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Abstract: Spectral curves are algebraic curves associated to commutative subalgebras of rings of
ordinary differential operators (ODOs). Their origin is linked to the Korteweg–de Vries equation
and to seminal works on commuting ODOs by I. Schur and Burchnall and Chaundy. They allow the
solvability of the spectral problem Ly = λy, for an algebraic parameter λ and an algebro-geometric
ODO L, whose centralizer is known to be the affine ring of an abstract spectral curve Γ. In this work,
we use differential resultants to effectively compute the defining ideal of the spectral curve Γ, defined
by the centralizer of a third-order differential operator L, with coefficients in an arbitrary differential
field of zero characteristic. For this purpose, defining ideals of planar spectral curves associated to
commuting pairs are described as radicals of differential elimination ideals. In general, Γ is a non-
planar space curve and we provide the first explicit example. As a consequence, the computation of a
first-order right factor of L − λ becomes explicit over a new coefficient field containing Γ. Our results
establish a new framework appropriate to develop a Picard–Vessiot theory for spectral problems.
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1. Introduction

Picard–Vessiot theory is a Galois theory for linear ordinary differential equations. It
studies the space of solutions of the operator in relation to an algebraic group, its differential
Galois group. This theory has important connections with a long-standing conjecture, the
Jacobian conjecture [1], which is related with the theory of commuting differential operators
through the Dixmier conjecture [2] and Beret’s conjecture [3].

At the beginning of the 20th century, the solutions of differential equations as a
function of a parameter caught the attention of some mathematicians. This interest seems
clearly reflected in the work of J. Drach [4]. Recently, differential Galois theories began to
be used to study spectral problems Ly = λy, for ordinary differential operators L of second
order [5–8]. Following Drach’s ideology [4], the spectral parameter λ was considered an
algebraic variable in [8], where a Picard–Vessiot theory for algebro-geometric operators with
parameters began to develop. We can say that it is a Picard–Vessiot theory for commuting
differential operators and, consequently, λ is governed by a spectral curve. Parametric
Galoisian theories, for free algebraic parameters, have existed since the pioneer parametric
Picard–Vessiot theory of Cassidy and Singer [9], and have been studied for second-order
operators in [10], and for third-order operators in [11], but their connection with spectral
problems has not been established thus far.

It has been well-known since the beginning of the 20th century [12,13], that the
existence of an operator M that commutes with L forces the consideration of the spectral
problem Ly = λy as a coupled spectral problem:

Ly = λy, My = µy, (1)
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where λ and µ are tied by the constant coefficient polynomial equation f (λ, µ) = 0 that
defines an algebraic curve Γ. In the case of a Schrödinger operator L, the existence of a
non-trivial M commuting with L is closely related to the Korteweg–de Vries hierarchy of
integrable non-linear differential equations. The solutions of (1) depend on the geometry of
the spectral curve Γ, as it is exhaustively studied in the works of J. J. Morales-Ruiz and the
authors of [7,8], where spectral Picard–Vessiot theory appears for the first time.

In this work, we study the spectral problem Ly = λy for a third-order operator L,
under the assumption that L has a nontrivial centralizer and that it contains M as in (1). The
development of a spectral Picard–Vessiot theory for this type of operator is an open problem.
Since a third-order L is related to a more complicated integrable hierarchy, the Boussinesq
hierarchy, there is even a lack of explicit examples due to computational problems [14,15].

A famous theorem by I. Schur [16] implies that the centralizer of an ordinary differ-
ential operator L, with analytic coefficients, has as quotient field a function field in one
variable. Therefore, such a centralizer can be seen as the affine ring of an algebraic curve
Γ [17]. In this work, we will call this curve the spectral curve of the operator L, and assume
that L has coefficients in an arbitrary differential field Σ of zero characteristic.

A fundamental goal driving this work is the development of a Picard–Vessiot theory
for spectral problems (L − λ)(y) = 0, in the case of an algebro-geometric differential
operator L and an algebraic parameter λ over Σ. In order to construct a splitting field for
(L − λ)(y) = 0, it is crucial to note that λ is not a free parameter, but rather it is governed
by the spectral curve Γ of L. For this purpose, to achieve the factorization of L − λ, a new
coefficient field Σ(Γ), containing Σ and Γ, must be considered.

We believe that the novel results that emerge from the study of the order three case
will be important for the development of a spectral Picard–Vessiot theory for arbitrary
order. Specifically, our main contribution is the identification of the spectral curve of L,
as the curve defined by its centralizer, and the computation of its defining ideal in the
case of third-order operators. The field of functions Σ(Γ) on the spectral curve of L is now
controlled and allows effective computation of the first-order intrinsic right factor of L − λ.
It is intrinsic because, via the specialization of the parameter λ to each constant value λ0, it
gives the rank one sheaf over Γ, made famous by the works of Krichever [18] and Mumford
[19], where the correspondence between commutative subrings of ODOs and affine spectral
curves is established; see [20] for a recent review. In Section 2, an extended version of this
contributions is included.

2. Contributions

We consider ordinary differential operators with coefficients in an arbitrary differential
field Σ, whose field of constants C is algebraically closed and of zero characteristic. We use
differential algebra, differential Galois theory and algebraic geometry to give a constructive
proof of the following theorem.

Theorem 1. The centralizer of a third-order ordinary differential operator L, with non-constant
coefficients in Σ, is either isomorphic to a polynomial ring in one variable or to the coordinate ring
C[Γ] of an irreducible (space) algebraic curve Γ.

A differential operator L whose centralizer is not a polynomial ring in one variable
is often called algebro-geometric [21,22]. Our results establish a new framework to study
spectral problems for algebro-geometric ODOs.

The authors defined spectral Picard–Vessiot fields for algebro-geometric second-order
operators in [8] and provided algebraic tools to effectively compute a basis of solutions
for the spectral problem in this case. The extension to a higher order of the techniques
developed for second-order operators poses several important issues. The main problem
treated in this paper is the definition and computation of spectral curves for algebro-
geometric ODOs.
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Computing algebro-geometric ODOs amounts to computing Gelfand–Dikii hierarchies
and solutions of them [23], which are non-trivial problems. It is well-known that solutions
of the KdV hierarchy provide algebro-geometric Schrödinger ODOs [7,8,24]. Solutions
of the Boussinesq hierarchy [25] provide algebro-geometric operators of third order, and
investigating those, we discovered that planar algebraic curves do not explain all non-
trivial centralizers of third-order ODOs. We found an example of an algebro-geometric
third-order ODO whose centralizer is the commutative C-algebra generated by three
ODOs [26]. Explaining the nature of this example was the seed for the results presented
here. A general study of algebro-geometric differential operators of prime order is post-
poned until meaningful examples are found, for order five and higher.

Planar spectral curves have been commonly defined for pairs of commuting differential
operators P and Q, since the seminal work of Burchnall and Chaundy [12]; see also [18,19]
and the recent review [20]. Most results have been obtained in the case of commuting
pairs P, Q with coprime orders, called the rank 1 case; see, for instance, [20]. Without
this restriction, hence for any rank r = gcd((ord(P), ord(Q)), we define an isomorphism
between the coordinate ring of the planar spectral curve, an irreducible plane algebraic
curve ΓP,Q, and the commutative ring of differential operators C[P, Q]. Namely, we prove
that the ideal of the curve ΓP,Q equals the ideal of all constant coefficient polynomials
g(λ, µ) that are satisfied by the differential operators, commonly denoted g(P, Q) = 0,
and known as Burchnall and Chaundy polynomials. We introduce in this paper the notion of
Burchnall and Chaundy ideal of a pair P, Q and denote it by BC(P, Q). Since P and Q are
differential operators in a Euclidean domain, the ideal BC(P, Q) is naturally proved to be a
prime ideal. These results are included in Theorem 3. From now on, we will call ΓP,Q the
spectral curve of the pair P, Q to distinguish it from the spectral curve associated with the
centralizer of an ordinary differential operator.

It was known by E. Previato [27] and G. Wilson [14], in the case of differential operators
with analytic coefficients, that a Burchnall and Chaundy polynomial for a commuting
pair P, Q can be obtained by computing the differential resultant ∂Res(P − λ, Q − µ) of
P − λ and Q − µ. In particular, they proved that such a resultant is a constant coefficient
polynomial. We generalize this result in Theorem 5 to differential operators with coefficients
in Σ. We go further, proving that the ideal of all Burchnall and Chaundy polynomials for
the pair P, Q is generated by an irreducible polynomial f (λ, µ), the radical of ∂Res(P −
λ, Q − µ). For this purpose, we use the differential elimination ideal determined by P − λ
and Q − µ,

E(P − λ, Q − µ) = (P − λ, Q − µ) ∩ Σ[λ, µ] ,

the ideal of all differential operators generated by P − λ and Q − µ in Σ[λ, µ], for which
the derivation has been eliminated. Our main result about arbitrary commuting pairs of
ODOs establishes the intrinsic nature of the differential resultant of P − λ and Q − µ. We
prove the following result in Theorem 8.

Theorem 2. Given commuting ordinary differential operators P and Q with coefficients in Σ, let
f (λ, µ) be the radical of ∂Res(P − λ, Q − µ). The following statements hold:

1. The principal ideal ( f ) generated by f in C[λ, µ] equals the prime ideal BC(P, Q).
2. The differential ideal [ f ] generated by f in Σ[λ, µ] equals the radical of the elimination ideal

E(P − λ, Q − µ).

For an algebraically closed field of constants, the classical theory of Picard
and Vessiot [28] allows us to formally manage solutions, and it will be important to give
formal proofs of our results. Specializing the parameter λ to λ0 ∈ C, the Picard–Vessiot
extension of Σ for (P − λ0)(y) = 0 is the splitting field for (P − λ0)(y) = 0. If algebraic
variables λ and µ over Σ are considered, the differential operators P − λ and Q − µ belong
to the differential field F = Σ(λ, µ) and to use classical Picard–Vessiot theory, the algebraic
closure of F can be considered to prove Theorem 5.
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Centralizers are maximal commutative rings. In some cases, the centralizer Z(L)
of a differential operator L is the affine ring of a planar curve, as in the case of algebro-
geometric Schrödinger operators where Z(L) = C[L, A]. Let us fix now an algebro-
geometric differential operator L of third order with coefficients in Σ. One of the motivations
to give a constructive proof of Theorem 1 is to show that in general, Z(L) is not the
coordinate ring of the planar curve. As a consequence of the results of K. Goodearl in [29],
it has the structure of a free C[L]-module

Z(L) = C[L, A1, A2] = C[L]⊕ C[L]A1 ⊕ C[L]A2,

where Ai is of minimal order congruent with i (mod 3). Observe that Z(L) contains the
rank one algebras C[L, Ai], but also C[A1, A2], whose rank may be grater than one, being
the rank of a set, the greatest common divisor of the orders of its elements; see [17]. We in-
troduce the notion of Burchnall–Chaundy ideal BC(L) of L to explain the ring multiplicative
structure of Z(L). This is the ideal of all polynomials g(λ, µ1, µ2) in C[λ, µ1, µ2] such that
g(L, A1, A2) = 0. We prove that BC(L) is a prime ideal that naturally contains the Burchnall–
Chaundy ideals of pairs of differential operators in the centralizer of L. Three BC ideals are
of crucial importance in this work:

BC(L, A1) = ( f1), BC(L, A2) = ( f2), BC(A1, A2) = ( f3),

all of them contained in BC(L), but even more so we prove in Theorem 10 that

BC(L) = ( f1, f2, f3),

which is one of the main contributions of this article, since it allows the computation of the
spectral curve. The constructive proof of Theorem 1 is achieved in Corollary 3, where Z(L)
is shown to be isomorphic to the coordinate ring

C[Γ] =
C[λ, µ1, µ2]

BC(L)
=

C[λ, µ1, µ2]

( f1, f2, f3)

of an irreducible space algebraic curve Γ in C3, which we define as the spectral curve of L.
An important consequence of the constructive proof of Theorem 1 is to discover the

appropriate coefficient field where a third-order algebro-geometric operator L − λ would
have an intrinsic right factor. Recall that λ is not a free parameter; it is governed by the
space spectral curve Γ of L. Extending the ideal BC(L) to the ring of polynomials in three
variables with coefficients in Σ, we can think of an extended curve whose ring of regular
functions is

Σ[Γ] =
Σ[λ, µ1, µ2]

[BC(L)]
.

