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Abstract: This paper presents the Slash-Exponential-Fréchet distribution, which is an expanded
version of the Fréchet distribution. Through its stochastic representation, probability distribution
function, moments and other relevant features are obtained. Evidence supports that the updated
model displays a lighter right tail than the Fréchet model and is more flexible as for skewness and
kurtosis. Results on maximum likelihood estimators are given. Our proposition’s applicability is
demonstrated through a simulation study and the evaluation of two real-world datasets.
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1. Introduction

The French mathematician Maurice René Fréchet introduced the Fréchet (Fr) distribu-
tion in the 1920s as a maximum value distribution, see Fréchet [1] or Fisher and Tippet [2].
It is also recognized as the inverse Weibull distribution and this is a specific instance of
what is commonly referred to as Generalized Extreme Value (GEV) distributions, (see
Gumbel [3] Embrechts et al. [4], Resnick [5], or Haan and Ferreira [6]). Since its origin, this
model has been applied in different areas, such as reliability, life testing, extreme events,
rainfall, wind speeds, among others. Information regarding the theoretical characteristics
and uses of Fréchet distribution can be found in the works of Kotz and Nadarajah [7],
Gupta et al. [8], Coles [9], and Ramos et al. [10]. Results using the term inverse Weibull
distribution can be seen in Calabria and Pulcini [11], Maswadah [12], and Salman [13],
and from a Bayesian point of view in Abbas and Tang [14]. These papers along with the
references appearing therein, show the interest of Fréchet model. In this paper a new
extension of the Fréchet distribution is proposed, which is based on the Fréchet and the
Slash-Exponential distribution recently introduced in Punathumparambath [15]. Next,
properties of these models are given, which will allow us to reach our end. So, a continuous
random variable (rv) X follows a Fréchet distribution if its probability density function
(pdf) is

fX(x; λ) = λx−(1+λ) exp
(
−x−λ

)
, x > 0, (1)

where λ > 0 is a shape parameter. Equation (1) is denoted X ∼ Fr(λ). Some properties of
interest are listed in next lemma.

Lemma 1. (a) Let X ∼ Fr(λ). Then its cumulative distribution function (cdf) is

FX(x; λ) = exp
(
−x−λ

)
, x > 0. (2)

(b) Let V ∼ Exp(1). Then V− 1
λ ∼ Fr(λ).
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(c) If X ∼ Fr(λ), then the rth-moment of X exists for r < λ and

E(Xr) = Γ
(

1 − r
λ

)
, (3)

where Γ(·) denotes the gamma function.

(d) Let X ∼ Fr(λ). Then the pdf of X is unimodal with mode m =
(

λ
1+λ

)1/λ
or decreasing (for

λ close to zero), the hazard function is always unimodal, see [10].

The gamma distribution will be used throughout this paper. In Remark 1, its pdf and
cdf are given.

Remark 1. If a rv T adheres to a gamma distribution, represented as T ∼ Ga(a, b), it implies that
its pdf is as such

g(t; a, b) =
ba

Γ(a)
ta−1e−bt, t > 0, (4)

with a, b > 0. The cdf of T is

G(z; a, b) =
∫ z

0
g(t; a, b)dt =

γ(a, bz)
Γ(a)

, (5)

where γ(a, bz) =
∫ bz

0 ua−1e−udu is the (lower) incomplete gamma function, (Abramowitz and
Stegun [16]).

Next, the basis of our proposal is introduced, that is, the Slash-Exponential distribution.
As origin of the Slash-Exponential model, the Generalized Exponential distribution can be
cited (Gupta and Kundu [17,18]). Astorga et al. [19] proposed an extension called Slashed
Generalized Exponential, which contains as a submodel, the Slash Exponential. Details can
be seen in Punathumparambath [15].

Definition 1. A rv Y follows a Slash-Exponential distribution with shape parameter α > 0,
Y ∼ SE(α), if its pdf is presented by

fY(y; α) = α2y−(1+α)Γ(α)G(y; 1 + α, 1), y > 0, (6)

where G(·) denotes the cdf of the gamma distribution given in (5).

The following lemma presents some properties of Slash-Exponential distribution.

Lemma 2. (a) Let Y ∼ SE(α). Then the cdf is

FY(y; α) = 1 − αy−αΓ(α)G(y; 1 + α, 1)− exp(−y), y > 0.

(b) If Y ∼ SE(α) then the survival and hazard rate functions are as follows

SY(y; α) = αy−αΓ(α)G(y; 1 + α, 1) + exp(−y), y > 0,

hY(y; α) =
α2y−(1+α)Γ(α)G(y; 1 + α, 1)

αy−αΓ(α)G(y; 1 + α, 1) + exp(−y)
, y > 0.

(c) Let Y ∼ SE(α). Then the rth-moment of Y exists for α > r and

E(Yr) =
α

α − r
r!.

