magnitude, quantitative estimates of the diffusion and
solubility coefficients of oxygen for relatively small polymeric samples. This allows good
predictions of the oxygen permeability of pure polymers in agreement with the results of
the Bicerano model and experimental studies. At the same time, we obtained evidence that
existing QSPR schemes need to be improved to better predict water vapor permeability.
This can be achieved by extending and increasing the base of polymers used to train the
QSPR methods. In the case of all-atom simulations, it is necessary to make a more accurate
choice of the sizes of the polymer samples and to adjust the parameters of the valence force
field responsible for describing the water/polymer interactions. This requires separate
studies that were not included in the objectives of this work.

Nevertheless, using the parameterization obtained and the continuum model, we
were able to demonstrate that the maximum effect on the reduction in permeability from
the addition of clay fillers to the polymers is obtained when using minerals in which
the filler particles have high aspect ratios. It is also desirable to ensure a high degree of
orientational order. We have shown that the product of the aspect ratio of the disk-shaped
filler and its volume fraction must be greater than 10 to obtain a noticeable effect in reducing
permeability. In addition, this should be combined with the use of polymer matrices with
minimal oxygen and water permeability.

The advantage of our computational approach is its relative universality. This applies
to the use of any low-molecular-weight penetrants, both for the development of barrier
coatings and for membranes. At the same time, it is a closed-loop approach, since it
can work without the use of external parameterizations as all the necessary coefficients
(diffusion, solubility, and permeability) can be obtained through express analysis based on
QSPR methods, and direct full-atom molecular dynamics and Monte Carlo simulations.
The latter is important when using newly developed polymeric materials.

The proposed computational scheme can be used to improve the properties of pro-
tective coatings for food and drug storage and may also be useful in regulating the gas
permeability of new polymeric materials.
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