Over its quotient field Σ(Γ), a factorization of L − λ is guaranteed,

L − λ = N · (∂ + ϕ),

where ∂ + ϕ can be computed by means of the greatest common right divisors
gcrd(L − λ, A1 − µ1) or gcrd(L − λ, A2 − µ2), which are proved to coincide over Σ(Γ).
The precise statement is contained in Theorem 12. We can think of ∂ + ϕ as a global
factor, since for almost every point P0 ∈ Γ, our methods produce a factorization of
L − λ0 = NP0 · (∂ + ϕ(P0). The specialization of (λ, µ1, µ2) to each point P0 of Γ pro-
vides the rank one sheaf given by the solutions of ∂ + ϕ(P0). Therefore, starting with the
centralizer of L, both the spectral curve Γ and the previous rank one sheaf of the Mumford
correspondence in [19] are now effectively computed.

It remains as a future project to define and prove the existence of the spectral Picard–
Vessiot field of L − λ, for an algebro-geometric differential operator L. It would be a
differential field extension of Σ(Γ), the minimal extension containing all the solutions, and
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it requires a full factorization of L − λ over Σ(Γ). This requires further investigations where
the parametric Picard–Vessiot theory, introduced by Cassidy and Singer in [9] and studied
in [10,11], may be relevant.

The paper is organized as follows. In Section 3, we establish the appropriate framework
to study algebro-geometric differential operators, in the case of a third-order operator L.
The novel notions of Burchnall–Chaundy (BC) ideal, of a pair P, Q of ODOs and the BC
ideal BC(L) of a fixed differential operator L are introduced in Section 4. These BC ideals
are proved to be prime ideals describing the algebra C[P, Q] and the centralizer Z(L), as
coordinate rings of algebraic curves, respectively, in Theorems 3 and 4. These allow the
definitions of the spectral curves of a pair P, Q and of a third-order operator L.

Sections 5 and 6 are dedicated to computing generators of these BC ideals. Section 5
contains the proof of Theorem 2, the first part in Theorem 6 and the second in Theorem 8.
The effective description of BC(L) is achieved by means of any basis of the centralizer Z(L)
and the computation of differential resultants. The choice of a basis of Z(L) is discussed
in Section 6.1. We use Gröbner bases in Section 6.2 to control the projection of the space
spectral curve onto the plane λ = 0 and obtain a set of generators of BC(L) in Theorem 10.

In Section 7, we show that the algebro-geometric hypothesis implies the existence of
a right factor ∂ + ϕ of L − λ, over a new differential field of coefficients Σ(Γ), defined in
Section 7.1. The computation of ϕ is delicate and it is achieved by means of differential
subresultants in Section 7.2. Finally, Section 8 contains the first computed example of a
non-planar spectral curve. It is used to illustrate how to globally factor the linear operator
L − λ. All computations in this work are performed with Maple [30].

To make this work as self-contained as possible, two appendices are included.
Appendix A contains the results needed to understand centralizers of differential
operators, giving special importance to Goodearl’s construction of a basis of Z (L). In
Appendix B, we review definitions and proofs of results on differential resultants and
subresultants in relation to the factorization of ODOs.

Notation. For concepts in differential algebra, we refer to [28,31,32]. A differential ring is a
ring R with a derivation ∂ on R. A differential ideal I is an ideal of R invariant under the
derivation. We denote by

Const(R) = {r ∈ R | ∂(r) = 0} ,

which is called the ring of constants of R. Assuming that R is a differential domain, its field
of fractions Fr(R) is a differential field with extended derivation

∂( f /g) = (∂( f )g − f ∂(g))/g2.

A differential field (Σ, ∂) is a differential ring which is a field. Given a ∈ Σ, we denote
∂(a) by a′. Note that Const(Σ) is a field whenever Σ is. We assume that C := Const(Σ) is
algebraically closed and has characteristic 0.

Let us consider algebraic variables λ and µ with respect to ∂. Thus, ∂(λ) = 0 and
∂(µ) = 0, and we can extend the derivation ∂ of Σ to the polynomial ring Σ[λ, µ] having
ring of constants C[λ, µ]. Similarly, we consider algebraic variables µ1 and µ2 with respect
to ∂ and extend the derivation to the polynomial ring Σ[λ, µ1, µ2] having ring of constants
C[λ, µ1, µ2].

We denote by N the set of non-negative integers including 0. Notation regarding
ODOs in Σ[∂] and their centralizers is included in Appendix A.

3. Algebro-Geometric ODOs

Let us consider an ordinary differential operator L in Σ[∂], with non-constant coeffi-
cients, that is L ∈ Σ[∂]\C[∂]. We will assume throughout this work that L has a non-trivial
centralizer, as in Definition A1; this means that the centralizer of L in Σ[∂]

Z(L) = {A ∈ Σ[∂] | LA = AL},
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does not equal the polynomial ring C[L]. Therefore, we have a chain of strict inclusions

C[L] ⊂ Z(L) ⊂ Σ[∂].

In Appendix A, we review results of K. Goodearl in [29] regarding the structure of centralizers.

Definition 1. We call a differential operator L ∈ Σ[∂]\C[∂] algebro-geometric if its centralizer
Z(L) is non-trivial.

By the generalization of Schur’s theorem in [16], (A6) in the Appendix A, we know that
Z(L) is commutative, it is a differential domain, and Spec(Z(L)) is an (abstract) algebraic
curve. Spectral curves are defined for any commutative subring B of Σ[∂] as Spec(B);
see [19,20]. As observed in [17], Section 2.1, the centralizer Z(L) is a maximal commutative
subring of Σ[∂]. We emphasize in this work the importance of spectral curves for maximal
commutative subrings of Σ[∂], namely spectral curves for centralizers.

Definition 2. Given an algebro-geometric differential operator L ∈ Σ[∂]\C[∂], we define the
spectral curve of L as ΓL := Spec(Z(L)).

Let us consider now a third-order ordinary differential operator L in Σ[∂]\C[∂]. We will
assume throughout this work that L has a non-trivial centralizer. In this work, we identify
a defining ideal for the abstract curve ΓL. This is Corollary 3, obtained as a consequence of
Theorem 10.

By Theorem A1, the centralizer Z(L) is a free C[L]-module of rank 3. Let
B(L) = {1, A1, A2} be a basis of Z(L) as a C[L]-module. The construction of a basis
is reviewed in Appendix A. Each Ai is a monic operator in Z(L)\C[L] of minimal order
oi := ord(Ai) ≡ i(mod 3). Therefore,

Z(L) = C[L]⊕ C[L]A1 ⊕ C[L]A2 = {p0(L) + p1(L)A1 + p2(L)A2 | pi ∈ C[λ]}. (2)

From the composition of the basis, we obtain the following result.

Corollary 1. Let L be a third-order operator in Σ[∂]\C[∂]. The following statements are equivalent:

1. L has a nontrivial centralizer Z(L) ̸= C[L].
2. There exists an operator A in Σ[∂] of order m, relatively prime with 3, such that [L, A] = 0.

The second statement of Corollary 1 is the traditional definition of algebro-geometric
operator; see, for instance, [21,22]. This statement highlights that Z(L) contains a pair of
operators L, A of rank one, the rank of the pair being the greatest common divisor of their
orders. A discussion on the rank of a set of differential operators appears in [17].

Since centralizers are maximal commutative subrings of Σ[∂], given a differential
operator M that commutes with L, we have the sequence of inclusions

C[L] ⊆ C[L, M] ⊆ Z(L),

and all of them could be strict. In the case of a third-order operator, the following ring
diagram of inclusions illustrates the ring structure of Z(L).

C[L, A1]

C[L] C[A1, A2] C[L, A1, A2] = Z(L)

C[L, A2]

(3)
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Remark 1. Making use of the ring structure of Z(L), it may happen that A1 equals a polynomial in
A2 or vice versa, A1 = q(A2), with q a univariate polynomial. In this situation, Z(L) = C[L, A2].
For instance, this is the case whenever ord(A2) = 2, then A1 = A2

2 has order 4 and Z(L) = Z(A2)
is the centralizer of a second-order operator.

4. Burchnall–Chaundy Ideals and Spectral Curves

A polynomial f (λ, µ) with constant coefficients satisfied by a commuting pair of
differential operators P and Q is called a Burchnall–Chaundy (BC) polynomial of the pair
P, Q, since the first result of this sort appeared in the 1923 paper [12] by Burchnall and
Chaundy. We define in this section the ideal of all BC-polynomials associated to an arbitrary
pair of commuting differential operators. For a fixed differential operator L of order 3, we
also define an ideal of BC-polynomials.

4.1. Burchnall–Chaundy Ideal of a Pair

Given commuting differential operators P and Q in Σ[∂], to avoid meaningless situa-
tions, we will assume that P, Q /∈ C[∂] and both have positive order. We define the ring
homomorphism

eP,Q : C[λ, µ] → Σ[∂] by eP,Q(λ) = P, eP,Q(µ) = Q. (4)

It is a ring homomorphism since P and Q commute, and they commute with the elements
of C, the field of constants of Σ. The image of eP,Q is the C-algebra

C[P, Q] =

{
∑
i,j

σi,jPiQj | σi,j ∈ C

}
.

Observe that Ker(eP,Q) is an ideal of C[λ, µ]. In this setting, given g ∈ C[λ, µ], we
will denote

g(P, Q) := eP,Q(g). (5)

Thus, a polynomial g belongs to the kernel of eP,Q if and only if g(P, Q) = 0, that is,

Ker(eP,Q) = {g ∈ C[λ, µ] | g(P, Q) = 0}.

Definition 3. Given commuting differential operators P and Q in Σ[∂]\C[∂], both of positive
order, we define the BC-ideal of a pair P and Q as

BC(P, Q) := Ker(eP,Q) = {g ∈ C[λ, µ] | g(P, Q) = 0}.

We will call BC-polynomials the elements of the BC-ideal.

An important consequence of working with differential operators in a Euclidean
domain Σ[∂] is the following lemma.

Lemma 1. Given commuting differential operators P and Q in Σ[∂]\C[∂], both of positive order,
the ideal BC(P, Q) is a prime ideal in C[λ, µ].