The objective of this article is to present a novel expansion of the Fréchet distribution
taking as starting point the Slash-Exponential distribution defined in (6). Specifically,
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by proceeding similarly to property b given in Lemma 1, an updated extension of the
Fréchet distribution has been achieved. This is called Slash-Exponential-Fréchet (SEFr)
model. The SEFr distribution can be used in different fields where the Fréchet distribution
is of common use, with the advantage of being a model more flexible as for skewness and
kurtosis than the Fréchet model. On the other hand, the SFEr model can be used as an
alternative to the Slash Fréchet distribution proposed in Castillo et al. [20] (model with two
shape parameters), since the proposed model incorporates a scale parameter, resulting a
distribution with greater flexibility. As novelty of this paper, we highlight that, the new
model has a lighter right tail than the baseline Fréchet distribution, this is a new feature
in the field of applications of slash methodology. The Slash distribution is statistically
characterized as the ratio formed by two independent rv’s, with one conforming to a
standard normal distribution and the other representing a power of a uniform distribution.
Therefore, it can be mentioned that Y possesses a slash distribution if it can be represented
as such:

Y =
X1

X2

where X1 ∼ N(0, 1) and X2 ∼ Beta(q, 1), X1 is independent of X2 and q > 0. In light of the
groundbreaking studies by Rogers and Tukey [21], Andrews et al. [22] on slash distribution;
multivariate slash models proposed in Gómez et al. [23] or Arslan and Genc [24], slash
methodology has been proven to be useful to increase the weight of tails of a baseline
distribution. See for instance Reyes et al. [25], Del Castillo [26], Zörnig [27], Olmos et al. [28]
for the half-normal and generalized half-normal, Astorga et al. [19] for the generalized
exponential distribution, Barranco-Chamorro et al. [29] for the Rayleigh distribution, Bar-
rios et al. [30] for the power half-normal, Gui [31] for the Lindley, and Castillo et al. [32]
for weighted Lindley, among others. However, in this paper, the slash methodology is
applied in such a way, that we get a class of distributions more flexible than Fréchet baseline
distribution as for skewness and kurtosis.

The structure of this paper is as follows. In Section 2, the stochastic representation
and relevant properties are given. These are: pdf, mode, cdf, survival and hazard rate
function, right tail behaviour, approximations to Fréchet model, moments, Shannon
entropy, and other properties of interest in reliability. Section 3 is devoted to inferential
results. Maximum Likelihood (ML) estimation method is studied in detail. A simulation
study is conducted to evaluate the effective performance of ML estimators. In Section 4,
a pair of practical applications are presented where our suggestion is benchmarked against
other rival models, demonstrating its superior efficacy. The concluding remarks can be
found in Section 5.

2. Results for the SEFr Distribution

First, the stochastic representation of the Slash-Exponential-Fréchet distribution is
given as

X = σY−1/λ, (7)

where Y ∼ SE(α) with σ, λ, α > 0. Equation (7) is denoted by X ∼ SEFr (σ, λ, α).
In Equation (7), σ > 0 is a scale parameter, whereas λ > 0 and α > 0 are shape parameters.
Next proposition provides the pdf of the SEFr model.

Proposition 1. Let X ∼ SEFr (σ, λ, α). Then the pdf of X is given by

fX(x; σ, λ, α) =
λα2Γ(α)

σλα
xλα−1G

((σ

x

)λ
; 1 + α, 1

)
, x > 0, (8)

where σ, λ, α > 0 and G (z; a, b) denotes the cdf of the gamma distribution introduced in (5).

Proof. By employing the representation outlined in (7) and the rv transformation method,
the result is obtained.
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Given that σ is a scale parameter, we can assume σ = 1 without any loss of generality.
Figure 1 provides illustrative plots for varying values of α and λ. These plots suggest that,
like the Fréchet model, the SEFr distribution is unimodal or decreasing. These appreciations
are proved in Proposition 2.

Proposition 2. Let X ∼ SEFr (1, λ, α). Then the mode of X is given as the solution of

ex−λ
xλ(α+1)γ(α + 1, x−λ) =

λ

λα − 1
, provided that λα > 1 . (9)

For λα ≤ 1, the pdf of X is strictly decreasing.

Proof. Straightforward, studying the first derivative of (8) with respect to x.
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Figure 1. pdf of SEFr (1, λ, α): (a) for α = 0.5 and λ ∈ {2, 4, 8}, (b) for λ = 5 and α ∈ {0.5, 1, 8}.

2.1. Properties

Proposition 3. Let X ∼ SEFr (σ, λ, α). Then, the cdf of X is provided by

FX(x; σ, λ, α) = αΓ(α)
( x

σ

)λα
G
((σ

x

)λ
; 1 + α, 1

)
+ exp

{
−
(σ

x

)λ
}

, x > 0 . (10)

Proof. By definition

FX(x; σ, λ, α) =
λα2Γ(α)

σλα

∫ x

0
tλα−1G

((σ

t

)λ
, 1 + α, 1

)
dt.

