Generalized Limit Theorem for Mellin Transform of the Riemann Zeta-Function

Antanas Laurinčikas ${ }^{1, *,+(\mathbb{D}}$ and Darius Šiaučiūnas ${ }^{2,+(\mathbb{D})}$
1 Institute of Mathematics, Faculty of Mathematics and Informatics, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
2 Institute of Regional Development, Šiauliai Academy, Vilnius University, Vytauto Str. 84, LT-76352 Šiauliai, Lithuania; darius.siauciunas@sa.vu.lt
* Correspondence: antanas.laurincikas@mif.vu.lt
+ These authors contributed equally to this work.

Citation: Laurinčikas, A.; Šiaučiūnas, D. Generalized Limit Theorem for Mellin Transform of the Riemann Zeta-Function. Axioms 2024, 13, 251. https://doi.org/10.3390/ axioms13040251

Academic Editors: Dongkyu Lim, Adem Kilicman and Arjun Kumar Rathie

Received: 13 March 2024
Revised: 6 April 2024
Accepted: 8 April 2024
Published: 10 April 2024

Copyright: © 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

Abstract

In the paper, we prove a limit theorem in the sense of the weak convergence of probability measures for the modified Mellin transform $\mathcal{Z}(s)$, $s=\sigma+i t$, with fixed $1 / 2<\sigma<1$, of the square $|\zeta(1 / 2+i t)|^{2}$ of the Riemann zeta-function. We consider probability measures defined by means of $\mathcal{Z}(\sigma+i \varphi(t))$, where $\varphi(t), t \geqslant t_{0}>0$, is an increasing to $+\infty$ differentiable function with monotonically decreasing derivative $\varphi^{\prime}(t)$ satisfying a certain normalizing estimate related to the mean square of the function $\mathcal{Z}(\sigma+i \varphi(t))$. This allows us to extend the distribution laws for $\mathcal{Z}(s)$.

Keywords: modified Mellin transform; Riemann zeta-function; weak convergence of probability measures

MSC: 11M06

1. Introduction

Let $s=\sigma+i t$ be a complex variable. One of the most important objects of the classical analytic number theory is the Riemann zeta-function $\zeta(s)$, which is defined, for $\sigma>1$, by the Dirichlet series

$$
\zeta(s)=\sum_{m=1}^{\infty} \frac{1}{m^{s}} .
$$

Moreover, the function $\zeta(s)$ has analytic continuation to the region $\mathbb{C} \backslash\{1\}$, and the point $s=1$ is its simple pole with residue 1 . The first value distribution results for $\zeta(s)$ with real s were obtained by Euler. Riemann was the first mathematician who began to study [1] $\zeta(s)$ with complex variables, proved the functional equation for $\zeta(s)$, obtained its analytic continuation, proposed a means of using $\zeta(s)$ for the investigation of the asymptotic prime number distribution law

$$
\pi(x)=\sum_{p \leqslant x} 1, \quad x \rightarrow \infty,
$$

and stated some hypotheses on $\zeta(s)$. The most important hypothesis, now called the Riemann hypothesis, states that all zeros of $\zeta(s)$ in the region $\sigma \geqslant 0$ are located on the line $\sigma=1 / 2$. Riemann's ideas concerning $\pi(x)$ were correct, and Hadamard [2] and de la Vallée Poussin [3], using them, independently proved that

$$
\lim _{x \rightarrow \infty} \pi(x)\left(\int_{2}^{x} \frac{\mathrm{~d} u}{\log u}\right)^{-1}=1
$$

However, the Riemann hypothesis remains open at present; it is among the seven Millennium Problems of mathematics [4]. In the theory of $\zeta(s)$, there are other important problems. One of them is connected to the asymptotics of moments

$$
M_{k}(\sigma, T) \stackrel{\text { def }}{=} \int_{0}^{T}|\zeta(\sigma+i t)|^{2 k} \mathrm{~d} t, \quad k>0, \sigma \geqslant \frac{1}{2}
$$

as $T \rightarrow \infty$. For example, at the moment the asymptotics of $M_{k}(\sigma, T), \sigma=1 / 2$ is known only for $k=1$ and $k=2$; see [5]. For the investigation of $M_{k}(\sigma, T)$, Motohashi proposed (see $[6,7]$) to use the modified Mellin transforms

$$
\mathcal{Z}_{k}(s)=\int_{1}^{\infty}\left|\zeta\left(\frac{1}{2}+i x\right)\right|^{2 k} x^{-s} \mathrm{~d} x, \quad k \in \mathbb{N} .
$$

Let $g(x)$ be a certain function, e.g., $g(x) x^{\sigma-1} \in L(0, \infty)$, and

$$
G(s)=\int_{0}^{\infty} g(x) x^{s-1} \mathrm{~d} x .
$$

Then, using the Mellin inverse formula leads to the following equality (see [8]):

$$
\int_{1}^{\infty} g\left(\frac{x}{T}\right)\left|\zeta\left(\frac{1}{2}+i x\right)\right|^{2 k} \mathrm{~d} x=\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} G(s) T^{s} \mathcal{Z}_{k}(s) \mathrm{d} s
$$

with a certain $c>1$. This shows that a suitable choice of the function $g(x)$ reduces investigations of $M_{k}(1 / 2, T)$ to those of properties of $\mathcal{Z}_{k}(s)$. The latter assertion inspired the creation of the analytic theory of the functions $\mathcal{Z}_{k}(s)$.

In this paper, we limit ourselves to the probabilistic value distribution of the function $\mathcal{Z}(s) \stackrel{\text { def }}{=} \mathcal{Z}_{1}(s)$ only. Before this, we recall some known results of the function $\mathcal{Z}(s)$.

Let $\gamma=0.577 \ldots$ denote the Euler constant and $E(T)$ be defined by

$$
\int_{0}^{T} \left\lvert\, \zeta\left(\left.\left(\frac{1}{2}+i t\right)\right|^{2} \mathrm{~d} t=T \log \frac{T}{2 \pi}+(2 \gamma-1) T+E(T)\right.\right.
$$

Moreover, let

$$
F(t)=\int_{1}^{T} E(t) \mathrm{d} t-\pi T \quad \text { and } \quad F_{1}(T)=\int_{1}^{T} F(t) \mathrm{d} t
$$

The analytic behavior of the function $\mathcal{Z}(s)$ was described in [9] and forms the following theorem.

Theorem 1 ([9]). The function $\mathcal{Z}(s)$ is analytically continuable to the region $\sigma>-3 / 4$, except the point $s=1$, which is a double pole, and

$$
\mathcal{Z}(s)=\frac{1}{(s-1)^{2}}+\frac{2 \gamma-\log 2 \pi}{s-1}-E(1)+\pi(s+1)+s(s+1)(s+2) \int_{1}^{\infty} F_{1}(x) x^{-s-3} \mathrm{~d} x
$$

Moreover, the estimates

$$
\mathcal{Z}(\sigma+i t) \ll_{\varepsilon} t^{1-\sigma+\varepsilon}, \quad 0 \leqslant \sigma \leqslant 1, t \geqslant t_{0}>0
$$

and

$$
\int_{1}^{T}|\mathcal{Z}(\sigma+i t)|^{2} \mathrm{~d} t \ll_{\varepsilon} \begin{cases}T^{3-4 \sigma+\varepsilon} & \text { if } 0 \leqslant \sigma \leqslant 1 / 2 \tag{1}\\ T^{2-2 \sigma+\varepsilon} & \text { if } 1 / 2 \leqslant \sigma \leqslant 1\end{cases}
$$

are valid.
Here and in what follows, ε is an arbitrary fixed positive number that is not always the same, and the notation $x<_{\varepsilon} y, x \in \mathbb{C}, y>0$, means that there is a constant $c=c(\varepsilon)>0$ such that $|x| \leqslant c y$.