Proof. To start, BC(P, Q) is a nonzero ideal by [29], Theorem 1.13. For details, let us
consider the centralizer Z(P) of P. Since Z(P) is a finitely generated C[P]-module, there
exists p0, . . . , pt ∈ C[λ] such that

g(λ, µ) = p0(λ) + p1(λ)µ + · · ·+ pt−1(λ)µ
t−1 + µt ∈ BC(P, Q).
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Given h1 and h2 in C[λ, µ], let us assume that h1 · h2 ∈ BC(P, Q). Observe that
h1(P, Q) = eP,Q(h1) and h2(P, Q) = eP,Q(h2) are differential operators in the Euclidean
domain Σ[∂]. Since eP,Q is a ring homomorphism

0 = eP,Q(h1 · h2) = eP,Q(h1) · eP,Q(h2)

implies eP,Q(h1) = 0 or eP,Q(h2) = 0. Thus, h1 ∈ BC(P, Q) or h2 ∈ BC(P, Q), proving that
BC(P, Q) is prime.

Definition 4. Given commuting differential operators P and Q in Σ[∂]\C[∂], both of positive
order, we define the spectral curve of the pair P, Q as the irreducible algebraic variety of the prime
ideal BC(P, Q), that is,

ΓP,Q := V(BC(P, Q)) =
{
(λ0, µ0) ∈ C2 | g(λ0, µ0) = 0, for all g ∈ BC(P, Q)

}
. (6)

Remark 2. We proved in Lemma 1 that BC(P, Q) is a prime ideal. Then the algebraic variety ΓP,Q
is an irreducible algebraic variety in C2. This variety cannot be a single point (λ0, µ0), because this
would mean that BC(P, Q) = (λ − λ0, µ − µ0), implying P − λ0 = 0 and Q − µ0 = 0, which
contradicts P, Q /∈ C. Therefore, ΓP,Q is an irreducible algebraic curve in C2.

The following result summarizes the situation.

Theorem 3. Given differential operators P and Q in Σ[∂]\C[∂], both of positive order, if P and Q
commute, then the following statements hold:

1. C[P, Q] is a commutative domain isomorphic to C[λ, µ]/BC(P, Q), the coordinate ring of the
spectral curve ΓP,Q.

2. There exists an irreducible polynomial f ∈ C[λ, µ] such that BC(P, Q) = ( f ).

Proof. As a consequence of the construction of eP,Q and Lemma 1, we obtain 1. In addition,
recall that C is an algebraically closed field. By Remark 2, ΓP,Q is an irreducible algebraic
curve in C2, meaning that its defining ideal BC(P, Q) = ( f ) is generated by an irreducible
polynomial f ∈ C[λ, µ].

In Section 5, we treat the computation of the defining polynomial f of the spectral
curve ΓP,Q.

4.2. Burchnall–Chaundy Ideal of a Third-Order Operator

Let us consider a third-order operator L in Σ[∂]\C[∂] with nontrivial centralizer Z(L).
We will define next the Burchnall–Chaundy ideal of the operator L.

Given a basis B(L) = {1, A1, A2} of Z(L), we can define the ring homomorphism

eL : C[λ, µ1, µ2] → Σ[∂] by eP,Q(λ) = L, eP,Q(µ1) = A1, eP,Q(µ2) = A2. (7)

We will denote monomials in C[λ, µ1, µ2] by Mα = λα0 µα1
1 µα2

2 , α = (α0, α1, α2) ∈ N3, whose
image is eL(Mα) = Lα0 Aα1

1 Aα2
2 . Thus, the image of eL is the centralizer of L,

Z(L) = C[L, A1, A2] =

{
∑

α∈N3

σαeL(Mα) | σα ∈ C

}
.

Given g ∈ C[λ, µ1, µ2], we will denote

g(L, A1, A2) := eL(g). (8)



Axioms 2024, 13, 274 9 of 32

Definition 5. Given a third-order operator L in Σ[∂]\C[∂], with nontrivial centralizer and given a
basis B(L) = {1, A1, A2} of Z(L), we define a BC-ideal of an operator L as

BC(L) := Ker(eL) = {g ∈ C[λ, µ1, µ2] | g(L, A1, A2) = 0}. (9)

We will call the elements of the BC ideal BC-polynomials.

Lemma 2. Given a third-order operator L in Σ[∂]\C[∂], with nontrivial centralizer Z(L), the
ideal BC(L) is a prime ideal in C[λ, µ1, µ2].

Proof. Given a basis B(L) = {1, A1, A2}, since L and Ai commute, by Lemma 1, BC(L, Ai)
is a nonzero ideal. Observe that BC(L, Ai) ⊆ BC(L), which implies that BC(L) is also a
nonzero ideal.

As in Lemma 1, we can prove that BC(L) is a prime ideal using the fact that eL is a ring
homomorphism and that Σ[∂] is a Euclidean domain.

We obtain the following result as a consequence of the construction of εP,Q and Lemma 2.

Theorem 4. Given a third-order operator L in Σ[∂]\C[∂], with nontrivial centralizer Z(L), and
given any basis {1, A1, A2} of Z(L), then the next isomorphism holds:

Z(L) = C[L, A1, A2] ≃
C[λ, µ1, µ2]

BC(L)
.

Thus, Z(L) is the affine ring of an algebraic curve whose defining ideal is BC(L).

Definition 6. Given a third-order operator L in Σ[∂], with nontrivial centralizer Z(L), we define
the spectral curve of L as the irreducible algebraic variety of the prime ideal BC(L), that is,

ΓL := {P0 ∈ C3 | g(P0) = 0, ∀g ∈ BC(L)}.

We will compute in Section 6.2 a finite set of defining polynomials for ΓL. In general,
the spectral curve of a third-order operator will be a space curve, and only in some special
cases will it be a planar curve.

Remark 3. In some cases, described in Remark 1, if Z(L) = C[L, A] then BC(L) = BC(L, A).
Therefore, the spectral curve of L would be the spectral curve of the pair L, A, a plane curve.

5. Elimination Ideals for Commuting Pairs of ODOs

Given a pair of commuting differential operators P, Q in Σ[∂]\C[∂], both of positive
order, we know that the BC-ideal BC(P, Q) is a prime ideal by Lemma 1. This section is
dedicated to the proof of Theorem 2, which is obtained as a consequence of Theorem 8 in
this section. Moreover, we start proving in Theorem 5 a generalization of a known result
of E. Previato [27] and G. Wilson [14] to the case of a pair of commuting operators with
coefficients in Σ.

5.1. Generalized Previato–Wilson Theorem

Let us assume that P and Q have positive orders n and m, and leading coefficients an
and bm, respectively. Observe that the operators P − λ and Q − µ have coefficients in the
differential domain (Σ[λ, µ], ∂); see the notation in Section 1. Let us consider the differential
resultant of P − λ and Q − µ, as defined in Appendix B:

h(λ, µ) := ∂Res(P − λ, Q − µ).
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By (A8), it provides a nonzero polynomial in Σ[λ, µ],

h(λ, µ) = am
n µn − bn

mλm + · · · = am
n µn +

n−1

∑
j=0

aj(λ)µ
j ̸= 0,

where aj(λ) belong to Σ[λ] and have degree less than or equal to m.

The next theorem was proved by E. Previato in [27], for differential operators whose
coefficients are analytic functions; see also [14]. For completion, we review the proof given
in [7], on this occasion for differential operators with coefficients in an arbitrary differential
field Σ with algebraically closed field of constant C of zero characteristic.

Theorem 5. Let us consider differential operators P and Q in Σ[∂]\C[∂], both of positive order. If
P and Q commute, then ∂Res(P − λ, Q − µ) is a polynomial in C[λ, µ].

Proof. Recall that P − λ and Q − µ are differential operators with coefficients in Σ[λ, µ],
whose field of fractions is F = Σ(λ, µ). We can extend the derivation of F to its alge-
braic closure F , whose field of constants C is known to be algebraically closed; see [33],
Corollary 3.3.1. Since the ring of constants of Σ[λ, µ] is C[λ, µ], then it holds that Σ[λ, µ] ∩
C = C[λ, µ].

Let us consider a fundamental system of solutions ψ1, . . . , ψn of (P − λ)(y) = 0 in a
Picard–Vessiot extension (E , ∂) of F for (P − λ)(y) = 0, whose field of constants is C and
whose derivation ∂ is defined by P − λ. The natural extension of Q − µ to (E , ∂) allows us
to consider the action of Q − µ on the C-linear space of the solutions of (P − λ)(y) = 0.

Since P − λ and Q − µ commute, then (Q − µ)(ψi) are solutions of P − λ. Therefore,
there exists an n × n matrix M with coefficients in C such that

W((Q − µ)(ψi)) = MW(ψi).

Taking determinants and using Poisson’s formula in Theorem A4, we obtain

∂Res(P − λ, Q − µ) =
det W((Q − µ)(ψi))

det W(ψi)
= det M ∈ C.

Thus, ∂Res(P − λ, Q − µ) ∈ Σ[λ, µ] ∩ C = C[λ, µ].

Let us consider (λ0, µ0) ∈ C2. For a commuting pair P, Q, the next corollary character-
izes the existence of common solutions of the eigenvalue problem

Py = λ0y, Qy = µ0y. (10)

It follows from Theorem A5 and the fact that h(λ0, µ0) = ∂Res(P − λ0, Q − µ0).

Corollary 2. Given commuting differential operators P and Q in Σ[∂]\C[∂], both of positive order,
the spectral problem (10) has a non-trivial (common) solution in a Picard–Vessiot extension of Σ for
P − λ0 (or Q − µ0) if and only if h(λ0, µ0) = 0.

5.2. Computing the Burchnall–Chaundy Ideal of a Pair

It is ensured by Theorem 5 that the differential resultant h(λ, µ) = ∂Res(P − λ, Q − µ)
is a polynomial in C[λ, µ]. Resultants are also called eliminants, and this is the feature of
resultants we will emphasize next. Let us consider the left ideal generated by P − λ and
Q − µ in Σ[λ, µ][∂]:

(P − λ, Q − µ) = {C(P − λ) + D(Q − µ) | C, D ∈ Σ[λ, µ][∂]} (11)
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and the elimination ideal

E(P − λ, Q − µ) := (P − λ, Q − µ) ∩ Σ[λ, µ], (12)

which is a two-sided ideal of Σ[λ, µ], and

EC(P − λ, Q − µ) := (P − λ, Q − µ) ∩ C[λ, µ], (13)

which is a two-sided ideal of C[λ, µ]. Observe that by Lemma A3, with differential domain
of coefficients Σ[λ, µ], and by Theorem 5, it follows that

h(λ, µ) = ∂Res(P − λ, Q − µ) ∈ EC(P − λ, Q − µ).

Thus, both elimination ideals are nonzero.
It was proved by Wilson in [14] that h(P, Q) = 0, that is, h(λ, µ) ∈ BC(P, Q), in the case

of differential operators P and Q whose coefficients are complex-valued smooth functions
of x defined in some (real or complex) neighborhood of x = 0. We use here the argument
of [14], Proposition 5.3 in a more general framework, where differential operators have
coefficients in an arbitrary differential field Σ, with field of constants algebraically closed of
zero characteristic. For this purpose, we develop the following construction.

Considering Σ[λ, µ] as a Σ-vector space with basis {λiµj}, we can define the Σ-linear map

εP,Q : Σ[λ, µ] → Σ[∂], defined by εP,Q

(
∑
i,j

σi,jλ
iµj

)
= ∑

i,j
σi,jeP,Q

(
λiµj

)
. (14)

In this setting, given g ∈ Σ[λ, µ], we will also denote g(P, Q) := εP,Q(g). Thus,

Ker(εP,Q) = {g ∈ Σ[λ, µ] | g(P, Q) = 0}.