By employing the methods of integration by parts, it can be shown that

u = G
((σ

t

)λ
; 1 + α, 1

)
⇒

du =
−λσλ

tλ+1 g
((σ

t

)λ
, 1 + α, 1

)
dt =

−λσλ

tλ+1Γ(1 + α)

(σ

t

)λα
exp

{
−
(σ

t

)λ
}

dt ,

dv = tλα−1 ⇒ v =
tλα

λα
,

where g(·) denotes the pdf of the gamma distribution. Then,

FX(x; σ, λ, α) =
λα2Γ(α)

σλα

×
[

G
((σ

t

)λ
; 1 + α, 1

)
xλα

λα
+

σλ+λα

αΓ(1 + α)

∫ x

0
t−λ−1 exp

{
−
(σ

t

)λ
}]

dt,

and making the substitution w =
(

σ
t
)λ, the proposed result is obtained.
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Corollary 1. Let X ∼ SEFr (σ, λ, α). Then the survival function and hazard rate function of X
are provided by

S(x) = 1 − αΓ(α)
( x

σ

)λα
G
((σ

x

)λ
; 1 + α, 1

)
− exp

{
−
(σ

x

)λ
}

,

h(x) =
λα2Γ(α)xλα−1G

((
σ
x
)λ; 1 + α, 1

)
σλα
[
1 − αΓ(α)

( x
σ

)λαG
((

σ
x
)λ; 1 + α, 1

)
− exp

{
−
(

σ
x
)λ
}] .

Proof. It follows by applying S(x) = 1 − FX(x) and h(x) = fX(x)/S(x).

As an illustration, plots for the cdf, survival function, and hazard rate function in the
SEFr (1, λ, 0.5) model are given in Figure 2.
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Figure 2. The cdf, survival function and hazard rate function for the SEFr (1, λ, 0.5) model can be
visualized through their respective plots.

Next we focus on studying the right tail of SEFr model. Specifically, in Proposition 4,
it is proven that the right tail of SEFr model is lighter than the right tail of baseline Fréchet
model. Moreover, in Proposition 5, it is proven that the SEFr model tends to a Fréchet
model when α → ∞.

Proposition 4. Let X ∼ SEFr (1, λ, α) and F ∼ Fr (λ) with survival functions SX and SF,
respectively. Then

SX(t) ≤ SF(t), ∀t > 0. (11)

That is, for all fixed α > 0 the right tail of SEFr (1, λ, α) model is lighter than the right tail in
the Fr (λ) distribution.

Proof. From Corollary 1 and (10), note that ∀t > 0

SX(t) = 1 − exp
{
−t−λ

}
− αΓ(α)tλαG(t−λ; 1 + α, 1)

= SF(t)− αΓ(α)tλαG(t−λ; 1 + α, 1) .

Since α > 0 and G(·) is the cdf of a gamma distribution, we have that SX(t) ≤ SF(t),
∀t > 0.

For λ = 5 and increasing values of α, the property given in Proposition 4 is illustrated
in Table 1.
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Table 1. Some probabilities on right tails of SEFr and Fr distributions.

α P [X > 1] P [X > 1.5] P [X > 2] P [X > 2.5]

SEFr (1, 5, 0.5) 0.253 0.042 0.010 0.003
SEFr (1, 5, 1) 0.368 0.063 0.016 0.005
SEFr (1, 5, 8) 0.587 0.110 0.027 0.009
Fr (5) 0.632 0.123 0.031 0.010

Moreover we have that the cdf of a SEFr (1, λ, α) approaches to the Fr (λ) distribution
when α → ∞. This appreciation is formalised in next proposition.

Proposition 5. Let Xα ∼ SEFr (1, λ, α). If α → ∞, then Xα converges in distribution to a rv
F ∼ Fr(λ).

Proof. Let Xα ∼ SEFr (1, λ, α). By using the stochastic representation given in (7) and the

definition of the Slash Exponential proposed in [15], we can write Xα = U
− 1

λ
1 U

1
αλ where

U1 ∼ Exp(1) and U ∼ U(0, 1) independent. Whereas U
1

αλ
a.s−→ 1 if α → ∞ where a.s

denotes for almost surely convergence, then we have,

U
1

αλ
P−→ 1, α → ∞,

where P signifies the convergence in probability. By applying Slutsky’s lemma, see for
instance Lehmann [33], it follows that

U
− 1

λ
1 U

1
αλ

D−→ U
− 1

λ
1 = F ∼ Fr(λ) ,

where D denotes convergence in distribution.

Note that Proposition 5 establishes that the for large α, the SEFr model can be approxi-
mated by a Fréchet distribution.

2.2. Moments

Proposition 6. Let X ∼ SEFr (σ, λ, α). Then, for r a positive integer, E[Xr] exists, if and only if
r < λ, and in this case,

E[Xr] = σr αλ

αλ + r
Γ
(

1 − r
λ

)
.