In [10], Bohr proposed to characterize the asymptotic behavior of the Riemann zetafunction by using a probabilistic approach. This idea is acceptable because the value distribution of $\zeta(s)$ is quite chaotic. Denote by $\mathrm{J} A$ the Jordan measure of the set $A \subset \mathbb{R}$. Then, Bohr, jointly with Jessen, roughly speaking, obtained in [11,12] that, for $\sigma>1 / 2$ and every rectangle $R \subset \mathbb{C}$ with edges parallel to the axes, there exists a limit

$$
\lim _{T \rightarrow \infty} \mathrm{~J}\{t \in[0, T]: \zeta(\sigma+i t) \in R\}
$$

In modern terminology, the Bohr-Jessen theorem is stated as a limit theorem on weakly convergent probability measures. Let $\mathcal{B}(\mathbb{X})$ stand for the Borel σ-field of the space \mathbb{X} (in general, topological), and let $P_{n}, n \in \mathbb{N}$, and P be probability measures defined on $(\mathbb{X}, \mathcal{B}(\mathbb{X}))$. By this definition, P_{n} converges weakly to P as $n \rightarrow \infty\left(P_{n} \xrightarrow[n \rightarrow \infty]{\mathrm{w}} P\right)$ if

$$
\lim _{n \rightarrow \infty} \int_{\mathbb{X}} g \mathrm{~d} P_{n}=\int_{\mathbb{X}} g \mathrm{~d} P
$$

for every real continuous bounded function g on \mathbb{X}. Let $\mathbf{L} A$ stand for the Lebesgue measure of a measurable set $A \subset \mathbb{R}$. Then, the modern version of the Bohr-Jessen theorem is of the following form: for every fixed $\sigma>1 / 2$, there exists a probability measure P_{σ} on $(\mathbb{C}, \mathcal{B}(\mathbb{C}))$ such that

$$
\frac{1}{T} \mathbf{L}\{t \in[0, T]: \zeta(\sigma+i t) \in A\}, \quad A \in \mathcal{B}(\mathbb{C})
$$

converges weakly to P_{σ} as $T \rightarrow \infty$.
The first probabilistic limit theorems for the function $\mathcal{Z}(s)$ were discussed in [13]. For $A \in \mathcal{B}(\mathbb{C})$, set

$$
Q_{T, \sigma}(A)=\frac{1}{T} \mathbf{L}\{t \in[0, T]: \mathcal{Z}(\sigma+i t) \in A\}
$$

Assuming that $\sigma>1 / 2$, it was obtained that there is a probability measure Q_{σ} on $(\mathbb{C}, \mathcal{B}(\mathbb{C}))$ such that $Q_{T, \sigma} \xrightarrow[T \rightarrow \infty]{\mathrm{w}} Q_{\sigma}$. On the other hand, for every $\kappa>0$, we have

$$
\frac{1}{T} \mathbf{L}\{t \in[0, T]:|\mathcal{Z}(\sigma+i t)| \geqslant \kappa\} \leqslant \frac{1}{\kappa T} \int_{0}^{T}|\mathcal{Z}(\sigma+i t)| \mathrm{d} t \leqslant \frac{1}{\kappa}\left(\frac{1}{T} \int_{0}^{T}|\mathcal{Z}(\sigma+i t)|^{2} \mathrm{~d} t\right)^{1 / 2}
$$

This, together with Theorem 1, implies that, for $1 / 2<\sigma<1$,

$$
\lim _{T \rightarrow \infty} \frac{1}{T} \mathbf{L}\{t \in[0, T]:|\mathcal{Z}(\sigma+i t)| \geqslant \kappa\}=0
$$

The latter equality remains valid also for $\sigma>1$. Thus, the limit measure Q_{σ} is degenerated at the point $s=0$. In order to avoid this situation, we propose to consider $\mathcal{Z}(\sigma+i \varphi(t))$ with a certain function $\varphi(t)$. Moreover, it is more convenient to deal with $t \in[T, 2 T]$ because, in this case, additional restrictions for $\varphi(t)$ with $t=0$ are not needed.

Denote

$$
I_{\sigma}(T)=\int_{1}^{T}|\mathcal{Z}(\sigma+i t)|^{2} \mathrm{~d} t
$$

We suppose that $\varphi(t)$ is a positive increasing to $+\infty$ differentiable function with a monotonically decreasing derivative, such that

$$
\frac{I_{\sigma-\varepsilon}(\varphi(T))}{\varphi^{\prime}(T)} \ll T, \quad T \rightarrow \infty
$$

The class of such functions $\varphi(t)$ is denoted by W_{σ}. Consider the weak convergence for

$$
P_{T, \sigma}(A)=\frac{1}{T} \mathbf{L}\{t \in[T, 2 T]: \mathcal{Z}(\sigma+i \varphi(\tau)) \in A\}, \quad A \in \mathcal{B}(\mathbb{C})
$$

In this case, we have, by $\varepsilon \rightarrow 0$, that

$$
\frac{I_{\sigma}(\varphi(T))}{\varphi^{\prime}(T)} \ll T
$$

and

$$
\begin{equation*}
\frac{1}{T} \int_{T}^{2 T}|\mathcal{Z}(\sigma+i \varphi(t))|^{2} \mathrm{~d} t=\frac{1}{T} \int_{\varphi(T)}^{\varphi(2 T)} \frac{1}{\varphi^{\prime}(t)}|\mathcal{Z}(\sigma+i u)|^{2} \mathrm{~d} u \leqslant \frac{1}{T \varphi^{\prime}(2 T)} I_{\sigma}(\varphi(2 T)) \ll 1 \tag{2}
\end{equation*}
$$

for $\varphi(t) \in W_{\sigma}$. Thus, we cannot claim that the limit measure for $P_{T, \sigma}$ is degenerated at zero.
Now, we state a limit theorem for $P_{T, \sigma}$.
Theorem 2. Assume that $\sigma \in(1 / 2,1)$ is a given fixed number, and $\varphi(t) \in W_{\sigma}$. Then, on $(\mathbb{C}, \mathcal{B}(\mathbb{C}))$, there exists a probability measure P_{σ} such that $P_{T, \sigma} \xrightarrow[T \rightarrow \infty]{\mathrm{W}} P_{\sigma}$.

In virtue of Theorem 1, we see that

$$
I_{\sigma-\varepsilon}(T) \ll T^{\alpha_{\sigma}}
$$

with certain $0<\alpha_{\sigma}<1$. Take $\varphi(t)=(\log t)^{\beta_{\sigma}}, t \geqslant 2, \beta_{\sigma}>0$. Then, $\varphi^{\prime}(t)$ is decreasing, and

$$
\frac{I_{\sigma-\varepsilon}(\varphi(T))}{\varphi^{\prime}(T)} \ll T(\log T)^{\alpha_{\sigma} \beta_{\sigma}+1-\beta_{\sigma}} \ll T
$$

if we choose

$$
\beta_{\sigma}=\left(1-\alpha_{\sigma}\right)^{-1}
$$

This shows that $(\log T)^{\beta_{\sigma}}$ is an element of the class W_{σ}.
Theorem 2 shows that the asymptotic behavior of the function $\mathcal{Z}(s)$ on vertical lines is governed by a certain probabilistic law, and this confirms the chaos in its value distribution. Moreover, Theorem 2 is an example of the application of probability methods in analysis. Thus, it continues a tradition initiated in works [11,12] and developed by Selberg [14], Joyner [15], Bagchi [16], Korolev [17,18], Kowalski [19], Lamzouri, Lester and Radziwill [20,21], Steuding [22], and others; see also a survey paper [23]. We note that a generalization of Theorem 2 for the functional spaces can be applied for approximation problems of some classes of functions.

We divide the proof of Theorem 2 into several parts. First, we discuss weak convergence on a certain group. The second part is devoted to the case related to a integral. Further, we consider a measure defined by an absolutely convergent improper integral. In the last part, Theorem 2 is proven. For proofs of all assertions on weak convergence,
the notions of relative compactness as well as of tightness and convergence in distribution are employed.

2. Fourier Transform Method

Let $b>1$ be a fixed finite number, and

$$
\mathbb{I}_{b}=\prod_{x \in[1, b]}\{s \in \mathbb{C}:|s|=1\} .
$$

The Cartesian product \mathbb{I}_{b} consists of all functions $\mathfrak{i}:[1, b] \rightarrow\{s \in \mathbb{C}:|s|=1\}$. On \mathbb{I}_{b}, the product topology and operation of pointwise multiplication can be defined. This reduces \mathbb{I}_{b} to a compact topological group. We will give a limit lemma for probability measures on $\left(\mathbb{I}_{b}, \mathcal{B}\left(\mathbb{I}_{b}\right)\right)$.