Observe that the restriction of εP,Q to the subring of constants C[λ, µ] of Σ[λ, µ] is the ring
homomorphism eP,Q defined in (4), and also that

BC(P, Q) = Ker(eP,Q) = Ker(εP,Q) ∩ C[λ, µ]. (15)

We will proceed next to calculate a generator for both kernels. We will begin by demon-
strating that the differential resultant ∂Res(P − λ, Q − µ) belongs to the ideal BC(P, Q), that
is, h is a Burchnall–Chaundy polynomial. This is Theorem 6, and to prove it, we will need
some auxiliary results.

Lemma 3. Given commuting differential operators P and Q in Σ[∂]\C[∂], both of positive order,
with the previous notation, it holds that

E(P − λ, Q − µ) ⊆ Ker(εP,Q).

Proof. Given a polynomial g in E(P − λ, Q − µ), then

g(λ, µ) = C(P − λ) + D(Q − µ), C, D ∈ Σ[λ, µ][∂].

Observe that the differential operator g(P, Q) = εP,Q(g) has finite order, q = ord(g(P, Q)).
Let λ0 be a constant in C. Since C is algebraically closed, there exists µ0 in the

nonempty set {µ ∈ C | h(λ0, µ) = 0}. By Corollary 2, there exists a common eigenfunction
ψλ0 for the coupled spectral problem (10). Consequently, the following is an infinite set of
linearly independent eigenfunctions

Ψ = {ψλ0 | λ0 ∈ C},
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since eigenfunctions associated to different eigenvalues are linearly independent. Now, for
every ψλ0 ∈ Ψ, it holds that

g(P, Q)(ψλ0) = g(λ0, µ0) · ψλ0 = C0(P − λ0)(ψλ0) + D0(Q − µ0)(ψλ0) = 0,

where C0 and D0 are the result of evaluating the coefficients of C and D in (λ0, µ0). More-
over, Ψ is included in the C-linear space of solutions of the equation g(P, Q)(y) = 0, whose
dimension is q. Then g(P, Q) is the zero operator.

As a consequence of Lemma 3, Formula (15) and Theorem 5, the following result
is proved.

Theorem 6. Given commuting differential operators P and Q in Σ[∂]\C[∂], both of positive
order, then

h(λ, µ) = ∂Res(P − λ, Q − µ) ∈ BC(P, Q).

Moreover, h = f r̄ for some non-zero natural number r̄ and f is the irreducible polynomial such that
BC(P, Q) = ( f ).

The radical of the ideal (h) generated by h in C[λ, µ] equals ( f ); see, for instance, [34],
page 178, Proposition 9, where f is the radical of h, that is,

f =
√

h = h/gcd(h, h′) (16)

is the square-free part of h. If n = ord(P) and m = ord(Q), observe that, by Section 5.1, the
degrees in µ and λ of h are, respectively,

n = degµ(h) = r̄ degµ( f ), m = degλ(h) = r̄ degλ( f ), (17)

then r̄ divides r := gcd(n, m), and n̄ = degµ( f ) ≤ n, m̄ = degλ( f ) ≤ m.
Let us consider the pure lexicografic monomial ordering in Σ[λ, µ] with µ > λ.

Given g ∈ Σ[λ, µ], by the Division Theorem (see [34], Theorem 3, page 64), we can write
g = q f + gN , where q, gN ∈ Σ[λ, µ],

gN(λ, µ) = αn̄−1(λ)µ
n̄−1 + · · ·+ α1(λ)µ + α0(λ), with αj ∈ Σ[λ], (18)

since the leading monomial LT( f ) = µn̄ of f does not divide gN . We call gN the normal
form of g with respect to f , and for short we write that gN is the normal form of g w.r.t. f .

Let us consider a polynomial g ∈ C[λ, µ], and the differential ideal [g] generated
by g in the differential ring Σ[λ, µ], whose field of constants is C[λ, µ]. Observe that
[g] = {ℓg | ℓ ∈ Σ[λ, µ]} and (ℓg)′ = ℓ′g, since g ∈ C[λ, µ]. Furthermore, [g] is the ideal
of Σ[λ, µ] generated by g, but we use the notation [g] to distinguish it from the ideal (g)
generated in C[λ, µ] by g.

Lemma 4. Given commuting differential operators P and Q in Σ[∂]\C[∂], both of positive order,
with the previous notation, it holds that Ker(εP,Q) = [ f ].

Proof. By Theorem 6, we know that BC(P, Q) = ( f ). We observe that [BC(P, Q)] = [ f ] ⊆
Ker(εP,Q). Let us prove the other inclusion.

Given g ∈ Ker(εP,Q), let us consider its normal form gN w.r.t. f as in (18). If we
denote dj = deg(αj), then ord(αj(P)Qj) = ndj + jm, j = 0, 1, . . . , n̄ − 1. Let us define

O = {ndj + jm | αj(P)Qj ̸= 0, j ∈ {0, 1, . . . , n̄ − 1}}.

Observe that εP,Q(g) = εP,Q(q f ) + εP,Q(gN) and εP,Q(q f ) = εP,Q(q)εP,Q( f ), only because
f is constant. Since g(P, Q) = εP,Q(g) = 0 and f (P, Q) = εP,Q( f ) = eP,Q( f ) = 0 then



Axioms 2024, 13, 274 13 of 32

H = gN(P, Q) = 0 is a zero operator. If we assume that at least one of the terms of H is
nonzero, that is, O ̸= ∅, then by (A3)

ndj1 + j1m = ndj2 + j2m

for distinct j1, j2 ∈ {0, 1, . . . , n̄ − 1}. Reorganizing and dividing by r = gcd(n, m), it
holds that

n̂|dj1 − dj2 | = m̂|j1 − j2|, (19)

where n = n̂r and m = m̂r, gcd(n̂, m̂) = 1. By (17), we have n̂ ≤ n̄ ≤ n. If |j1 − j2| < n̂, then
by (19), |dj1 − dj2 | < m̂ and m̂ | n̂, contradicting that n̂ and m̂ are coprime. If n̂ ≤ |j1 − j2|,
then |j1 − j2| = n̂t + ĵ, with 0 ≤ ĵ < n̂. Hence, n̂(|dj1 − dj2 | − m̂t) = m̂ĵ, implying n̂ | m̂,
which is a contradiction. Therefore, we conclude that O = ∅, in other words, that gN is the
zero polynomial. This proves that g = q f , that is, g ∈ [ f ].

Theorem 7. Let us consider commuting differential operators P and Q in Σ[∂]\C[∂], both of
positive order, and f =

√
h, with h = ∂Res(P − λ, Q − µ). Then [ f ] is a prime differential ideal in

Σ[λ, µ].

Proof. As defined in (6), let ΓP,Q be the spectral curve of the pair P, Q. For each point
(λ0, µ0) ∈ ΓP,Q, by Corollary 2, there exists a common solution ψ0 in a Picard–Vessiot
extension of Σ for P − λ0.

Let us consider g1, g2 ∈ Σ[λ, µ] and assume that g1 · g2 ∈ [ f ]. Observe that

0 = g1(λ0, µ0) · g2(λ0, µ0) ∈ Σ.

Thus, we can write the following partition of ΓP,Q:

ΓP,Q = Γ1 ∪ Γ2 where Γi = {(λ0, µ0) ∈ ΓP,Q | gi(λ0, µ0) = 0}.

Having an algebraically closed field of constants C implies that at least one of the two
components, say Γ1, has an infinite number of points.

We then have an infinite set of linearly independent eigenfunctions Ψ = {ψ0 |
(λ0, µ0) ∈ Γ1}. For every ψ0 ∈ Ψ, we have

0 = g1(λ0, µ0) · ψ0 = g1(P, Q)(ψ0)

This contradicts the fact that g1(P, Q) is a finite-order differential operator. This proves that
g1 ∈ Ker(εP,Q). By Lemma 4, g1 ∈ [ f ].

We proceed next to emphasize the relationship between the elimination ideals defined
in (12) and (13) and the ideal of Burchnall–Chaundy polynomials of a commuting pair
of ODOs.

Theorem 8. Let us consider commuting differential operators P and Q in Σ[∂]\C[∂], both of
positive order, and f =

√
h, with h = ∂Res(P − λ, Q − µ). It holds that

1. The radical of the elimination ideal EC(P − λ, Q − µ) equals BC(P, Q) = ( f ).
2. The radical of the elimination ideal E(P − λ, Q − µ) equals [ f ].

Proof. By Lemmas 3 and 4, we obtain

E(P − λ, Q − µ) ⊆ Ker(εP,Q) = [ f ],
EC(P − λ, Q − µ) = E(P − λ, Q − µ) ∩ C[λ, µ] ⊆ Ker(εP,Q) ∩ C[λ, µ] = BC(P, Q) = ( f ),
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using also Equality (15) and Theorem 6. Now, taking radicals and applying Theorem 7, the
following inclusions hold:√

E(P − λ, Q − µ) ⊆ Ker(εP,Q) = [ f ]√
EC(P − λ, Q − µ) = BC(P, Q) = ( f ),

where the last equality is satisfied since C is an algebraically closed field; see [35].
Moreover, the differential resultant h = f r̄ is a polynomial in E(P − λ, Q − µ), by

Theorem 6. Consequently, f belongs to the radical
√
E(P − λ, Q − µ). Thus, we have√

E(P − λ, Q − µ) = [ f ].

Summarizing, the spectral curve ΓP,Q of a commuting pair P, Q ∈ Σ[∂]\C[∂] is defined
by the irreducible polynomial f =

√
h, with h = ∂Res(P − λ, Q − µ). The commutative

C-algebra C[P, Q] is isomorphic to the coordinate ring C[ΓP,Q] of this curve:

C[P, Q] ≃ C[ΓP,Q] :=
C[λ, µ]

BC(P, Q)
=

C[λ, µ]

( f )
.

In addition, the prime differential ideal [ f ] determines a differential domain

Σ[ΓP,Q] :=
Σ[λ, µ]

[ f ]
,

whose fraction field, denoted by Σ(ΓP,Q), will play a key role in the study of the coupled
spectral problem:

Py = λy, Qy = µy.

Remark 4. In some cases, the centralizer Z(L) of a differential operator L is the affine ring of a
planar curve, as in the case of algebro-geometric Schrödinger operators where Z(L) = C[L, A]. The
spectral Picard–Vessiot extension of Σ(ΓL,A) for (L − λ)(y) = 0, introduced in [8], is a Liouvillian
extension of Σ(ΓL,A) determined by the solution of the first-order greatest common right divisor of
L − λ and A − µ, as differential operators with coefficients in Σ(ΓL,A).

6. Centralizers as Coordinate Rings

Let L ∈ Σ[∂]\C[∂] be a third-order operator, whose centralizer is non-trivial. We
proved in Lemma 2 that BC(L) is a prime ideal, and in Theorem 4 that

Z(L) ≃ C[λ, µ1, µ2]

BC(L)
.

Our next goal is to obtain a computational description of BC(L). We will use differential
resultants for this purpose.

6.1. Normalized Basis

By Theorem 6, each operator A in the centralizer Z(L), together with L, satisfies the
algebraic equation defined by an irreducible polynomial fA(λ, µ) ∈ C[λ, µ] defined by the
differential resultant ∂Res(L − λ, A − µ), that is,

fA(L, A) = 0, with fA(λ, µ) = µ3 + a2(λ)µ
2 + a1(λ)µ + a0(λ).