Proof. Through the utilization of the stochastic representation provided in (7)

E[Xr] = σrE
[
U−r/λ

1

]
E
[
U

r
αλ

]
(12)

where U1 ∼ Exp(1) and U ∼ U(0, 1) independent. Therefore, we have the proposed
result.

The subsequent corollary is a direct result of Proposition 6, as indicated

Corollary 2. Let X ∼ SEFr (σ, λ, α). Then

1. E[X] = σ αλ
αλ+1 Γ

(
1 − 1

λ

)
, provided that λ > 1.

2. Var[X] = σ2αλ
[

1
αλ+2 Γ

(
1 − 2

λ

)
− αλ

(αλ+1)2 Γ2
(

1 − 1
λ

) ]
, provided that λ > 2.
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3. Let µj = E[X j]. Then, the skewness,
√

β1, and kurtosis, β2, coefficients can be obtained
by using

√
β1 =

µ3 − 3µ1µ2 + 2µ3
1

(µ2 − µ2
1)

3
2

, λ > 3,

β2 =
µ4 − 4µ1µ3 + 6µ2µ2

1 − 3µ4
1

(µ2 − µ2
1)

2
, λ > 4.

In Figures 3 and 4, plots and contour plots for the skewness and kurtosis coefficients
in the SEFr (1, λ, α) model are given. These plots suggest that for fixed α and an increasing
value of λ the skewness and kurtosis coefficients decrease quickly. On the other hand,
for λ fixed and decreasing values of α, the skewness and kurtosis coefficients decrease
quite slower.
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Figure 3. Plot and contour plot of the skewness coefficient in the SEFr (1, λ, α) model.
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Figure 4. Plot and contour plot of the kurtosis coefficient in the SEFr (1, λ, α) model.

Shannon Entropy.

Recall that the Shannon entropy of a continuous rv X, H(X), is defined as

H(X) = −E[log fX(X)] (13)

where log denotes neperian logarithm and fX is the pdf of X. A useful result which can be
used to get the entropy of a rv is given in Lemma 3, c.f. Jones [34] (p. 137) or Awad [35].

Lemma 3. If X is a continuous rv and Z = g(X) is one-to-one transformation, then the relationship
between the Shannon entropies of X and Z is

H(Z) = H(X) + E
[

log
∣∣∣∣ dZ
dX

∣∣∣∣] . (14)

Proposition 7. Let X ∼ SEFr (σ, λ, α). Then the Shannon entropy of X, H(X), can be obtained as

H(X) = log
( σ

λα

)
+

(
α − 1

λ

)
E[log Y]− E[log γ(1 + α, Y)], (15)
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where Y ∼ SE(α).

Proof. Taking into account the definition of the SEFr model given in (7) and (14)

H(X) = H(Y) + log
(σ

λ

)
−
(

1 + λ

λ

)
E[log Y] (16)

with Y ∼ SE(α). Finally, by applying (13) to Y ∼ SE(α), (15) follows.

2.3. Other Properties of Interest in Reliability

In this subsection additional properties of interest in reliability are given. Specifically,
these are: the reverse hazard rate function, the stress-strength parameter and the pdf of the
order statistics.

The reverse hazard rate function.

The reverse hazard rate function, r(x), has received increasing interest in reliability
field. This function is defined as the quotient of the pdf to its cdf, r(x) = f (x)/F(x).
Roughly speaking, r(x) gives the probability of a recent failure occurring given that a
failure has already taken place, additional details can be seen in Block et al. [36]. Its
expression for the SEFr (σ, λ, α) model is given next.

Corollary 3. Let X ∼ SEFr (σ, λ, α). Then the reverse hazard rate function of X is provided by

r(x) =
λα2Γ(α)xλα−1G

((
σ
x
)λ, 1 + α, 1

)
σλα
[
αΓ(α)

( x
σ

)λαG
((

σ
x
)λ, 1 + α, 1

)
+ exp

{
−
(

σ
x
)λ
}] .

Proof. It follows by applying (8) and (10).

The stress-strength parameter.

Proposition 8. Let X and Z independent Slash-Exponential-Fréchet rv’s, X ∼ SEFr (σx, λx, αx),
Z ∼ SEFr (σz, λz, αz), and R, the stress-strength parameter. Then

R =
λxαx

σx

∫ ∞

0

(
s

σx

)λxαx−1
γ

(
1 + αx,

(σx

s

)λx
){(

s
σz

)λzαz

γ

(
1 + αz,

(σz

s

)λz
)
+ exp

{
−
(σz

s

)λz
)}

ds .

Proof. It follows from the fact that R = P[Z < X], see [37], by using (8) and (10) .

Corollary 4. Let X and Z independent Slash-Exponential-Fréchet rv’s with the same scale parame-
ter, X ∼ SEFr (σ, λx, αx), Z ∼ SEFr (σ, λz, αz). Then

R = λxαx

∫ ∞

0
tλxαx−1γ

(
1 + αx, t−λx

){
tλzαz γ

(
1 + αz, t−λz

)
+ exp(−t−λz)

}
dt .