For $A \in \mathcal{B}\left(\mathbb{I}_{b}\right)$, put

$$
V_{T, b}(A)=\frac{1}{T} \mathbf{L}\left\{t \in[T, 2 T]:\left(x^{-i \varphi(t)}: x \in[1, b]\right) \in A\right\} .
$$

Lemma 1. Suppose that the function $\varphi(t)$ has a monotonically decreasing derivative $\varphi^{\prime}(t)$ such that

$$
\begin{equation*}
\left(\varphi^{\prime}(T)\right)^{-1}=o(T), \quad T \rightarrow \infty . \tag{3}
\end{equation*}
$$

Then $V_{T, b}$ converges weakly to a certain probability measure V_{b} as $T \rightarrow \infty$.
Proof. We use the Fourier transform approach. Denote the elements of \mathbb{I}_{b} by $\mathfrak{i}=\left\{i_{x}: x \in\right.$ $[1, b]\}$. Then, the Fourier transform $f_{T, b}(\underline{k}), \underline{k}=\left(k_{x}: k_{x} \in \mathbb{Z}, x \in[1, b]\right)$ of the measure $V_{T, b}$ is the integral

$$
f_{T, b}(\underline{k})=\int_{\mathbb{I}_{b}}\left(\prod_{x \in[1, b]} i_{x}^{k_{x}}\right) \mathrm{d} V_{T, b}
$$

where only a finite number of integers k_{x} are not zeros. Therefore, the definition of $V_{T, b}$ yields

$$
\begin{equation*}
f_{T, b}(\underline{k})=\frac{1}{T} \int_{T}^{2 T}\left(\prod_{x \in[1, b]} x^{-i k_{x} \varphi(t)}\right) \mathrm{d} t=\frac{1}{T} \int_{T}^{2 T} \exp \left\{-i \varphi(t) \sum_{x \in[1, b]} k_{x} \log x\right\} \mathrm{d} t . \tag{4}
\end{equation*}
$$

For brevity, let $A_{b}(\underline{k})=\sum_{k \in[1, b]} k_{x} \log x$. Then, the second mean value theorem, (4), and (3) give

$$
\begin{aligned}
\operatorname{Re} f_{T, b}(\underline{k}) & =\frac{1}{T} \int_{T}^{2 T} \cos \left(\varphi(t) A_{b}(\underline{k})\right) \mathrm{d} t=\frac{1}{A_{b}(\underline{k}) T} \int_{T}^{2 T} \frac{1}{\varphi^{\prime}(t)} \mathrm{d} \sin \left(\varphi(t) A_{b}(\underline{k})\right) \\
& \ll \frac{1}{\left|A_{b}(\underline{k})\right|} \frac{1}{\varphi^{\prime}(2 T) T}=o(1), \quad T \rightarrow \infty
\end{aligned}
$$

provided that $A_{b}(\underline{k}) \neq 0$. Clearly, the same estimate holds for $\operatorname{Im} f_{T, b}(\underline{k})$. Hence, for $A_{b}(\underline{k}) \neq 0$,

$$
\begin{equation*}
\lim _{T \rightarrow \infty} f_{T, b}(\underline{k})=0 \tag{5}
\end{equation*}
$$

Obviously,

$$
f_{T, b}(\underline{k})=1
$$

if $A_{b}(\underline{k})=0$. This and (5) show that

$$
V_{T, b} \xrightarrow[T \rightarrow \infty]{\mathrm{w}} V_{b},
$$

where V_{b} is a probability measure on $\left(\mathbb{I}_{b}, \mathcal{B}\left(\mathbb{I}_{b}\right)\right)$ defined by the Fourier transform

$$
f_{b}(\underline{k})= \begin{cases}1 & \text { if } A_{b}(\underline{k})=0 \\ 0 & \text { if } A_{b}(\underline{k}) \neq 0\end{cases}
$$

Now, we will apply Lemma 1 for the measure defined by means of a certain finite sum. Let $\theta>1 / 2$ be a fixed number, and, for $x, y \in[1, \infty)$,

$$
u(x, y)=\exp \left\{-\left(\frac{x}{y}\right)^{\theta}\right\}
$$

Moreover, we use the notation $\widehat{\zeta}(t)=|\zeta(1 / 2+i t)|^{2}$. Consider the nth integral sum

$$
U_{n, b, y}(\sigma+i \varphi(t))=\frac{b-1}{n} \sum_{l=1}^{n} \widehat{\zeta}\left(a_{l}\right) u\left(a_{l}, y\right) a_{l}^{-\sigma-i \varphi(t)}, \quad n \in \mathbb{N},
$$

where $a_{l} \in\left[x_{l-1}, x_{l}\right]$ and $x_{l}=1+((b-1) / n) l$.
For $A \in \mathcal{B}(\mathbb{C})$, set

$$
P_{T, n, b, y}(A)=\frac{1}{T} \mathbf{L}\left\{t \in[T, 2 T]: U_{n, b, y}(\sigma+i \varphi(t)) \in A\right\}
$$

For simplicity, here and in the following, we omit the dependence on σ of some objects. Before the statement of the limit lemma for $P_{T, n, b, y}$, we will present some lower estimates for the mean square $I_{\sigma}(T)$. For this, we will apply the following general lemma from [8]. Let $\mathcal{F}(s)$ be the modified Mellin transform of $f(x)$, i.e.,

$$
\mathcal{F}(s)=\int_{1}^{\infty} f(x) x^{-s} \mathrm{~d} x
$$

Lemma 2 ([8], Lemma 5). Let $f(x) \in C^{\infty}[2, \infty]$ be a real-valued function such that 1°

$$
\int_{1}^{X}\left|f^{(k)}(x)\right| \mathrm{d} x<_{\varepsilon, k} X^{1+\varepsilon}, \quad k \in \mathbb{N}_{0}
$$

$2^{\circ} \mathcal{F}(s)$ has analytic continuation to the half-plane $\sigma>1 / 2$, except for a pole of order l at the point $s=1$;
3° For $\sigma>1 / 2, \mathcal{F}(s)$ is of polynomial growth in $|t|$. Then, for $1 / 2<\sigma<1$ and any fixed $\varepsilon>0$,

$$
\int_{T}^{2 T} f^{2}(x) \mathrm{d} x<_{\varepsilon} \log ^{l-1} T \int_{T / 2}^{5 T / 2}|f(x)| \mathrm{d} x+T^{2 \sigma-1} \int_{0}^{T^{1+\varepsilon}}|\mathcal{F}(\sigma+i t)|^{2} \mathrm{~d} t
$$

Lemma 3. For $1 / 2<\sigma<1$, and any $\varepsilon>0$, the estimate

$$
I_{\sigma}(T) \ggg_{\varepsilon} T^{2-2 \sigma-\varepsilon}
$$

holds.

Proof. As usual, denote by $Z(t), t \in \mathbb{R}$, the Hardy function, i.e.,

$$
Z(t)=\zeta\left(\frac{1}{2}+i t\right) \chi^{-1 / 2}\left(\frac{1}{2}+i t\right)
$$

where

$$
\chi(s)=\frac{\zeta(s)}{\zeta(1-s)} .
$$

It is well known that $Z(t)$ is a real-valued function satisfying $|Z(t)|=|\zeta(1 / 2+i t)|$. Moreover, the estimate [8]

$$
\begin{equation*}
Z^{(k)}(t) \ll_{k} t^{-1 / 4}(\log T)^{k+1}+\sum_{m \leqslant \sqrt{t /(2 \pi)}} m^{-1 / 2}\left(\log \frac{\sqrt{t /(2 \pi)}}{m}\right)^{k} \tag{6}
\end{equation*}
$$

holds. Take $f(x)=Z^{2}(x)$. Then, we have

$$
\mathcal{F}(s)=\int_{1}^{\infty} Z^{2}(x) x^{-s} \mathrm{~d} x=\int_{1}^{\infty}\left|\zeta\left(\frac{1}{2}+i x\right)\right|^{2} x^{-s} \mathrm{~d} x=\mathcal{Z}(s) .
$$