The Tschirnhaus transformation of fA(λ, µ) gives a new polynomial

f Ã(λ, µ) = fA(λ, µ − 1
3

a2(λ)) = µ3 + ã1(λ)µ + ã0(λ). (20)

satisfied by L and the operator

Ã := A − 1
3

a2(L). (21)
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Observe that, by Theorems 3 and 8,

C[λ, µ]

( fA)
≃ C[L, A] = C[L, Ã] ≃ C[λ, µ]

( f Ã)
.

In addition, f Ã ∈ BC(L, Ã) and by (20) f Ã, is an irreducible polynomial because fA is
irreducible over C[λ, µ]. Thus, Theorem 8 implies

f Ã(λ, µ) = ∂Res(L − λ, Ã − µ).

Recall that any basis of Z(L) is a minimal-order basis; see Proposition A2 in Appendix A.

Definition 7. Let L ∈ Σ[∂]\C[∂] be a third-order operator, whose centralizer is non-trivial. We
will call A ∈ Z(L) ̸= C[L] a normalized operator of Z(L) if ∂Res(L − λ, A − µ) has no term of
degree 2 in µ. A basis B(L) = {1, A1, A2} of Z(L) as a C[L]-module is called a normalized basis
of Z(L) if A1 and A2 are normalized operators of Z(L).

The next result shows that any other basis of Z(L) as a C[L]-module is determined by
a normalized basis.

Theorem 9. Let L ∈ Σ[∂]\C[∂] be a third-order operator, whose centralizer is non-trivial. Let us
consider a normalized basis B(L) = {1, A1, A2} of Z(L). Then for any other basis {1, B1, B2} of
Z(L), it holds that

Bi = αi Ai + qi(L), i = 1, 2, (22)

with αi ∈ C, qi(λ) ∈ C[λ], degλ(qi(λ)) ≤ ordAi−i
3 . Moreover, if {1, B1, B2} is also a normalized

basis, then
Bi = αi Ai, i = 1, 2.

Proof. We know that Z(L) = C[L, A1, A2] = C[L, B1, B2]. W.l.o.g., let us assume that
o1 = ord(A1) < o2 = ord(A2). Since {1, B1, B2} is a minimal-order basis, let us assume
that Bi has minimal-order congruence with i (mod 3). Then ord(Bi) = oi and o1 < o2,
together with (2), implies

B1 = α1 A1 + q1(L) and B2 = α2 A2 + p(L)A1 + q2(L),

with αi ∈ C, p(λ), qi(λ) ∈ C[λ] and degλ(qi(λ)) ≤ ordAi−i
3 .

Let us prove that p(λ) is identically zero. We know that BC(L, B2) = ( f ), where
f = ∂Res(L − λ, B2 − µ) ∈ C[λ, µ] is a polynomial of degree 3 in µ. Thus,

B3
2 = β2(L)B2

2 + β1(L)B2 + β0(L), β j ∈ C[λ]. (23)

Since B(L) is a normalized basis, it holds that

A3
i = γi,1(L)Ai + γi,0(L), γi,k ∈ C[λ]. (24)

Computing B3
2 = (α2 A2 + p(L)A1 + q2(L))3, for instance, with Maple and using (24) to

replace A3
i , we obtain only the monomials A2

1 A2 and A1 A2
2 of degree three in A1 and A2

in (25). Comparing with the r.h.s. of (23), we obtain that the coefficients of the monomials
of degree three must vanish:

(α2 A2 + p(L)A1 + q2(L))3 = 3α2 p(L)2 A2
1 A2 + 3α2

2 p(L)A1 A2
2 + · · · . (25)

Thus, p(λ) must be identically zero and we obtain

B3
2 = (α2 A2 + q2(L))3 = 3α2

2q2(L)A2
2 + (α3

2γ2,1(L) + 3α2q2(L)2)A2 + α3
2γ2,0(L) + q2(L)3.
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If {1, B1, B2} is also a normalized basis, the r.h.s. of (23) cannot have a term A2
2, then q2(λ)

must be the zero polynomial and B2 = α2 A2. We analogously prove that B1 = α1 A1.

The previous result explains that a normalized basis is unique up to multiplication
by constants. We include this result for completion but we do not need to choose the
normalized basis in the remaining parts of this work.

6.2. Generators of the Burchnall–Chaundy Ideal of a Third-Order ODO

Let us consider a basis B(L) = {1, A1, A2} of Z(L). Let us denote

fi(λ, µi) := ∂Res(L − λ, Ai − µi) = µ3
i − λoi + · · · ∈ C[λ, µi],

if B(L) is the normalized basis, then

fi(λ, µi) := µ3
i − γi,1(λ)µi − γi,0(λ).

Recall that fi are irreducible and BC(L, Ai) = ( fi), i = 1, 2; see Section 5.2. In addition, let
us denote by f3 the irreducible polynomial in C[µ1, µ2] obtained as the radical of

∂Res(A1 − µ1, A2 − µ2) = µo1
2 − µo2

1 + · · · .

We have BC(A1, A2) = ( f3).
The situation so far is described by the following chain of ideals in C[λ, µ1, µ2] and we

will determine first if the last two inclusions are identities:

(0) ⊂ ( fi) ⊂ ( f1, f2) ⊆ ( f1, f2, f3) ⊆ BC(L), i = 1, 2. (26)

Let us consider the following algebraic varieties defined by the previous ideals:

Γ := V(BC(L)), γ := V( f1, f2, f3), β := V( f1, f2).

By the inclusions in (26), we obtain Γ ⊆ γ ⊆ β. Observe that β = V( f1) ∩ V( f2) is the
intersection of the irreducible surfaces defined by f1(λ, µ1) = 0 and f2(λ, µ2) = 0; therefore,
β is a space algebraic curve.

The Zariski closure of the projection Πλ(β) of β onto the plane λ = 0 is a plane alge-
braic curve defined by the square free part r(µ1, µ2) of the algebraic resultant Resλ( f1, f2)

w.r.t. λ; see [34], Chapter 3, §2 and [36], Section 2. This projected curve Πλ(β) = V(r) could
be irreducible or not. Observe that r(A1, A2) = 0, and therefore, r ∈ BC(A1, A2) = ( f3).
Thus, there are two possible situations:

1. Irreducible. If r(µ1, µ2) is irreducible, then ( f1, f2) = ( f1, f2, f3) and V(r) is an
irreducible curve.

2. Non-irreducible. If r(µ1, µ2) is not irreducible, then f3 properly divides r and
( f1, f2) ̸= ( f1, f2, f3). Including f3 in the ideal allows us to select one irreducible
component of V(r). The example in Section 8 illustrates this situation.

We will prove next that ( f1, f2, f3) is the defining ideal of an irreducible space curve,
in both situations. By Remark 2, the irreducible component of Πλ(β) determined by f3 is a
proper curve; it cannot be a point.

Remark 5. Let us assume that the projection over the plane λ = 0 of the algebraic curve β, and
therefore, γ is birational. Note that this holds for almost all projections (see [35] [Fulton], p. 155),
and hence, we can make this assumption w.l.o.g. More precisely, a valid projection direction can be
achieved by an affine change of coordinates (see [36], Section 2, which establishes an isomorphism
between coordinate rings; see, for instance, [37], Theorem 2.24).

A Gröbner basis F = {F0, F1, . . . , Fs} ⊂ C[λ, µ1, µ2] of ( f1, f2, f3) w.r.t. the pure lexico-
graphic monomial ordering with λ > µ1 > µ2 verifies:
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1. The polynomial F0 ∈ C[µ1, µ2] is an implicit representation of the Zariski closure of the
projection Πλ(γ) of γ onto the plane λ = 0. Furthermore, F0 = f3 because f3 is irreducible
over C. Thus, this projection is an irreducible algebraic curve Πλ(γ) = V( f3).

2. On the other hand, since this projection is assumed birational on γ, then F contains a linear
polynomial in λ, say F1 = g2(µ1, µ2)λ − g1(µ1, µ2).

Let us consider the pure lexicographic monomial ordering with λ > µ1 > µ2 in
Σ[λ, µ1, µ2]. Given g ∈ Σ[λ, µ1, µ2], by the Division Theorem [34], Theorem 3, page 64, we
can write

g = ∑
j

qjFj + gF (27)

where qj, gF ∈ Σ[λ, µ1, µ2]. We call gF the normal form of g w.r.t F .

Lemma 5. Let us consider a Gröbner basis F of ( f1, f2, f3) w.r.t. the pure lexicographic order with
λ > µ1 > µ2. The normal form gF of g ∈ Σ[λ, µ1, µ2] w.r.t F is a polynomial in Σ[µ1, µ2] whose
degree in µ1 is less than degµ1

( f3).

Proof. By the Division Theorem, no monomial of gF is divisible by the leading terms
LT(F1) = λ and LT(F0) = LT( f3); thus, the result follows.

We are ready to prove that BC(L) ⊆ ( f1, f2, f3).

Theorem 10. Let L be a third-order operator in Σ[∂]\C[∂], whose centralizer is non-trivial. Given
a basis {1, A1, A2} of the centralizer, let fi, i = 1, 2, 3 be the irreducible polynomials over C such
that BC(L, Ai) = ( fi) and BC(A1, A2) = ( f3). Then BC(L) = ( f1, f2, f3)

Proof. Given g ∈ BC(L), let gF be its normal form w.r.t F . Then gF ∈ BC(L). Furthermore,
by Lemma 5, then gF ∈ BC(A1, A2) ⊂ C[µ1, µ2] and degµ1

(gF ) < degµ1
( f3). We conclude

that gF is identically zero, that is, g ∈ (F ) = ( f1, f2, f3).

Corollary 3. Let L ∈ Σ[∂]\C[∂] be a third-order operator, whose centralizer is non-trivial. Then

Γ = V(BC(L))

is an irreducible algebraic curve whose defining ideal is BC(L) = ( f1, f2, f3), with fi defined
above. Furthermore,

Z(L) ≃ C[λ, µ1, µ2]

( f1, f2, f3)
.

7. Parametric Factorization of Algebro-Geometric ODOs

Let L be a third-order operator in Σ[∂]\C[∂], whose centralizer is non-trivial. We
consider next the factorization of L − λ, for λ an algebraic parameter over Σ. We know that
λ is not a free parameter, but that it is governed by the spectral curve Γ of L. Thus,

L − λ ∈ Σ[λ][∂] ⊂ Σ[λ, µ1, µ2][∂].

Recall that Σ[λ, µ1, µ2] is a differential ring with the extended derivation ∂; see the notation
in Section 1.

Let us consider a basis {1, A1, A2} of Z (L) and the irreducible polynomials
f i , i = 1, 2, 3 in C[λ, µ1, µ2] such that BC(L, A1) = ( f i) and BC(A1, A2) = ( f3). By
Theorem 10,

[BC(L)] = [ f1, f2, f3]. (28)
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As differential operators in Σ(λ, µ1, µ2)[∂], the pairs L − λ and Ai − µi are right coprime,
since their differential resultants are nonzero, by Theorem A2. To consider the factorization
of L − λ, we need an appropriate differential field of coefficients.