Proof. It is immediate making the change of variable t = s/σ in the expression of R given
in Proposition 8.

Order Statistics.

Let X1, . . . , Xn be independent identically distributed rv’s, Xi ∼ SEFr (σ, λ, α). Let us
consider the order statistics from these n rv’s, denoted by Xr:n, r = 1, . . . , n. Then the pdf
of Xr:n is

fr:n(x) =
n!

(r − 1)! (n − r)!
f (x){F(x)}r−1{1 − F(x)}n−r, r = 1, . . . , n ,

where f (·) and F(·) are the pdf and cdf of the SEFr (σ, λ, α) model given in (8) and (10).
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For r = 1 the pdf of the minimum is obtained and for r = n the maximum. We
highlight that the distribution of the maximum is not SEFr.

3. Inference
3.1. ML Estimators

Given X1, X2, . . . , Xn a random sample of size n from SEFr (σ, λ, α), then from (8),
the log-likelihood function is given by

ℓ(θ) ∝ n log λ + n log α − nλ α log(σ) + (λ α − 1)
n

∑
i=1

log(xi)

+
n

∑
i=1

log γ

(
α + 1,

( xi
σ

)−λ
)

, (17)

where θ = (σ, λ, α), ∝ means proportional to.
The components of the score vector are procured by performing partial derivatives

with respect to σ, λ, and α, S(θ) =
(

∂ℓ
∂σ , ∂ℓ

∂λ , ∂ℓ
∂α

)
, these are

∂ℓ

∂σ
= −nλα

σ
+

(
λ

σ

) n

∑
i=1

( xi
σ

)−λ(α+1) exp
[
−
( xi

σ )
−λ
)]

γ
(

1 + α,
( xi

σ

)−λ
) ,

∂ℓ

∂λ
=

n
λ
− nα log(σ) + α

n

∑
i=1

log(xi) +
n

∑
i=1

log
(

σ
xi

)( xi
σ

)−λ(α+1) exp
[
−
( xi

σ )
−λ
)]

γ
(

1 + α,
( xi

σ

)−λ
) ,

∂ℓ

∂α
=

n
α
− nλ log(σ) + λ

n

∑
i=1

log(xi) +
n

∑
i=1

I
(

α + 1,
( xi

σ

)−λ
)

γ
(

1 + α,
( xi

σ

)−λ
) ,

where I(a, v) =
∫ v

0
ta−1 log(t)e−tdt, a > 0, and v > 0. It can be seen in Milgram [38] that

I(a, v) is related to the generalized integro-exponential function when v = ∞.
The MLE of θ, represented as θ̂, can be secured by finding the solution to the equation

S(θ) = 0 through numerical methodologies, for instance, the Newton-Rapson algorithm.
In another way, the MLEs can be directly secured by optimizing the log-likelihood func-
tion as provided in (17) and using the “BFGS” method of the “optim” subroutine in R
software [39]. The “BFGS” method is a limited-memory quasi-Newton method for ap-
proximating the Hessian matrix of the target distribution. It is worth mentioning that the
parameter vector θ = (σ, λ, α) can be easily obtained, thanks to the properties of the pdf f .
The smooth and continuous nature of the function f , along with the existence and finiteness
of its first and second derivatives, ensure that the equation S(θ) = 0 has roots. These roots
correspond to the MLEs of the vector θ. By employing relevant calculus techniques, it is
possible to verify that the solutions correspond to a maximum.

3.2. Observed Fisher Information Matrix

We can estimate the asymptotic variance of the MLEs, denoted as θ̂ = (σ̂, λ̂, α̂),
using the Fisher information matrix. The Fisher information matrix, denoted as I(θ), is
calculated as the negative expectation of the second derivative of the log-likelihood function,
ℓ(θ), with respect to θ. Under regularity conditions, the MLEs are asymptotically normal.
In other words, as the sample size n approaches infinity, the distribution of I(θ)−1/2

(
θ̂− θ

)
converges to a standard trivariate normal distribution, denoted as N3(03, I3). To obtain
I(θ), we calculate the elements of the matrix −∂2ℓ(θ)/∂θ∂θ⊤. Specifically, the elements
are given by Iσσ = −∂2ℓ(θ)/∂σ2, Iσλ = −∂2ℓ(θ)/∂σ∂λ, and so on.
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Typically, it is difficult to obtain an exact form for the expected value of previous
expressions. Consequently, an estimate of the covariance matrix of MLEs, denoted as
I(θ)−1, can be obtained by evaluating the previous elements at the MLE θ̂, this is called
the observed information matrix, and is denoted as I(θ̂).

I(θ̂) = −∂2ℓ(θ)/∂θ∂θ⊤|θ=θ̂.