In view of Theorem 1 and (6), the function satisfies the hypotheses of Lemma 1 with $l=2$. Thus, for $1 / 2<\sigma<1$,
$\int_{T}^{2 T} f^{2}(t) \mathrm{d} t=\int_{T}^{2 T}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{4} \mathrm{~d} t \ll_{\varepsilon} \log T \int_{T / 2}^{5 T / 2}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2} \mathrm{~d} t+T^{2 \sigma-1} \int_{0}^{T^{1+\varepsilon}}|\mathcal{Z}(\sigma+i t)|^{2} \mathrm{~d} t$.
Since [5]

$$
\int_{0}^{T}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{4} \mathrm{~d} t=\frac{1}{2 \pi^{2}} T \log ^{4} T+O\left(T \log ^{3} T\right)
$$

and

$$
\int_{0}^{T}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2} \mathrm{~d} t \ll T \log T
$$

this implies

$$
T \log ^{4} T \lll \varepsilon T^{2 \sigma-1} \int_{0}^{T^{1+\varepsilon}}|\mathcal{Z}(\sigma+i t)|^{2} \mathrm{~d} t
$$

Consequently,

$$
I_{\sigma}(T) \gg{ }_{\varepsilon} T^{(2-2 \sigma) /(1+\varepsilon)} \ggg{ }_{\varepsilon} T^{2-2 \sigma-\varepsilon} .
$$

Lemma 4. Assume that $\sigma \in(1 / 2,1)$ is a given fixed number, and $\varphi(t) \in W_{\sigma}$. Then, on $(\mathbb{C}, \mathcal{B}(\mathbb{C}))$, there exists a probability measure $P_{n, b, y}$ such that $P_{T, n, b, y} \xrightarrow[T \rightarrow \infty]{\mathrm{w}} P_{n, b, y}$.

Proof. Lemma 3 implies that, for $\sigma \in(1 / 2,1), I_{\sigma}(T) \rightarrow \infty$ as $T \rightarrow \infty$. Therefore, if $\varphi(t) \in W_{\sigma}$, then

$$
\frac{1}{\varphi^{\prime}(T)} \ll T I_{\sigma}^{-1}(\varphi(T))=o(T)
$$

as $T \rightarrow \infty$. Thus, the application of Lemma 1 is possible.

Consider the mapping $v_{n, b}: \mathbb{I}_{b} \rightarrow \mathbb{C}$ defined by

$$
\begin{equation*}
v_{n, b}(\mathfrak{i})=\frac{b-1}{n} \sum_{l=1}^{n} \widehat{\zeta}\left(a_{l}\right) u\left(a_{l}, y\right) a_{l}^{-\sigma} i_{a_{l}} . \tag{7}
\end{equation*}
$$

Since the latter sum is finite, and \mathbb{I}_{b} is equipped with the product topology, the mapping $v_{n, b}$ is continuous. Moreover, in view of (7),

$$
v_{n, b}\left(x^{-i \varphi(t)}: x \in[1, b]\right)=\frac{b-1}{n} \sum_{l=1}^{n} \widehat{\zeta}\left(a_{l}\right) u\left(a_{l}, y\right) a_{l}^{-\sigma-i \varphi(t)}=U_{n, b, y}(\sigma+i \varphi(t))
$$

Hence, for $A \in \mathcal{B}(\mathbb{C})$,

$$
\begin{align*}
P_{T, n, b, y}(A) & =\frac{1}{T} \mathbf{L}\left\{t \in[T, 2 T]: v_{n, b}\left(x^{-i \varphi(t)}: x \in[1, b]\right) \in A\right\} \\
& =\frac{1}{T} \mathbf{L}\left\{t \in[T, 2 T]:\left(x^{-i \varphi(t)}: x \in[1, b]\right) \in v_{n, b}^{-1} A\right\}=V_{T, b}\left(v_{n, b}^{-1} A\right), \tag{8}
\end{align*}
$$

where $V_{T, b}$ is from Lemma 1 . The continuity of the mapping $v_{n, b}$ implies its $\left(\mathcal{B}\left(\mathbb{I}_{b}\right), \mathcal{B}(\mathbb{C})\right)$ measurability. Therefore, the mapping $v_{n, b}$ and any probability measure P on $\left(\mathbb{I}_{b}, \mathcal{B}\left(\mathbb{I}_{b}\right)\right)$ define the unique probability measure $P v_{n, b}^{-1}$ on $(\mathbb{C}, \mathcal{B}(\mathbb{C}))$ given by

$$
P v_{n, b}^{-1}(A)=P\left(v_{n, b}^{-1} A\right), \quad A \in \mathcal{B}(\mathbb{C})
$$

See Section 2 of [24]. Thus, by (8), we have $P_{T, n, b, y}=V_{T, b} v_{n, b}^{-1}$. Therefore, Lemma 1, the continuity of $v_{n, b}$, and the principle of the preservation of week convergence under continuity mappings (Theorem 5.1 of [24]) show that

$$
P_{T, n, b, y} \xrightarrow[T \rightarrow \infty]{\mathrm{w}} P_{n, b, y}
$$

where $P_{n, b, y}=V_{b} v_{n, b}^{-1}$, and V_{b} is the limit measure in Lemma 1.

3. Limit Lemma for Integral

Denote

$$
\mathcal{Z}_{b, y}(\sigma+i \varphi(t))=\int_{1}^{b} \widehat{\zeta}(x) u(x, y) x^{-\sigma-i \varphi(t)} \mathrm{d} x
$$

and, for $A \in \mathcal{B}(\mathbb{C})$, set

$$
P_{T, b, y}(A)=\frac{1}{T} \mathbf{L}\left\{t \in[T, 2 T]: \mathcal{Z}_{b, y}(\sigma+i \varphi(t)) \in A\right\}
$$

In this section, we will prove the weak convergence for $P_{T, b, y}$ as $T \rightarrow \infty$. Before this, we recall some known probabilistic results. Let $\{Q\}$ be a certain family of probability measures on $(\mathbb{X}, \mathcal{B}(\mathbb{X}))$. The family $\{Q\}$ is called tight if, for every $\delta>0$, there is a compact set $K \subset \mathbb{X}$ such that

$$
Q(K)>1-\delta
$$

for all $Q \in\{Q\}$. The family $\{Q\}$ is said to be relatively compact if every sequence contains a subsequence weakly convergent to a certain probability measure on $(\mathbb{X}, \mathcal{B}(\mathbb{X})$). The Prokhorov theorem connects two above notions, and, for convenience, we state it as the following lemma.

Lemma 5. If a family of probability measures is tight, then it is relatively compact.
The proof of the lemma is given in [24], Theorem 5.1.

Moreover, we recall one useful property on convergence in distribution. Let ξ_{n} and ξ be \mathbb{X}-valued random elements defined on the probability space $(\Omega, \mathcal{F}, \mu)$ with distributions P_{n} and P, respectively. Then, ξ_{n} converges in distribution to ξ as $n \rightarrow \infty(\underset{n \rightarrow \infty}{\mathcal{D}})$ if

$$
P_{n} \xrightarrow[n \rightarrow \infty]{\mathrm{w}} P .
$$

Now, we state a lemma on convergence in distribution.
Lemma 6. Assume that the metric space (\mathbb{X}, d) is separable, and $\xi_{n k}, \xi_{n}$ are \mathbb{X}-valued random elements defined on the same probability space $(\Omega, \mathcal{F}, \mu)$. Let

$$
\xi_{n k} \xrightarrow[n \rightarrow \infty]{\mathcal{D}} \xi_{k}
$$

and

$$
\xi_{k} \xrightarrow[k \rightarrow \infty]{\mathcal{D}} \xi
$$

If, for every $\delta>0$,

$$
\lim _{k \rightarrow \infty} \limsup _{n \rightarrow \infty} \mu\left\{d\left(\xi_{n k}, \eta_{k}\right) \geqslant \delta\right\}=0
$$

then

$$
\eta_{n} \xrightarrow[n \rightarrow \infty]{\mathcal{D}} \xi
$$

The lemma is proven in [24], Theorem 3.2.
Lemma 7. Assume that $\sigma \in(1 / 2,1)$ is a given fixed number, and $\varphi(t) \in W_{\sigma}$. Then, on $(\mathbb{C}, \mathcal{B}(\mathbb{C}))$, there exists a probability measure $P_{b, y}$ such that $P_{T, b, y} \xrightarrow[T \rightarrow \infty]{\mathrm{w}} P_{b, y}$.