7.1. Coefficient Field for Factorization

Associated to L we have defined in (9) the prime ideal BC(L); see Lemma 2. We will
prove in this section that the differential ideal [BC(L)] is a prime ideal in Σ[λ, µ1, µ2]. Thus,
we can define the differential domain

Σ[Γ] =
Σ[λ, µ1, µ2]

[BC(L)]
(29)

and its fraction field Σ(Γ), which therefore is a differential field.
Considering Σ[λ, µ1, µ2] as a Σ-vector space with basis

{Mα = λα0 µα1
1 µα2

2 | α = (α0, α1, α2) ∈ N3},

we can define the Σ-linear map

εL : Σ[λ, µ1, µ2] → Σ[∂], defined by εL

(
∑
α

σα Mα

)
= ∑

α

σαeL(Mα), (30)

where eL is the ring homomorphism defined in (7). Observe that given g = ∑α σα Mα ∈
Σ[λ, µ1, µ2] and F ∈ C[λ, µ1, µ2], then

εL(gF) = ∑
α

σαeL(MαF) = εL(g)eL(F). (31)

Lemma 6. Let us consider a Gröbner basis F of ( f1, f2, f3) w.r.t. the pure lexicographic order with
λ > µ1 > µ2. Given g ∈ Ker(εL), the normal form gF of g w.r.t F verifies

gF ∈ [BC(A1, A2)] = [ f3].

Proof. With notation as in (27), by (31), we have

0 = εL(g) = ∑
j

εL(qj)eL(Fj) + εL(gF ) = εL(gF ).

Thus, gF ∈ Ker(εL) and by Lemma 5, we know that gF ∈ Σ[µ1, µ2]. Therefore, by Lemma 4,

gF ∈ Ker(εA1,A2) = [BC(A1, A2)] = [ f3].

Lemma 7. With the previous notation, it holds that Ker(εL) = [BC(L)].

Proof. We will show next that the inclusion of [BC(L)] = [ f1, f2, f3] in Ker(εL) is natu-
ral. Since fi has constant coefficients, the next differential ideal coincides with the ideal
generated by f1, f2, f3 in Σ[λ, µ1, µ2]:

[ f1, f2, f3] = {g1 f1 + g2 f2 + g3 f3 | gi ∈ Σ[λ, µ1, µ2]}.

In addition, by (31), εL(gi fi) = εL(gi)eL( fi) = 0, which proves that [BC(L) ⊆ Ker(εL)].
Conversely, given g ∈ Ker(εL), by Lemma 6, gF ∈ [ f3]. In addition, by Lemma 5,

degµ1
(gF ) < degµ1

( f3). Therefore gF is identically zero, proving that g ∈ [F ] = [BC(L)].
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Theorem 11. Let L be a third-order operator in Σ[∂]\C[∂], whose centralizer is non-trivial. Then
the differential ideal [BC(L)] is a prime ideal in Σ[λ, µ1, µ2].

Proof. Given g ∈ [BC(L)], let us assume that g = g1 · g2, with g1, g2 ∈ Σ[λ, µ1, µ2]. By
Lemma 6, gF ∈ Ker(εL). By Lemma 5, gFi ∈ Σ[µ1, µ2] and using (27), we can write

gi = ∆i + gFi , with ∆i ∈ [BC(L)].

Thus,
g1 · g2 = ∆1∆2 + ∆1gF2 + ∆2gF1 + gF1 gF2 .

Therefore, 0 = εL(g) = εL(g1 · g2) = εL(gF1 gF2 ). This implies that gF1 gF2 ∈ [ f3], which is a
prime ideal in Σ[µ1, µ2], by Theorem 7. We can conclude that gFi ∈ [ f3], which shows that
gi ∈ [BC(L)], for i = 1 or i = 2, proving that [BC(L)] is a prime ideal.

We are now ready to work over the field Σ(Γ), the fraction field of the domain Σ[Γ]
defined in (29). Regarding the differential structure of Σ(Γ), we consider the standard
differential structure of the quotient ring Σ[Γ] given by a derivation ∂̃ defined by:

∂̃(q + [BC(L)]) := ∂(q) + [BC(L)], q ∈ Σ[λ, µ1, µ2]. (32)

Observe that ∂̃ is a derivation in Σ[Γ] because [BC(L)] is a differential ideal. By abuse of
notation, we will denote by ∂ the derivation ∂̃ and its extension to the fraction field Σ(Γ).

7.2. The Intrinsic Right Factor

We will study next the factorization of L − λ as a differential operator with coefficients
in the differential field (Σ(Γ), ∂), as defined in Section 7.1.

As differential operators in Σ(Γ)[∂], L − λ and Ai − µi, i = 1, 2 have a non-trivial common
factor, namely their monic greatest common right divisor Li := gcrd(L − λ, Ai − µi). For
instance, this follows from the Resultant Theorem A5, since fi = ∂Res(L − λ, Ai − µi) is zero in
Σ(Γ). Similarly, for some positive integer r, it holds that f r

3 = ∂Res(A1 − µ1, A2 − µ2), which
is zero in Σ(Γ), implying that L3 := gcrd(A1 − µ1, A2 − µ2) is a differential operator of order
greater than or equal to one.

We will prove next that L1 and L2 are indeed differential operators of order 1 in
Σ(Γ)[∂]. Moreover, the goal of this section is to show that L1 and L2 are equal as differential
operators in Σ(Γ)[∂], providing a right factor of L − λ that is intrinsic to the nature of L.
This factor is linked to the hypothesis of having a nontrivial centralizer.

We chose differential subresultants to compute greatest common right divisors, be-
cause they have fairly explicit expressions for their computation that also allow us to obtain
some important theoretical conclusions. As defined in Appendix B.1, let us consider the
first differential subresultants:

s∂Res1(L − λ, Ai − µi) = ϕi,0 + ϕi,1∂, i = 1, 2,

s∂Res1(A1 − µ1, A2 − µ2) = ϕ3,0 + ϕ3,1∂

where, for j = 0, 1

ϕi,j(λ, µi) := det(Sj
1(L − λ, Ai − µi)), i = 1, 2 (33)

ϕ3,j(µ1, µ2) := det(Sj
1(A1 − µ1, A2 − µ2)). (34)

Observe that the coefficients ϕi,j are nonzero polynomials in Σ[λ, µ1, µ2], but we need to
check if they are nonzero in Σ(Γ). Recall that from Section 3, oi = ord(Ai) ≡ i(mod 3).

Lemma 8. With the notation established above, the class ϕi,j + [BC(L)], i = 1, 2, j = 0, 1 in Σ(Γ)
is non-zero. In addition, if gcd(o1, o2) = 1, then the class of ϕ3,j + [BC(L)] is non-zero.
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Proof. By the construction of the matrices Sj
1 as in (A11), the degree in µi of ϕi,j is less than

3, for i = 1, 2. Thus, ϕi,j, i = 1, 2 does not belong to [BC(L)] because otherwise it is included in

[BC(L)] ∩ Σ[λ, µi] = [BC(L, Ai)] = [ fi],

which is not possible. Similarly, if gcd(o1, o2) = 1, then the degree in µ1 of ϕ3,j is less than
o2 and ϕ3,j does not belong to [BC(L)] because otherwise, it is included in

[BC(L)] ∩ Σ[µ1, µ2] = [BC(A1, A2)] = [ f3].

Observe that in the case gcd(o1, o2) = 1 then f3 = ∂Res(A1 − µ1, A2 − µ2) has degree
o2 in µ1.

By Lemma 8, s∂Res1(L − λ, Ai − µi) are nonzero differential operators in Σ(Γ)[∂] of
order one. The First Subresultant Theorem A3 implies that Li = gcrd(L− λ, Ai − µi) equals
the first subresultant. We can make them monic and write

Li = gcrd(L − λ, Ai − µi) = ∂ + ϕi + [BC(L)], with ϕi :=
ϕi,0

ϕi,1
. (35)

The next lemma will be important to prove that the right factors Li coincide over the
field of the spectral curve Σ(Γ). For this purpose, let us define the elimination ideal

E(L) := (L − λ, A1 − µ1, A2 − µ2) ∩ Σ[λ, µ1, µ2]. (36)

Proposition 1. With the previous notation, it holds that E(L) ⊂ [BC(L)].

Proof. Given a polynomial g in E(L), then

g(λ, µ1, µ2) = C(L − λ) + D1(A1 − µ1) + D2(A2 − µ2), C, D1, D2 ∈ Σ[λ, µ1, µ2][∂]. (37)

With the notation in Remark 5 and by Corollary 3, every point of Γ is determined by a
point (η1, η2) of the projection of the curve Γ onto the plane λ = 0, in the following way:(

g1(η1, η2)

g2(η1, η2)
, η1, η2

)
with f3(η1, η2) = 0, (38)

except for a finite number of points such that g2(η1, η2) = 0.
As in Remark 5, let us consider a Gröbner basis F = {F0, F1, . . . , Fs} ⊂ C[λ, µ1, µ2] of

( f1, f2, f3) w.r.t. the pure lexicographic monomial ordering with λ > µ1 > µ2. Recall that
F1 = g2(µ1, µ2)λ − g1(µ1, µ2), with gi ∈ C[µ1, µ2]. By (38), since BC(L) = ( f1, f2, f3) = (F ),
we have

F1(L, A1, A2) = g2(A1, A2)L − g1(A1, A2) = 0. (39)

Given η1 ∈ C, there exists η = (η1, η2) ∈ Πλ(Γ), the Zariski closure of the projection
of Γ onto the plane λ = 0. Let E1 be the Picard–Vessiot extension of Σ for A1 − η1. By
Corollary 2, since f3(η1, η2) = 0, there exists ψ1 ∈ E1, a common eigenfunction of the
spectral problem

A1y = η1y, A2y = η2y. (40)

Thus, Ψ := {ψ1 | η1 ∈ C} is an infinite set of linearly independent eigenfunctions for (40).
Observe that, by (39),

0 = (Lg2(A1, A2)− g1(A1, A2))(ψ1) = L(g2(η) · ψ1)− g1(η) · ψ1

Thus,

L(ψ1) =
g1(η)

g2(η)
· ψ1. (41)
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To finish the argument, for every ψ1 ∈ Ψ, by (40) and (41),

g(L, A1, A2)(ψ1) = (42)

g
(

g1(η)

g2(η)
, η1, η2

)
· ψ1 =

(
C̃
(

L − g1(η)

g2(η)

)
+ D̃1(A1 − η1) + D̃2(A2 − η2)

)
(ψ1) = 0, (43)

using (37) and obtaining C̃, D̃1 and D̃2 in Σ[∂]. Since Ψ is an infinite set, we can conclude
that g(L, A1, A2) = 0, which proves the result.

Let us denote by ϕi the class ϕi + [BC(L)] in Σ(Γ). Looking at these functions as
representatives of objects in Σ(Γ), we can establish the following result.

Lemma 9. With the previous notation. Let us consider ϕi as in (35), then

ϕ := ϕ1 = ϕ2 ∈ Σ(Γ). (44)

If gcd(o1, o2) = 1, then ϕ = ϕ3.

Proof. By the definition of subresultants in Appendix B.1, we know that

Li = ∂ + ϕi ∈ (L − λ, Ai − µi).

The next one is a differential polynomial in Σ[λ, µ1, µ2]:

g = ϕ1,1ϕ2,1(L1 −L2) = ϕ1,0ϕ2,1 − ϕ2,0ϕ1,1.

Observe that it belongs to the elimination ideal E(L) as defined in (36). In addition, by
Lemma 1,

g ∈ E(L) ⊆ [BC(L)].

Therefore, g ≡ 0 in Σ(Γ). This proves (44).