The estimation of the asymptotic variances for σ̂, λ̂, and α̂ is done by calculating the
diagonal elements of I(θ̂)−1. The standard errors are then obtained by taking the square
root of these asymptotic variances. For more information on the theoretical results used in
this subsection, please refer to [40,41].

It is of interest to recall that the normality of maximum likelihood estimators is not
satisfied for the case of small sample size. In this case, confidence interval estimates of
parameters can be obtained by applying generalized estimation methods such as those
described in Wang et al. [42] and Luo et al. [43].

3.3. Simulation Study

A simulation study has been carried out to assess the performance of ML estimators
of σ, λ and α in the SEFr model. 1000 samples were generated with sample sizes n = 50,
100 and 200. The different possibilities for the parameters σ, λ and α can be seen in Table 2.
Next Algorithm 1 to generate values of X ∼ SEFr (σ, λ, α) is proposed.

Algorithm 1: To simulate values from the X ∼ SEFr(σ, λ, α).
Step 1: Generate X1 ∼ Exp(1) and X2 ∼ Uni f orm(0, 1).
Step 2: Compute Y = X1

X1/α
2

.

Step 3: Compute X = σY−1/λ.

In Table 2, the bias, Standard Error (SE), Root of Mean Squared Error (RMSE), and the
empirical Coverage Probability (CP) to 95% for the asymptotic intervals based on ML
estimators are given. Note that the bias, SE, and RMSE decrease when the sample size n
increases. These facts suggest that the MLE are consistent. Moreover, the empirical CP’s
also approach to the nominal 95% when n increases.

Table 2. Bias, SE, RMSE, and empirical CP for the simulation results in SEFr model.

True Value n = 50 n = 100 n = 200
σ λ α Estimator Bias SE RMSE CP Bias SE RMSE CP Bias SE RMSE CP

1.5 2 0.5 σ̂ 0.029 0.305 0.347 90.5 0.009 0.208 0.230 90.8 0.002 0.149 0.153 93.8
λ̂ 0.316 0.682 2.067 94.0 0.099 0.356 0.407 95.1 0.037 0.241 0.262 93.3
α̂ 0.073 0.374 0.726 90.5 0.015 0.133 0.144 93.7 0.007 0.091 0.096 93.5

1.2 σ̂ −0.037 0.253 0.291 90.6 −0.025 0.177 0.196 93.8 −0.006 0.122 0.124 94.9
λ̂ 0.124 0.404 0.598 92.8 0.027 0.259 0.278 94.1 0.024 0.181 0.185 95.1
α̂ 1.523 7.629 4.558 91.2 0.427 1.460 1.795 94.8 0.077 0.328 0.436 93.8

4 0.5 σ̂ −0.010 0.149 0.176 89.1 −0.004 0.106 0.109 93.3 −0.003 0.074 0.077 93.9
λ̂ 0.512 1.222 3.100 92.9 0.187 0.722 0.854 94.8 0.084 0.483 0.521 94.7
α̂ 0.104 0.443 0.715 89.9 0.019 0.137 0.155 93.5 0.008 0.092 0.094 94.1

1.2 σ̂ −0.019 0.132 0.140 92.4 −0.014 0.089 0.097 95.3 −0.004 0.061 0.062 94.8
λ̂ 0.256 0.810 1.023 93.4 0.096 0.527 0.583 93.1 0.049 0.362 0.368 95.2
α̂ 1.227 6.490 4.114 91.1 0.397 1.452 2.013 92.4 0.066 0.317 0.410 94.5
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Table 2. Cont.

True Value n = 50 n = 100 n = 200
σ λ α Estimator Bias SE RMSE CP Bias SE RMSE CP Bias SE RMSE CP

2 3 0.7 σ̂ −0.018 0.242 0.262 90.9 −0.005 0.170 0.183 92.9 −0.002 0.120 0.125 94.3
λ̂ 0.259 0.733 0.946 94.6 0.108 0.472 0.518 95.3 0.065 0.323 0.343 95.6
α̂ 0.180 0.842 1.153 92.0 0.052 0.252 0.434 94.0 0.013 0.133 0.144 93.4

1 σ̂ −0.028 0.234 0.272 91.2 −0.009 0.161 0.172 95.2 −0.002 0.111 0.111 95.7
λ̂ 0.180 0.631 0.820 92.2 0.068 0.416 0.439 95.3 0.040 0.286 0.297 94.8
α̂ 0.889 4.261 3.233 91.3 0.164 0.595 0.912 93.5 0.036 0.222 0.266 94.6

5 0.7 σ̂ −0.016 0.147 0.166 91.7 0.003 0.103 0.109 94.4 0.001 0.072 0.074 94.5
λ̂ 0.442 1.238 1.679 93.5 0.218 0.797 0.885 95.7 0.105 0.538 0.561 96.1
α̂ 0.197 0.898 1.110 91.8 0.024 0.204 0.234 93.1 0.009 0.132 0.145 93.8