Proof. First, we will show that $\mathcal{Z}_{b, y}(\sigma+i \varphi(t))$ is close in a certain sense to $U_{n, b, y}(\sigma+i \varphi(t))$. Let

$$
J_{T, n} \stackrel{\text { def }}{=} \frac{1}{T} \int_{T}^{2 T}\left|\mathcal{Z}_{b, y}(\sigma+i \varphi(t))-U_{n, b, y}(\sigma+\varphi(t))\right| \mathrm{d} t
$$

Clearly,

$$
\begin{equation*}
J_{T, n}^{2} \leqslant \frac{1}{T} \int_{T}^{2 T}\left|\mathcal{Z}_{b, y}(\sigma+i \varphi(t))-U_{n, b, y}(\sigma+\varphi(t))\right|^{2} \mathrm{~d} t \tag{9}
\end{equation*}
$$

We have

$$
\begin{align*}
& \int_{T}^{2 T}\left|\mathcal{Z}_{b, y}(\sigma+i \varphi(t))\right|^{2} \mathrm{~d} t \\
&= \int_{T}^{2 T}\left(\int_{1}^{b} \widehat{\zeta}(x) u(x, y) x^{-\sigma-i \varphi(t)} \mathrm{d} x\right)\left(\int_{1}^{b} \widehat{\zeta}(x) u(x, y) x^{-\sigma+i \varphi(t)} \mathrm{d} x\right) \mathrm{d} t \\
&= T \int_{\substack{1 \\
x_{1}=x_{2}}}^{b} \widehat{\zeta}\left(x_{1}\right) \widehat{\zeta}\left(x_{2}\right) u\left(x_{1}, y\right) u\left(x_{2}, y\right) x_{1}^{-\sigma} x_{2}^{-\sigma} \mathrm{d} x_{1} \mathrm{~d} x_{2} \\
&+\int_{\substack{1 \\
x_{1} \neq x_{2}}}^{b} \int_{1}^{b} \widehat{\zeta}\left(x_{1}\right) \widehat{\zeta}\left(x_{2}\right) u\left(x_{1}, y\right) u\left(x_{2}, y\right) x_{1}^{-\sigma} x_{2}^{-\sigma}\left(\int_{T}^{2 T}\left(\frac{x_{1}}{x_{2}}\right)^{i \varphi(t)} \mathrm{d} t\right) \mathrm{d} x_{1} \mathrm{~d} x_{2} . \tag{10}
\end{align*}
$$

Since
$\operatorname{Re} \int_{T}^{2 T}\left(\frac{x_{1}}{x_{2}}\right)^{i \varphi(t)} \mathrm{d} t=\left(\log \left(\frac{x_{1}}{x_{2}}\right)\right)^{-1} \int_{T}^{2 T} \frac{1}{\varphi^{\prime}(t)} \mathrm{d} \sin \left(\varphi(t) \log \left(\frac{x_{1}}{x_{2}}\right)\right) \ll\left|\log \frac{x_{1}}{x_{2}}\right|^{-1} \frac{1}{\varphi^{\prime}(2 T)}$,
and the same bound is true for the imaginary part of the latter integral, we obtain by (10) that

$$
\begin{equation*}
\int_{T}^{2 T}\left|\mathcal{Z}_{b, y}(\sigma+i \varphi(t))\right|^{2} \mathrm{~d} t=o(T), \quad T \rightarrow \infty \tag{11}
\end{equation*}
$$

Reasoning similarly, we find

$$
\begin{align*}
& \int_{T}^{2 T}\left|U_{n, b, y}(\sigma+i \varphi(t))\right|^{2} \mathrm{~d} t=T\left(\frac{b-1}{n}\right)^{2} \sum_{l=1}^{n} \widehat{\zeta}^{2}\left(a_{l}\right) u^{2}\left(a_{l}, y\right) a_{l}^{-2} \\
& \quad+O\left(\left(\frac{b-1}{n}\right)^{2} \sum_{\substack{l_{1}=1 \\
l_{1} \neq l_{2}}}^{n} \sum_{l_{2}=1}^{n} \widehat{\zeta}\left(a_{l_{1}}\right) \widehat{\zeta}\left(a_{l_{2}}\right) u\left(a_{l_{1}}, y\right) u\left(a_{l_{2}}, y\right) a_{l_{1}}^{-\sigma} a_{l_{2}}^{-\sigma}\left|\log \frac{a_{l_{1}}}{a_{l_{2}}}\right|^{-1}\right) . \tag{12}
\end{align*}
$$

Thus,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \limsup _{T \rightarrow \infty} \frac{1}{T} \int_{T}^{2 T}\left|U_{n, b, y}(\sigma+i \varphi(t))\right|^{2} \mathrm{~d} t=0 \tag{13}
\end{equation*}
$$

By (9),

$$
\begin{aligned}
J_{T, n}^{2} \ll & \frac{1}{T}\left(\int_{T}^{2 T}\left|\mathcal{Z}_{b, y}(\sigma+i \varphi(t))\right|^{2} \mathrm{~d} t+\left(\int_{T}^{2 T}\left|\mathcal{Z}_{b, y}(\sigma+i \varphi(t))\right|^{2} \mathrm{~d} t \int_{T}^{2 T}\left|U_{n, b, y}(\sigma+i \varphi(t))\right|^{2} \mathrm{~d} t\right)^{1 / 2}\right. \\
& \left.+\int_{T}^{2 T}\left|U_{n, b, y}(\sigma+i \varphi(t))\right|^{2} \mathrm{~d} t\right)
\end{aligned}
$$

Therefore, (11) and (13) yield

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \limsup _{T \rightarrow \infty} J_{T, n}=0 . \tag{14}
\end{equation*}
$$

Now, we will deal with the sequence $\left\{P_{n, b, y}: n \in \mathbb{N}\right\}$. By (12), we have

$$
\begin{align*}
& \sup _{s \in \mathbb{N}} \limsup _{T \rightarrow \infty} \frac{1}{T} \int_{T}^{2 T}\left|U_{n, b, y}(\sigma+i \varphi(t))\right| \mathrm{d} t \\
& \quad \ll \sup _{s \in \mathbb{N}} \limsup _{T \rightarrow \infty}\left(\frac{1}{T} \int_{T}^{2 T}\left|U_{n, b, y}(\sigma+i \varphi(t))\right|^{2} \mathrm{~d} t\right)^{1 / 2} \\
& \quad \ll \sup _{n \in \mathbb{N}} \frac{b-1}{n}\left(\sum_{l=1}^{n} \widehat{\zeta}^{2}\left(a_{l}\right) u^{2}\left(a_{l}, y\right) a_{l}^{-2 \sigma}\right)^{1 / 2} \leqslant C_{b, y, \sigma}<\infty \tag{15}
\end{align*}
$$

because

$$
\lim _{n \rightarrow \infty} \frac{b-1}{n} \sum_{l=1}^{n} \widehat{\zeta}^{2}\left(a_{l}\right) u^{2}\left(a_{l}, y\right) a_{l}^{-2 \sigma}=\int_{1}^{b} \widehat{\zeta}^{2}(x) u^{2}(x, y) x^{-2 \sigma} \mathrm{~d} x .
$$

Take a random variable θ_{T} given on the probability space $(\Omega, \mathcal{F}, \mu)$ that is uniformly distributed on $[T, 2 T]$. Consider the complex-valued random variables

$$
x_{T, n, b, y}=x_{T, n, b, y}(\sigma)=U_{n, b, y}\left(\sigma+i \varphi\left(\theta_{T}\right)\right),
$$

and $x_{n, b, y}(\sigma)$ with the distribution $P_{n, b, y, \sigma}$. Then, rewrite the assertion of Lemma 4 in the form

$$
\begin{equation*}
x_{T, n, b, y} \xrightarrow[T \rightarrow \infty]{\mathcal{D}} x_{n, b, y} . \tag{16}
\end{equation*}
$$

Fix $\delta>0$. Then, in view of (15) and (16),

$$
\begin{align*}
\mu\left\{\left|x_{n, b, y}(\sigma)\right|>\delta^{-1} C_{b, y, \sigma}\right\} & \leqslant \sup _{n \in \mathbb{N}} \limsup _{T \rightarrow \infty} \mu\left\{\left|x_{T, n, b, y}(\sigma)\right|>\delta^{-1} C_{b, y, \sigma}\right\} \\
& \leqslant \sup _{n \in \mathbb{N}} \limsup _{T \rightarrow \infty} \frac{\delta}{C_{b, y, \sigma}} \int_{T}^{2 T}\left|U_{n, b, y}(\sigma+i \varphi(t))\right| \mathrm{d} t \leqslant \delta . \tag{17}
\end{align*}
$$