We are ready to state an important application of the results of this paper.

Theorem 12. Let L be a third-order operator in Σ[∂]\C[∂], whose centralizer is non-trivial. Let Γ
be the spectral curve of L. Then L − λ has an order one factor ∂ + ϕ in Σ(Γ)[∂]. We call ∂ + ϕ the
intrinsic right factor of L. Moreover, given any basis {1, A1, A2} of Z(L) as a C[L]-module, this
factor is the greatest common right divisor in Σ(Γ)[∂]:

∂ + ϕ = gcrd(L − λ, A1 − µ1, A2 − µ2). (45)

Proof. By the First Subresultant Theorem A3,

∂ + ϕi = gcrd(L − λ, Ai − µi), i = 1, 2

and by Lemma 9,
∂ + ϕ = ∂ + ϕ1 = ∂ + ϕ2

Thus, (45) follows.

As a consequence of (45) and (35) ∂ + ϕ, the intrinsic right factor of L − λ as a differ-
ential operator in Σ[Γ][∂] can be computed as gcrd(L − λ, Ai − µi), for any Ai ∈ Z(L) of
minimal order i (mod 3) for i = 1 or i = 2.
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Remark 6. Let us assume that L = ∂3 + u1∂ + u0 is in normal form. By direct computation, we
obtain the factorization

L − λ =
(

∂2 − ϕ∂ + u1 − 2ϕ′ + ϕ2
)
· (∂ + ϕ), (46)

in Σ(Γ)[∂], under the condition

ϕ3 + u1ϕ − 3 ϕϕ′ − u0 + ϕ′′ + λ = 0. (47)

Factorization at each point P0 of Γ. The intrinsic right factor is a global factor in the
following sense. For every P0 = (λ0, η1, η2) ∈ Γ\Z, where Z is a finite number of points in
C3, we obtain a right factor in Σ[∂] of

L − λ0 = Ni · (∂ + ϕi(P0)), i = 1, 2

where ∂ + ϕi(P0) is the greatest common right divisor of L − λ0 and Ai − ηi in Σ[∂] and
ϕi(P0) is the result of replacing (λ, µ1, µ2) in ϕi by (λ0, η1, η2). The set of points Z to be
removed can be described as

Z = {(λ0, η1, η2) ∈ C3 | (λ0, ηi) ∈ Zi, i = 1, 2}

where Zi = {(λ0, ηi) ∈ C2 | ϕi,1(λ0, ηi) = 0}, i = 1, 2, are finite sets of points, which is a
consequence of (33) together with Remark 5. Furthermore, ∂ + ϕ1(P0) = ∂ + ϕ2(P0) is the
greatest common right divisor of L−λ0, A1 − η1 and A2 − η2 for every P0 = (λ0, η1, η2) ∈ Γ\Z.

Remark 7. The factorization of an ordinary differential operator with coefficient in a differential
field (Σ = C(x), ∂ = d/dx) can be achieved by means of the so-called eigenring of L, defined by M.
Singer in [38] as

E(L) = {R ∈ Σ[∂]/Σ[∂] · L | LR is divisible by L},

where R denotes the equivalence class of R ∈ Σ[∂] in the module Σ[∂]/Σ[∂] · L. The centralizer
Z(L) can be seen as a subring of the eigenring, but note that the representative of order smaller
than 3 in the eigenring of an element of the centralizer may not belong itself to the centralizer. In
the example of Section 8, since ord(A1) = 4, then A1 has a representative in E(L) that does not
belong to the centralizer.

One could study the factorization of L − λ0, for any λ0 ∈ C by means of the algorithms based
on the eigenring, as in [39]. What these algorithms would not do is to identify the spectral curve.
Furthermore, these algorithms would not allow a formal treatment of λ as an algebraic parameter
over the coefficient field Σ. These algorithms would partially identify the spectral curve. They would
treat the parameter λ in the algebraic closure of Σ(λ) and therefore consider a branch of the spectral
curve. See the example in Section 8.

8. Example of Non-Planar Spectral Curve

There are many examples of rank 1 operators whose centralizers are the ring of a plane
algebraic curve; see references in [17]. In this section, we present the first explicit example
of a centralizer isomorphic to the ring of a non-planar spectral curve. We explained the
computational method used to obtain this example in [15,26], based on Wilson’s almost
commuting bases [14]. We use this example to illustrate the new results of this paper.

Let us consider the differential operator in C(x)[∂], where ∂ = d
dx :

L = ∂3 − 6
x2 ∂ +

12
x3 + 1. (48)
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The centralizer of L equals Z(L) = C[L, A1, A2] with

A1 =∂4 − 8
x2 ∂2 +

24
x3 ∂ − 24

x4 ,

A2 =∂5 − 10
x2 ∂3 +

40
x3 ∂2 − 80

x4 ∂ +
80
x5 .

The Burchall–Chaundy ideal of L equals

BC(L) = ( f1, f2, f3),

generated by the irreducible polynomials

f1(λ, µ1) = ∂Res(L − λ, A1 − µ1) = −µ3
1 + (λ − 1)4,

f2(λ, µ2) = ∂Res(L − λ, A2 − µ2) = −µ3
2 + (λ − 1)5,

f3(µ1, µ2) = ∂Res(A1 − µ1, A2 − µ2) = µ4
2 − µ5

1.

Since Resλ( f1, f2) = p f3 with p = µ10
1 + µ5

1µ4
2 + µ8

2, then ( f1, f2) is strictly contained in
( f1, f2, f3). A Gröbner basis of BC(L) in C[λ, µ1, µ2] w.r.t. the pure lexicographic order
λ > µ1 > µ2 is

F = { f3(µ1, µ2), F1 = g2(µ1, µ2)λ + g1(µ1, µ2), . . . , F5}

with g1 = −µ4
2 − µ2

1µ3
2 and g2 = µ4

2.
The curve defined by BC(L) is a non-planar curve Γ parameterized by

ℵ(τ) = (−τ3 + 1, τ4,−τ5), τ ∈ C. (49)

This is the first explicit example of a non-planar spectral curve.
The first differential subresultants of L − λ, A1 − µ1 and A2 − µ2 pairwise are equal to

ϕi,0 + ϕi,1∂, i = 1, 2, 3, j = 0, 1;

see (33), with

ϕ1,0 = (1 − λ)µ1 − 4µ1
x3 + 8(λ−1)

x4 , ϕ1,1 = (λ − 1)2 − 2µ1
x2 + 4 (λ−1)

x3 ,

ϕ2,0 = (1 − λ)3 − 4(1−λ)2

x2 + 8µ2
x4 , ϕ2,1 = (λ − 1)3 − 4(1−λ)2

x2 + 8µ2
x3 ,

ϕ3,0 = −µ2

(
µ2

1 +
4µ2
x3 − 8µ1

x4

)
, ϕ3,1 = µ3

1 −
2µ2

2
x2 + 4µ2µ1

x3 .

We have o1 = 4 and o2 = 5; thus, gcd(o1, o2) = 1 and

ϕ = ϕi =
ϕ0,i

ϕ1,i
+ [BC(L)], i = 1, 2, 3.

Let us call ϕ(τ) the result of replacing (λ, µ1, µ2) by the parameterization ℵ(τ) of Γ in ϕ,
which equals

ϕ(τ) := ϕi(ℵ(τ)) =
−τ3x3 + 2τ2x2 − 4τx + 4

(τ2x2 − 2τx + 2)x
. (50)

Thus, L + τ3 − 1 =
(

∂2 + ϕ(τ)∂ + ϕ(τ)2 + 2ϕ(τ)′ − 6
x2

)
· (∂ + ϕ(τ)) as in (46). At every

point P0 = ℵ(τ0) of the spectral curve Γ of L, we recover a right factor ∂ + ϕ(τ0), for τ0 ̸= 0.
Observe that whenever the spectral curve Γ is a rational curve with rational parame-

terization ℵ(τ) = (ℵ1(τ),ℵ2(τ),ℵ3(τ)), as in the previous example, one can consider the
factorization of L −ℵ1(τ) as a differential operator in Σ(τ)[∂], since the algebraic variable τ
with ∂(τ) = 0, would be a free parameter over Σ. To achieve a full factorization, it is a future
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project to use the parameterized Picard–Vessiot theory introduced by Cassidy and Singer
in [9], and studied in [11]. It would be interesting to explore how this theory explains the
factorization over the field of the spectral curve, using the results on second-order operators
in [10] combined with the intrinsic factorization of Section 7.2.

9. Discussion

In this work, the computation of the space algebraic curve Γ that describes the cen-
tralizer of third-order ODO L was achieved. We proved that Γ is the spectral curve of a
commutative algebra with three generators and, in general, it is a non-planar curve. We
provided an effective description of the defining ideal of Γ that will allow a parametric
factorization of L − λ, for an algebraic parameter λ. The computation of the intrinsic right
factor, of the Mumford correspondence [19], of L − λ was only described before in the case
of planar spectral curves [25], in connection with the Baker–Akheizer function.

It is an ongoing project to develop the spectral Picard–Vessiot theory of the third-order
operator L − λ. We intend to follow our previously successful strategy, in the case of
second-order Schrödinger operators [8]. In analogy with the Galois theory of univariate
polynomials, a full factorization of L − λ will be studied, in combination with ideas coming
from the parametric Picard–Vessiot theory [9–11], that must be adapted to a non-free
algebraic parameter λ. Through this journey, spectral curves, planar or not, will govern the
factorization of L − λ and the hidden free parameters will emerge.
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Appendix A. Centralizers of Ordinary Differential Operators

We will denote by R[∂] the ring of differential operators with coefficients in R. Any
nonzero operator L ∈ R[∂] can be uniquely written in the form

L = u0 + u1∂ + · · ·+ un∂n, with ui ∈ R and un ̸= 0. (A1)

We will assume that R is a commutative differential ring with no nonzero nilpotent elements,
whose ring of constants C is a field of zero characteristic, not necessarily algebraically closed
in this section. This is the most general case for the results in this section to hold. We
reformulate in this section results of K. Goodearl in [29] adapted to our context. The
centralizer of L in R[∂] is the following (unital) subring of R[∂]:

Z(L) = {A ∈ R[∂] | LA = AL}.
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We call n the order of L, denoted by ord(L), with the convention ord(0) = −∞. The
element un is called the leading coefficient of L. The order defines a function ord : R[∂] →
N ∪ {−∞} that satisfies the following properties. For nonzero Q1, . . . , Qℓ ∈ R[∂], the
following inequality holds:

ord(Q1 + · · ·+ Qℓ) ≤ max{ord(Qi) | 1 ≤ i ≤ ℓ}, (A2)

and assuming ord(Qi) ̸= ord(Qj), whenever i ̸= j,

Q1 + · · ·+ Qℓ = 0 ⇒ Qi = 0, ∀i. (A3)

In previous notations and assumptions, the following result follows (Lemma 1.1 in [29]).

Lemma A1. Let L be as in (A1) with un a unit of R. Let P and Q be nonzero operators in Z(L)
with orders ℓ and m and leading coefficients aℓ, bm, respectively. Then:

1. There exists a nonzero constant α ∈ C such that an
ℓ = αuℓ

n.
2. We have P · Q ̸= 0, and ord(P · Q) = ord(P) + ord(Q).
3. If ℓ = m, there exists a nonzero constant α ∈ C such that aℓ = αbℓ.

By 2 in the previous lemma, we obtain the following consequence.