1 σ̂ −0.025 0.147 0.165 92.9 −0.008 0.096 0.101 93.6 −0.005 0.067 0.067 94.7
λ̂ 0.267 1.045 1.305 91.7 0.117 0.690 0.737 94.6 0.081 0.480 0.513 94.0
α̂ 0.974 6.529 3.370 92.4 0.152 0.561 0.858 93.9 0.046 0.222 0.254 95.2

3 1.5 0.3 σ̂ 0.170 0.957 1.184 88.1 0.054 0.684 0.733 92.1 0.020 0.475 0.495 94.5
λ̂ 0.535 0.966 3.147 93.9 0.112 0.350 0.423 94.4 0.055 0.227 0.251 95.0
α̂ 0.013 0.123 0.152 88.9 0.005 0.083 0.098 92.1 0.002 0.057 0.059 94.6

0.9 σ̂ −0.033 0.689 0.766 90.6 −0.014 0.487 0.526 92.8 −0.006 0.340 0.338 95.0
λ̂ 0.104 0.327 0.390 94.4 0.039 0.215 0.249 93.9 0.023 0.148 0.155 94.7
α̂ 0.622 2.755 2.598 91.7 0.142 0.544 0.807 93.4 0.034 0.189 0.209 95.2

3.5 0.3 σ̂ 0.022 0.394 0.461 89.9 0.007 0.287 0.306 92.5 0.001 0.204 0.202 95.3
λ̂ 0.923 1.649 4.378 93.2 0.289 0.832 1.182 95.2 0.093 0.524 0.547 95.5
α̂ 0.015 0.123 0.164 88.3 0.004 0.081 0.089 92.1 0.003 0.057 0.057 94.5

0.9 σ̂ −0.021 0.301 0.352 89.7 −0.005 0.209 0.232 93.2 −0.003 0.145 0.150 93.3
λ̂ 0.280 0.794 1.344 93.7 0.123 0.509 0.549 95.5 0.064 0.346 0.370 95.1
α̂ 0.681 3.211 2.885 90.6 0.100 0.438 0.728 94.9 0.022 0.184 0.202 93.8

4. Applications

In this section, we provide applications to two actual datasets. In each setting the fit
provided by the SEFr model is compared to the Fréchet (Fr), Slashed Quasi-Gamma (SQG),
and Slash Fréchet (SFr). The criteria for comparison are: the Akaike Information Criterion
(AIC), given by Akaike [44], and the Bayesian Information Criterion (BIC) proposed by
Schwarz [45]. Next the pdf’s of SQG and SFr are given.

1. Slashed Quasi-Gamma, X ∼ SQG(β, θ, q), introduced in [46]. Its pdf is:

fX(x; β, θ, q) =
qβqx−(q+1)

Γ
(

1
10

) Γ
(

q
θ
+

1
10

)
F

((
x
β

)θ

,
q
θ
+

1
10

, 1

)
, x > 0, (18)

where β > 0, θ > 0, and q > 0.
2. Slash Fréchet, X ∼ SFr(λ, q), introduced in [20]. Its pdf is:

fX(x; λ, q) =
q

xq+1 Γ
(

1 − q
λ

, x−λ
)

, x > 0, (19)

where λ > q > 0 and Γ(a, t) =
∫ ∞

t wa−1e−wdw is the upper incomplete gamma function.

4.1. Application 1 (Patients with Bladder Cancer)

The remission times (in months) of 128 patients with bladder cancer are considered as
first application. This dataset was first studied by Lee and Wang [47]. Table 3 provides the
descriptive summaries. These are: sample mean, sample standard deviation (S), sample
skewness coefficient (

√
b1) and sample kurtosis coefficient (b2). Also, the boxplot is given

in Figure 5. We highlight the high values of the skewness and kurtosis coefficients, and the
existence of possible outliers in this dataset.
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Table 3. Descriptive Summary for Patients with Bladder Cancer dataset.

n x S
√

b1 b2

128 9.366 10.508 3.287 18.483

0 20 40 60 80

remission time

Figure 5. Boxplot for remission times of patients with bladder cancer.

The results for the different models under consideration are listed in Table 4, that is,
the estimates of parameters in the Fr, SFr, SQG, and SEFr models, along with their standard
errors, log-likelihood, AIC, and BIC. It can be seen that the SEFr model achieves the lower
values of AIC and BIC, and therefore it provides the best fit to this dataset.

Table 4. Estimates, SE in parentheses, log-likelihood, AIC, and BIC values for the remission times of
patients with bladder cancer dataset.