The set $K=\left\{s \in \mathbb{C}:|s| \leqslant \delta^{-1} C_{b, y, \sigma}\right\}$ is compact in \mathbb{C}. Moreover, by (17),

$$
\mu\left\{x_{n, b, y} \in K\right\}=1-\mu\left\{x_{n, b, y} \notin K\right\}>1-\delta
$$

for all $n \in \mathbb{N}$. This and the definition of $x_{n, b, y}$ show that, for all $n \in \mathbb{N}$,

$$
P_{n, b, y, \sigma}(K)>1-\delta .
$$

This means that the sequence $\left\{P_{n, b, y, \sigma}: n \in \mathbb{N}\right\}$ is tight. Therefore, by Lemma 5 , it is relatively compact. Hence, there exists a subsequence $\left\{P_{n_{l}, b, y, \sigma}\right\} \subset\left\{P_{n, b, y, \sigma}\right\}$ and a probability measure $P_{b, y, \sigma}$ on $(\mathbb{C}, \mathcal{B}(\mathbb{C}))$ such that $P_{n_{l}, b, y, \sigma} \xrightarrow[l \rightarrow \infty]{\mathrm{w}} P_{b, y, \sigma}$. In other words,

$$
x_{n_{l}, b, y} \xrightarrow[l \rightarrow \infty]{\mathcal{D}} P_{b, y, \sigma} .
$$

This, (16), and (14) show that all hypotheses of Lemma 6 for $x_{T, n, b, y}, x_{n_{l}, b, y}$ and

$$
y_{T, b, y}=y_{T, b, y}(\sigma)=\mathcal{Z}_{b, y}\left(\sigma+i \varphi\left(\theta_{T}\right)\right)
$$

are satisfied. Thus, we have

$$
y_{T, b, y} \xrightarrow[T \rightarrow \infty]{\mathcal{D}} P_{b, y, \sigma},
$$

which proves the lemma.

4. Case of Improper Integral

This section is devoted to a limit lemma for the integral

$$
\mathcal{Z}_{y}(\sigma+i \varphi(t))=\int_{1}^{\infty} \widehat{\zeta}(x) u(x, y) x^{-\sigma-i \varphi(t)} \mathrm{d} x
$$

It is well known that $\zeta(1 / 2+i x) \ll(1+|x|)^{1 / 6}$. Therefore, the integral for $\mathcal{Z}(\sigma+i \varphi(t))$ converges absolutely for $\sigma>\widehat{\sigma}$ with every finite $\widehat{\sigma}$.

For $A \in \mathcal{B}(\mathbb{C})$, let

$$
P_{T, y, \sigma}(A)=\frac{1}{T} \mathbf{L}\left\{t \in[T, 2 T]: \mathcal{Z}_{y}(\sigma+i \varphi(t)) \in A\right\} .
$$

Lemma 8. Assume that $\sigma \in(1 / 2,1)$ is a given fixed number, and $\varphi(t) \in W_{\sigma}$. Then, there is a probability measure $P_{y, \sigma}$ on $\left(\mathbb{C}(\mathcal{B}(\mathbb{C}))\right.$ such that $P_{T, y, \sigma} \xrightarrow[T \rightarrow \infty]{\mathrm{w}} P_{y, \sigma}$.

Proof. We use a similar method as in the proof of Lemma 7. We begin with a mean value

$$
J_{T, y} \stackrel{\text { def }}{=} \frac{1}{T} \int_{0}^{T}\left|\mathcal{Z}_{y}(\sigma+i \varphi(t))-\mathcal{Z}_{b, y}(\sigma+i \varphi(t))\right| \mathrm{d} t .
$$

Clearly, the absolute convergence of the integral for $\mathcal{Z}_{y}(\sigma+i \varphi(t))$ shows that, for every fixed $y>0$,

$$
\begin{aligned}
\mathcal{Z}_{y}(\sigma+i \varphi(t))-\mathcal{Z}_{b, y}(\sigma+i \varphi(t)) & =\int_{b}^{\infty} \widehat{\zeta}(x) u(x, y) x^{-\sigma-i \varphi(t)} \mathrm{d} x \\
& \ll \int_{b}^{\infty} \widehat{\zeta}(x) u(x, y) x^{-\sigma} \mathrm{d} x=o_{y}(1)
\end{aligned}
$$

as $b \rightarrow \infty$. Hence, we obtain

$$
\begin{equation*}
\lim _{b \rightarrow \infty} \limsup _{T \rightarrow \infty} J_{T, y}=0 \tag{18}
\end{equation*}
$$

Let $y_{b, y}(\sigma)$ be the complex-valued random variable with distribution $P_{b, y, \sigma}$, and, in the notation of Lemma 7,

$$
y_{T, b, y}=y_{T, b, y}(\sigma)=\mathcal{Z}_{b, y}\left(\sigma+i \varphi\left(\theta_{T}\right)\right)
$$

Then, by Lemma 7,

$$
\begin{equation*}
y_{T, b, y} \xrightarrow[T \rightarrow \infty]{\mathcal{D}} y_{b, y} . \tag{19}
\end{equation*}
$$

Moreover, in virtue of (11),

$$
\sup _{b \geqslant 1} \limsup _{T \rightarrow \infty} \frac{1}{T} \int_{T}^{2 T}\left|\mathcal{Z}_{b, y}(\sigma+i \varphi(t))\right| \mathrm{d} t \leqslant C_{y, \sigma}<\infty
$$

This together with (19) gives, for $\delta>0$,

$$
\begin{aligned}
\mu\left\{\left|y_{b, y}\right|>\delta^{-1} C_{y, \sigma}\right\} & \leqslant \sup _{b \geqslant 1} \limsup _{T \rightarrow \infty} \mu\left\{\left|y_{b, y}\right|>\delta^{-1} C_{y, \sigma}\right\} \\
& \leqslant \sup _{b \geqslant 1} \limsup _{T \rightarrow \infty} \frac{\delta}{C_{y, \sigma}} \int_{T}^{2 T}\left|\mathcal{Z}_{b, y}(\sigma+i \varphi(t))\right| \mathrm{d} t \leqslant \delta .
\end{aligned}
$$

Taking a set $K=\left\{s \in \mathbb{C}:|s| \leqslant \delta^{-1} C_{y, \sigma}\right\}$, from this, we deduce that

$$
\mu\left\{y_{b, y} \in K\right\}>1-\delta
$$

This implies that the family $\left\{P_{b, y, \sigma}: b \geqslant 1\right\}$ is tight. Therefore, in view of Lemma 5, it is relatively compact. Thus, there is a sequence $\left\{P_{b_{l}, y, \sigma}\right\}$ and a probability measure $P_{y, \sigma}$ on $(\mathbb{C}, \mathcal{B}(\mathbb{C}))$ such that

$$
y_{b_{l}, y, \sigma} \xrightarrow[l \rightarrow \infty]{\mathcal{D}} P_{y, \sigma} .
$$

This, (19), (18), and the application of Lemma 6 complete the proof of the lemma.

5. Proof of Theorem 2

We recall that

$$
u(x, y)=\exp \left\{-\left(\frac{x}{y}\right)^{\theta}\right\}, \quad x, y \in[1, \infty),
$$

with a fixed $\theta>1 / 2$. For brevity, set

$$
f(s, y)=\frac{1}{\theta} \Gamma\left(\frac{s}{\theta}\right) y^{s},
$$

where $\Gamma(s)$ is the Euler gamma-function. For the approximation of $\mathcal{Z}(\sigma+i \varphi(t))$ by $\mathcal{Z}_{y}(\sigma+$ $\varphi(t))$, we use the representation

$$
\begin{equation*}
\mathcal{Z}_{y}(s)=\frac{1}{2 \pi i} \int_{\theta-i \infty}^{\theta+i \infty} \mathcal{Z}(s+z) f(z, y) \mathrm{d} z, \quad \frac{1}{2}<\sigma<1, \tag{20}
\end{equation*}
$$

obtained in [25], Lemma 9.