Parameters Fr (SE) SFr (SE) SQG (SE) SEFr (SE)

σ̂ - - - 9.9436 (1.3592)
λ̂ 0.6726 (0.0479) 0.9242 (0.0688) - 1.8586 (0.2660)
α̂ - - - 0.6329 (0.1558)
β̂ - - 7.7993 (0.9893) -
θ̂ - - 10.8627 (1.3211) -
q̂ - 0.9623 (0.1302) 1.5211 (0.2282) -

log-likelihood −481.0559 −448.1104 −411.7342 −410.0634
AIC 964.1118 900.2208 829.4683 826.1268
BIC 966.9638 905.9249 838.0244 834.6829

The histogram and the fitted pdf’s for the previously mentioned distributions are
given in Figure 6. In Figure 7, the corresponding QQ-plots can be seen. Both graphical
summaries support our conclusions about the good fit of SEFr model to this dataset.

remission time (in months)

D
en

si
ty

0 20 40 60 80

0.
00

0.
02

0.
04

0.
06

0.
08

SEFr
SQG
SFr
Fr

Figure 6. Fitted pdf for the remission times of patients with bladder cancer dataset in the Fr and SFr,
SQG, and SEFr distributions.
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Figure 7. QQ plots for the remission times of patients with bladder cancer dataset: (a) SEFr Model;
(b) SQG model; (c) SFr model; (d) Fr model.

4.2. Application 2 (Air Conditioning System Failures)

The second dataset was first studied in Proschan [48]. It consists of the time inter-
val (in hours) between successive failures of the air-conditioning system of Boeing 720
number 7912. Table 5 provides the descriptive summary and Figure 8 the corresponding
boxplot. Note the presence of outliers and that a model with a long right tail seems appro-
priate. These summaries suggest that the proposed distributions can be good candidates
for modelling this dataset.

Table 5. Descriptive statistics for the Air Conditioning System Failures dataset.

n x s
√

b1 b2

30 59.6333 71.8996 1.6914 4.9595

0 50 100 150 200 250

times between failures (hours)

Figure 8. Boxplot of the Air Conditioning System Failures dataset.

The results for the fitted models are given in Table 6. According to AIC and BIC,
the SEFr distribution provides a better fit than the other ones, since its AIC and BIC are the
smallest ones.
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Table 6. Estimates of parameters, SE in parentheses, log-likelihood, AIC and BIC values for Air
Conditioning System Failures.

Parameters Fr (SE) SFr (SE) SQG (SE) SEFr (SE)

σ̂ - - - 38.5732 (13.9807)
λ̂ 0.3924 (0.0601) 0.9508 (0.3089) - 1.0968 (0.2273)
α̂ - - - 1.1344 (0.5565)
β̂ - - 14.7397 (3.1532) -
θ̂ - - 14.3648 (4.2492) -
q̂ - 0.4067 (0.0960) 0.7165 (0.1559) -

log-likelihood −177.5930 −163.9272 −153.0741 −152.3953
AIC 357.1859 331.8543 312.1481 310.7905
BIC 358.5871 334.6567 316.3517 314.9941

The histogram for this dataset is given in Figure 9 along with the fitted pdf’s for Fr,
SFr, SQG, and SEFr models. The QQ-plots are given in Figure 10. it can also be verified
that the SEFr model outperforms other rival models in terms of fitting better. Hence, based
on all these summaries and plot interpretations, it can be inferred that the SEFr model
outperforms the Fr, SFr, and SQG distributions in fitting this dataset.

failure time (hours)

D
en

si
ty

0 50 100 150 200 250

0.
00

0
0.

01
0

0.
02

0
0.

03
0

SEFr
SQG
SFr
Fr

Figure 9. Fitted Density for Air Conditioning System Failures dataset in the Fr and SFr, SQG,
and SEFr distributions.
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Figure 10. QQ plots for Air Conditioning System Failures dataset: (a) SEFr Model; (b) SQG model;
(c) SFr model; (d) Fr model.
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5. Conclusions

The Slash-Exponential-Fréchet distribution has been introduced. This model is an
extension of the Fréchet, from which it inherits its main features, and moreover, it is more
flexible as for its skewness and kurtosis. The following points have been considered:

• The stochastic representation of the new model in terms of the Slash-Exponential is
given. In this way, an additional shape parameter is added to Fréchet model.

• Closed expressions for the pdf and cdf are given, therefore also for the survival and
hazard rate function.

• It is shown that the new model is unimodal or decreasing. It is proven that if the new
shape parameter tends to infinity then the SEFr approaches to Fréchet model.

• Closed expressions are given for the moments, with particular interest on skewness
and kurtosis coefficients.

• We highlight that the new model presents less kurtosis than the basal Fréchet distri-
bution. For the best of our understanding, it is the first time in literature that, as result
of applying slash methodology, the new model exhibits a lighter right tail and less
kurtosis compared to basal model.

• Maximum likelihood method has been proposed to estimate the parameters in the
model. Score equations and the observed Fisher information matrix are studied.

• A simulation study has been carried out. There, bias, standard error, RMSE and
empirical coverage probability for MLEs have been obtained for increasing sample
size. The good asymptotic properties of MLEs can be seen.

• Two real applications are included where the SEFr model is compared to Fr, Slashed
Quasi-Gamma and Slash-Fréchet. By using AIC and BIC, it has been seen that the
new model provides a better fit compared to others.
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