Lemma 9. Under the hypotheses of Theorem 2,

$$
\lim _{y \rightarrow \infty} \limsup _{T \rightarrow \infty} \frac{1}{T} \int_{T}^{2 T}\left|\mathcal{Z}(\sigma+i \varphi(t))-\mathcal{Z}_{y}(\sigma+i \varphi(t))\right| \mathrm{d} t=0
$$

Proof. Let $\theta_{1}=-\varepsilon$ and $\theta=1 / 2+\varepsilon$. The integrand in (20) has a double pole $z=1-s$ and a simple pole $z=0$ lying in $\theta_{1}<\operatorname{Re} z<\theta$. Therefore, by the residue theorem and (20), we have

$$
\mathcal{Z}_{y}(s)-\mathcal{Z}(s)=\frac{1}{2 \pi i} \int_{\theta_{1}-i \infty}^{\theta_{1}+i \infty} \mathcal{Z}(s+z) f(z, y) \mathrm{d} z+r_{y}(s)
$$

where

$$
\begin{equation*}
r_{y}(s)=\operatorname{Res}_{z=1-s} \mathcal{Z}(s) f(s, y) \tag{21}
\end{equation*}
$$

From this, we obtain

$$
\begin{aligned}
& \mathcal{Z}_{y}(\sigma+i \varphi(t))-\mathcal{Z}(\sigma+i \varphi(t)) \\
& \quad=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \mathcal{Z}(\sigma-\varepsilon+i \varphi(t)+i \tau) f(-\varepsilon+i \tau, y) \mathrm{d} \tau+r_{y}(\sigma+i \varphi(t)) \\
& \quad \ll \int_{-\infty}^{\infty}|\mathcal{Z}(\sigma-\varepsilon+i \varphi(t)+i \tau)||f(-\varepsilon+i \tau, y)| \mathrm{d} \tau+\left|r_{y}(\sigma+i \varphi(t))\right| .
\end{aligned}
$$

Thus,

$$
\frac{1}{T} \int_{T}^{2 T}\left|\mathcal{Z}(\sigma+i \varphi(t))-\mathcal{Z}_{y}(\sigma+i \varphi(t))\right| \mathrm{d} t \ll I_{T, y}
$$

where

$$
\begin{align*}
I_{T, y} \stackrel{\text { def }}{=} & \int_{-\infty}^{\infty}\left(\frac{1}{T} \int_{T}^{2 T}|\mathcal{Z}(\sigma-\varepsilon+i \varphi(t)+i \tau)| \mathrm{d} t\right)|f(-\varepsilon+i \tau, y)| \mathrm{d} \tau \\
& +\frac{1}{T} \int_{T}^{2 T}\left|r_{y}(\sigma+i \varphi(t))\right| \mathrm{d} t=I_{T, y}^{(1)}+I_{T, y}^{(2)} . \tag{22}
\end{align*}
$$

To estimate $I_{T, y^{\prime}}^{(1)}$ we observe that

$$
\begin{align*}
\frac{1}{T} \int_{T}^{2 T}|\mathcal{Z}(\sigma-\varepsilon+i \varphi(t)+i \tau)| \mathrm{d} t & \leqslant\left(\frac{1}{T} \int_{T}^{2 T}|\mathcal{Z}(\sigma-\varepsilon+i \varphi(t)+i \tau)|^{2} \mathrm{~d} t\right)^{1 / 2} \\
& =\left(\frac{1}{T} \int_{T}^{2 T}|\mathcal{Z}(\sigma-\varepsilon+i \varphi(t)+i \tau)|^{2} \frac{\varphi^{\prime}(t) \mathrm{d} t}{\varphi^{\prime}(t)}\right)^{1 / 2} \\
& \ll\left(\frac{1}{T \varphi^{\prime}(2 T+|\tau|)} \int_{0}^{\varphi(2 T+|\tau|)}|\mathcal{Z}(\sigma-\varepsilon+i u)|^{2} \mathrm{~d} u\right) \\
& \ll\left(\frac{I_{\sigma-\varepsilon} \varphi(2 T+|\tau|)}{T \varphi^{\prime}(2 T+|\tau|)}\right)^{1 / 2} \\
& \ll\left(\frac{2 T+|\tau|}{T}\right)^{1 / 2} \ll(1+|\tau|)^{1 / 2} \tag{23}
\end{align*}
$$

For the gamma-function, the estimate

$$
\begin{equation*}
\Gamma(\sigma+i t) \ll \exp \{-c|t|\}, \quad c>0 \tag{24}
\end{equation*}
$$

is valid. Therefore,

$$
f(-\varepsilon+i \tau, y) \ll y^{-\varepsilon} \exp \left\{-c_{1}|\tau|\right\}, \quad c_{1}>0
$$

This together with (23) leads to the bound

$$
\begin{equation*}
I_{T, y}^{(1)} \ll y^{-\varepsilon} \int_{-\infty}^{\infty}(1+|\tau|)^{1 / 2} \exp \left\{-c_{1}|\tau|\right\} \mathrm{d} \tau \ll y^{-\varepsilon} \tag{25}
\end{equation*}
$$

Let $a=2 \gamma-\log 2 \pi$. In view of the formula for $\mathcal{Z}(s)$ in Theorem 1,

$$
\begin{aligned}
r_{y}(s) & =f^{\prime}(1-s, y)+a f(1-s, y) \\
& =\frac{1}{\theta^{2}} \Gamma^{\prime}\left(\frac{1-s}{\theta}\right) y^{1-s}+\frac{1}{\theta} \Gamma\left(\frac{1-s}{\theta}\right) y^{1-s} \log y+\frac{a}{\theta} \Gamma\left(\frac{1-s}{\theta}\right) y^{1-s} \\
& =\frac{y^{1-s}}{\theta} \Gamma\left(\frac{1-s}{\theta}\right)\left(\frac{1}{\theta} \frac{\Gamma^{\prime}}{\Gamma}\left(\frac{1-s}{\theta}\right)+\log y+a\right) .
\end{aligned}
$$

Hence, the estimates (24) and

$$
\frac{\Gamma^{\prime}}{\Gamma}(\sigma+i t) \ll \log (|t|+2)
$$

yield

$$
\begin{aligned}
I_{T, y}^{(2)} & \lll \theta y^{1-\sigma} \log y \frac{1}{T} \int_{T}^{2 T} \exp \left\{-\frac{c}{\theta} \varphi(t)\right\} \log \varphi(t) \mathrm{d} t \\
& <_{\theta} y^{1-\sigma} \log y \exp \left\{-\frac{c}{2 \theta} \varphi(T)\right\} .
\end{aligned}
$$

This, (25), and (22) show that

$$
I_{T, y} \ll \delta y^{-\varepsilon}+y^{1-\sigma} \log y \exp \left\{-\frac{c}{2 \theta} \varphi(T)\right\} .
$$

Therefore,

$$
\begin{equation*}
\lim _{y \rightarrow \infty} \limsup _{T \rightarrow \infty} \frac{1}{T} \int_{T}^{2 T}\left|\mathcal{Z}(\sigma+i \varphi(t))-\mathcal{Z}_{y}(\sigma+i \varphi(t))\right| \mathrm{d} t=0 \tag{26}
\end{equation*}
$$

because $\varphi(T) \rightarrow \infty$ as $T \rightarrow \infty$.
Now, we return to the limit measure $P_{y, \sigma}$ of Lemma 8.
Lemma 10. Under the hypotheses of Theorem 2, the family $\left\{P_{y, \sigma}: y \in[1, \infty)\right\}$ is tight.
Proof. We have

$$
\frac{1}{T} \int_{T}^{2 T}\left|\mathcal{Z}_{y}(\sigma+i \varphi(t))\right| \mathrm{d} t \leqslant \frac{1}{T} \int_{T}^{2 T}\left|\mathcal{Z}(\sigma+i \varphi(t))-\mathcal{Z}_{y}(\sigma+i \varphi(t))\right| \mathrm{d} t+\frac{1}{T} \int_{T}^{2 T}|\mathcal{Z}(\sigma+i \varphi(t))| \mathrm{d} t
$$

Therefore, by (2) and (26),

$$
\begin{equation*}
\sup _{y \geqslant 1} \limsup _{T \rightarrow \infty} \frac{1}{T} \int_{T}^{2 T}\left|\mathcal{Z}_{y}(\sigma+i \varphi(t))\right| \mathrm{d} t \leqslant C<\infty . \tag{27}
\end{equation*}
$$

Let

$$
z_{T, y}=z_{T, y}(\sigma)=\mathcal{Z}_{y}\left(\sigma+i \varphi\left(\theta_{T}\right)\right)
$$

and $z_{y}=z_{y}(\sigma)$ be the complex-valued random variable with the distribution $P_{y, \sigma}$. Then, the statement of Lemma 8 can be written as

$$
\begin{equation*}
z_{T, y} \xrightarrow[T \rightarrow \infty]{\mathcal{D}} z_{y} . \tag{28}
\end{equation*}
$$

From this and (27), we obtain that, for every $\delta>0$,

$$
\mu\left\{\left|z_{y}\right|>\delta^{-1} C\right\} \leqslant \sup _{y \geqslant 1} \limsup _{T \rightarrow \infty} \mu\left\{\left|z_{T, y}\right|>\delta^{-1} C\right\} \leqslant \frac{\delta}{T C} \int_{T}^{2 T}\left|\mathcal{Z}_{y}(\sigma+i \varphi(t))\right| \mathrm{d} t \leqslant \delta
$$

This shows that, for $K=\left\{s \in \mathbb{C}:|s| \leqslant \delta^{-1} C\right\}$,

$$
P_{y, \sigma}(K) \geqslant 1-\delta
$$

and the lemma is proven.

Proof of Theorem 2. Lemma 10 together with Lemma 5 implies that the family $\left\{P_{y, \sigma}\right\}$ is relatively compact. Therefore, there is a sequence $\left\{P_{y_{k}, \sigma}\right\} \subset\left\{P_{y, \sigma}\right\}$ weakly convergent to a certain probability measure P_{σ} on $(\mathbb{C}, \mathcal{B}(\mathbb{C})$ as $k \rightarrow \infty$. This also can be written as

$$
\begin{equation*}
z_{y_{k}, \sigma} \xrightarrow[k \rightarrow \infty]{\mathcal{D}} P_{\sigma} . \tag{29}
\end{equation*}
$$

Define one more random variable,

$$
z_{T}=z_{T}(\sigma)=\mathcal{Z}\left(\sigma+i \varphi\left(\theta_{T}\right)\right)
$$

Then, Lemma 9 implies, for every $\delta>0$,

$$
\begin{aligned}
& \lim _{k \rightarrow \infty} \limsup _{T \rightarrow \infty} \mu\left\{\left|z_{T}-z_{T, y_{k}}\right|>\delta\right\} \\
& \quad \leqslant \lim _{k \rightarrow \infty} \limsup _{T \rightarrow \infty} \frac{1}{\delta T} \int_{T}^{2 T}\left|\mathcal{Z}(\sigma+i \varphi(t))-\mathcal{Z}_{y_{k}}(\sigma+i \varphi(t))\right| \mathrm{d} t=0 .
\end{aligned}
$$

This, (28), and (29) together with Lemma 6 prove that

$$
z_{T} \xrightarrow[T \rightarrow \infty]{\mathcal{D}} P_{\sigma} .
$$

The theorem is proven.

6. Conclusions

In the paper, we considered the asymptotic behavior of the modified Mellin transform of the square of the Riemann zeta-function by using a probabilistic approach. We proved a limit theorem on the weak convergence of probability measures defined by shifts $\mathcal{Z}(\sigma+i \varphi(t)), 1 / 2<\sigma<1$, where $\varphi(t)$ is a differentiable increasing to infinity function with a monotonically decreasing derivative $\varphi^{\prime}(t)$ satisfying a certain estimate connected to the mean square of the function $\mathcal{Z}(s)$. We expect that such normalization of the function $\mathcal{Z}(s)$ extends the class of limit distributions for $\mathcal{Z}(s)$. Our future plans are related to a similar theorem in the space of analytic functions.

Author Contributions: Conceptualization, A.L. and D.Š.; methodology, A.L. and D.Š.; investigation, A.L. and D.Š.; writing-original draft preparation, A.L. and D.Š. All authors have read and agreed to the published version of the manuscript.
Funding: This research received no external funding.
Data Availability Statement: Data are contained within the article.
Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Riemann, B. Über die Anzahl der Primzahlen unterhalb einer gegebenen Grösse. Monatsber. Preuss. Akad. Wiss. Berlin 1859, 671-680.
2. Hadamard, J. Sur les zéros de la fonction $\zeta(s)$ de Riemann. Comptes Rendus Acad. Sci. Paris 1896, 122, 1470-1473.
3. de la Vallée-Poussin, C.J. Recherches analytiques sur la théorie des nombres premiers, I-III. Ann. Soc. Sci. Brux. 1896, 20, 183-256, 281-362, 363-397.
4. The Millennium Prize Problems. Available online: https://www.claymath.org/millennium-problems/ (accessed on 1 March 2024).
5. Ivič, A. The Riemann Zeta-Function; John Wiley \& Sons: New York, NY, USA, 1985.
6. Motohashi, Y. A relation between the Riemann zeta-function and the hyperbolic Laplacian. Ann. Sc. Norm. Super. Pisa Cl. Sci. IV. Ser. 1995, 22, 299-313.
7. Motohashi, Y. Spectral Theory of the Riemann Zeta-Function; Cambridge University Press: Cambridge, UK, 1997.
8. Ivič, A. On some conjectures and results for the Riemann zeta-function and Hecke series. Acta Arith. 2001, 99, 115-145. [CrossRef]
9. Ivič, A.; Jutila, M.; Motohashi, Y. The Mellin transform of powers of the zeta-function. Acta Arith. 2000, 95, 305-342. [CrossRef]
10. Bohr, H. Über das Verhalten von $\zeta(s)$ in der Halbebene $\sigma>1$. Nachr. Akad. Wiss. Göttingen II Math. Phys. Kl. 1911, 409-428.
11. Bohr, H.; Jessen, B. Über die Wertwerteiling der Riemmanshen Zetafunktion, erste Mitteilung. Acta Math. 1930, 54, 1-35. [CrossRef]
12. Bohr, H.; Jessen, B. Über die Wertwerteiling der Riemmanshen Zetafunktion, zweite Mitteilung. Acta Math. 1932, 58, 1-55. [CrossRef]
13. Laurinčikas, A. Limit theorems for the Mellin transform of the square of the Riemann zeta-function. I. Acta Arith. 2006, 122, 173-184. [CrossRef]
14. Selberg, A. Old and New Conjectures and Results about a Class of Dirichlet Series. In Proceedings of the Amalfi Conference on Analytic Number Theory, Maiori, Italy, 25-29 September 1989; University of Salerno: Salerno, Italy, 1992; pp. 367-385
15. Joyner, D. Distribution Theorems of L-Functions; Ditman Research Notes in Math; Longman Scientific: Harlow, UK, 1986.
16. Bagchi, B. The Statistical Behaviour and Universality Properties of the Riemann Zeta-Function and Other Allied Dirichlet Series. Ph.D. Thesis, Indian Statistical Institute, Calcutta, India, 1981.
17. Korolev, M.A. Gram's law in the theory of the Riemann zeta-function. Part 1. Proc. Steklov Inst. Math. 2016, 292, 1-146. [CrossRef]
18. Korolev, M.A. Gram's law in the theory of the Riemann zeta-function. Part 2. Proc. Steklov Inst. Math. 2016, 294, 1-78. [CrossRef]
19. Kowalski, E. An Introduction to Probabilistic Number Theory; Cambridge Studies in Advanced Mathematics (192); Cambridge University Press: Cambridge, UK, 2021.
20. Lamzouri, Y.; Lester, S.; Radziwill, M. An effective universality theorem for the Riemann zeta function. Comment. Math. Helv. 2018, 93, 709-736. [CrossRef]
21. Lamzouri, Y.; Lester, S.; Radziwill, M. Discrepancy bounds for the distribution of the Riemann zeta-function and applications. J. Anal. Math. 2019, 139, 453-494. [CrossRef]
22. Steuding, J. Value-Distribution of L-Functions; Lecture Notes Math; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2007; Volume 1877.
23. Matsumoto, K. Probabilistic value-distribution theory of zeta-functions. Sugaku Expo. 2004, 17, 51-71.
24. Billingsley, P. Convergence of Probability Measures, 2nd ed.; John Wiley \& Sons: New York, NY, USA, 1999.
25. Korolev, M.; Laurinčikas, A. On the approximation by Mellin transform of the Riemann zeta-function. Axioms 2023, 12, 520. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