Proposition A1. For any L ∈ R[∂] with invertible leading coefficient in R, then Z(L) does not
have zero divisors.

Observe that if L ∈ C[∂], then Z(L) = R[∂]. In addition, the centralizer Z(L) always
contains the ring

C[L] = {p(L) | p(λ) ∈ C[λ]}.

Definition A1. We will say that L ∈ R[∂] has a non-trivial centralizer if C(L) does not equal
C[L] or R[∂], that is,

C[L] ⊂ Z(L) ⊂ R[∂].

From now on, we assume that L ∈ R[∂]\C[∂] has a nontrivial centralizer Z(L) ̸= C[L].
We will also assume that un is a unit in R. Due to its importance in this paper, we review
next the proof of [29], Theorem 1.2, which gives a constructive method to compute a basis
of Z(L) as a free C[L]-module of finite rank.

Construction of a basis. Let L be as in (A1) with un a unit in R. Define

X := {i ∈ {0, . . . , n − 1} | ∃P ∈ Z(L), with ord(P) ≡ i (mod n)}.

The set O of orders of nonzero differential operators in Z(L) defines a subgroup HO of
Z/nZ,

HO = {i + nZ | i ∈ O},

whose cardinality is |HO | = Card(X). Therefore, Card(X) is a divisor of n.

Lemma A2. With the previous notation, for each i ∈ X, choose Pi ∈ Z(L) of minimal order
oi ≡ i (mod n) and P0 = 1. Then the set

B := {Pi | i ∈ X} (A4)

is a basis of the centralizer Z(L) as a C[L]-module.

Proof. First observe that for a sum ∑i∈X CiPi, for Ci ∈ C[L] to be zero, it is necessary that all
summands are zero, because of (A3) applied to Qi = CiPi. But then Ci = 0, by Proposition A1.
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Consequently, B is a finite family of C[L]-linearly independent differential operators, and the
centralizer Z(L) contains the free C[L]-submodule

W :=
⊕
i∈X

C[L]Pi.

Let Q be a differential operator in Z(L) of order m. We will proceed by induction on m to
show that Q is in W.

For Q = u ∈ R, the equality LQ − QL = 0 provides a null differential operator
whose coefficient in ∂n−1 is nun∂(u). But since un is a unit in the zero characteristic
ring R, we obtain Q = u ∈ C. Let us now consider an operator Q of positive order
m > 0 and leading coefficient cm. Let im be the remainder of the division of m by n,
then m = qn + im. The differential operator TQ := LqPim is an operator of order m in the
centralizer of L. Consequently, by Lemma A1, 3, there exists a nonzero constant α ∈ C
such that uq

n pim = αcm, where pim is the leading coefficient of Pim . Thus, Q − α−1TQ is
an operator of order < m in Z(L). According to the induction hypothesis, it is in W and
therefore also is Q. Consequently, Z(L) = W.

If we call the basis of Z(L) as a C[L]-module described in Lemma A2 a minimal-order
basis, the following result is obtained.

Proposition A2. Let L ∈ Σ[∂]\C[∂] be an operator whose centralizer is non-trivial. Every basis of
Z(L) as a C[L]-module is a minimal-order basis.

The basis B presented in (A4) is not uniquely determined. We will obtain in Theorem 9
a uniquely determined basis of Z(L) as a C[L]-module.

Let us denote by R((∂−1)) the ring of pseudo-differential operators in ∂ with coeffi-
cients in R, defined as [29]

R((∂−1)) =

{
n

∑
i=−∞

ai∂
i | ai ∈ R, n ∈ Z

}
,

where ∂−1 is the inverse of ∂ in Σ((∂−1)), ∂−1∂ = ∂∂−1 = 1. Observe that

Z(L) ⊂ R[∂] ⊂ R((∂−1)).

The generalization of Schur’s theorem in [16] to differential operators with coefficients
in a differential ring R has a long history; see, for instance, [29] and the references given
in Sections 3 and 4. By [29], Theorem 3.1, any monic n-th order operator L has a unique
monic n-th root denoted by L1/n in the ring of pseudo-differential operators R((∂−1)) that
determines the centralizer in R((∂−1)) of L, denoted by Z((L)) and equal to

Z((L)) =

{
N

∑
j=−∞

cj(L1/n)j | cj ∈ C

}
. (A5)

This implies that Z((L)) is commutative, and therefore,

Z(L) = Z((L)) ∩ R[∂] (A6)

is also commutative (see [29], Corollary 4.4), and therefore, it is a differential domain by
Proposition A1. Moreover, by (A5), the transcendence degree of Z((L)) over C is 1 and in
a formal sense, Spec(Z(L)) is an algebraic curve. The next theorem summarizes the main
features of the algebraic structure of Z(L) that will be used in this paper.
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Theorem A1. Let R be a commutative differential ring with no nonzero nilpotent elements whose
ring of constants C is a field of zero characteristic. Given a nonzero differential operator L in R[∂],
whose leading coefficient is a unit in R, then:

1. the rank of Z(L) as a C[L]-module divides ord(L);
2. Z(L) is a (commutative) differential domain.

It is an important fact that each operator A in the centralizer Z(L), together with L,
satisfies the algebraic equation defined by a polynomial hA(λ, µ) ∈ C[λ, µ]. Using the
argument given in [29], Theorem 1.13, since Z(L) is a finitely generated C[L]-module
and C[L] is a commutative ring (see, for instance, [40], Proposition 5.1), then there exist
ai(λ) ∈ C[λ] such that

hA(L, A) = 0 with hA(λ, µ) = µd + ad−1(λ)µ
d−1 + · · ·+ a0(λ).

The polynomial hA(λ, µ) is a called a Burchnall–Chaundy polynomial and the notation
hA(L, A) will be explained in Section 4.

Appendix B. Differential Resultant of Two ODOs

Let us consider ordinary differential operators P and Q with coefficients in a differ-
ential domain D, with derivation ∂. In order to study the common factors of P and Q, we
will consider the fraction field K of D, with the natural extension of the derivation, that we
denote again by ∂.

The ring of differential operators K[∂] is a (left and right) Euclidean domain (see [41],
Corollary 4.35), and by [41], Corollary 4.36, it is a left and right principal ideal domain.
In addition, by [41], Corollary 4.29, K[∂] is a unique factorization domain; see [41], Defi-
nition 4.12. Given differential operators P, Q ∈ K[∂], we denote a greatest common right
divisor of P and Q by gcrd(P, Q). If gcrd(P, Q) ∈ K, we call P and Q right coprime.

Following [42], we will review next how the existence of a non-trivial right factor is
equivalent to the existence of a non-trivial order-bounded linear combination CP+ DQ = 0.
This result justifies the definition of the differential resultant or Sylvester resultant of two
differential operators given in [43].

Let Mℓ be the K-vector space of differential operators in K[∂] of order strictly less
than ℓ. Assuming that ord(P) = n and ord(Q) = m, let us consider the linear map

s0 : Mn ⊕Mm → Mn+m defined by (C, D) 7→ CP + DQ.

In the basis {∂ℓ, . . . , ∂, 1}, for each Mℓ, the matrix of s0 is the differential Sylvester matrix
s0(P, Q), a squared matrix of size n + m, with entries in D, whose rows are the coefficient
of the extended system

Ξ0 = {∂m−1P, . . . , ∂P, P, ∂n−1Q, . . . , ∂Q, Q}. (A7)

The differential (Sylvester) resultant of P and Q is the determinant

∂Res(P, Q) := det(s0(P, Q)). (A8)

Observe that the image of s0, denoted by Im(s0), is the K-vector space spanned by Ξ0.

Lemma A3. Given P, Q in D[∂], then ∂Res(P, Q) belongs to the image of s0, that is,

∂Res(P, Q) = C0P + D0Q ∈ Im(s0) ∩D,

with ord(C0) = m − 1 and ord(D0) = n − 1.

Proof. Multiply the Sylvester matrix on the right by the squared matrix E of size n + m
whose i-th row contains 1 in the i-th position and ∂n+m−i in the last position. Observe that
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det E = 1 and that s0(P, Q)E has entries in D[∂]; in particular, its last column contains the
elements of Ξ0. Thus,

det(s0(P, Q)) = det(s0(P, Q)E) = C0P + D0Q

after developing s0(P, Q)E by its last column.

Let us consider the left ideal generated by P and Q in K[∂] and denote it by
(P, Q) = K[∂]P + K[∂]Q. Observe that Im(s0) ⊂ (P, Q) and, by the previous lemma,
if ∂Res(P, Q) ̸= 0, then the elimination ideal (P, Q) ∩D is nonzero, since

∂Res(P, Q) ∈ (P, Q) ∩D.

As announced, we prove next that the existence of an order-bounded linear combina-
tion CP + DQ = 0, in other words, Ker(s0) ̸= 0, is equivalent to gcrd(P, Q) /∈ K.

Theorem A2. Let us consider P, Q ∈ D[∂]. The following statements are equivalent:

1. ∂Res(P, Q) ̸= 0.
2. Im(s0) ∩D ̸= 0.
3. P and Q are right coprime in K[∂].

Proof. By Lemma A3, 1 implies 2. To prove that 2 implies 3, let us assume that
gcrd(P, Q) = F is a differential operator in K[∂] of order greater than zero. Since K[∂] is a
left principal ideal domain, then by [41], Proposition 4.16, (2) we have K[∂]P +K[∂]Q =
K[∂]F. Given e ∈ Im(s0)∩D, then e ∈ K[∂]F and there exists 0 ̸= d ∈ D such that de = LF∗,
with L, F∗ ∈ D[∂] and F∗ /∈ D. Therefore, e = 0.

If ∂Res(P, Q) = det(s0(P, Q)) = 0, then s0 is not surjective, so gcrd(P, Q) /∈ K,
proving that 3 implies 1.

Appendix B.1. First Differential Subresultant

The differential resultant of two differential operators is a condition on their coeffi-
cients that guaranties the existence of a right common factor. We introduce next the first
differential subresultant as a tool to compute such a factor in case it is a first-order factor.
Differential subresultants were introduced in [43]; see also [44].

Let us consider the K-linear map

s1 : Mn−1 ⊕Mm−1 → Mn+m−1 defined by (C, D) 7→ CP + DQ. (A9)

In the basis {∂ℓ, . . . , ∂, 1}, for each Mℓ, the matrix of s1 is a matrix s1(P, Q) with n + m − 2
rows and n + m − 1 columns, with entries in D, whose rows are the coefficient of the
extended system

Ξ1 = {∂m−2P, . . . , ∂P, P, ∂n−2Q, . . . , ∂Q, Q}. (A10)

Observe that Im(s1) is the K-vector space spanned by Ξ1 and that Im(s1) ⊂ (P, Q).
Let us consider the squared matrix ŝ1(P, Q) obtained by adding s1(P, Q) the first row
(0, · · · , 0, 1,−∂). The first differential subresultant of P and Q is the determinant

s∂Res1(P, Q) := det ŝ1(P, Q) = det(S0
1) + det(S1

1)∂, (A11)

where S0
1 and S1

1 are the submatrices of s1(P, Q) obtained by removing the columns indexed
by ∂ and 1, respectively.

Lemma A4. Given P, Q in D[∂], then ∂Res(P, Q) belongs to the image of s1, that is,

s∂Res1(P, Q) = C1P + D1Q ∈ Im(s1),

with ord(C1) = m − 2 and ord(D1) = n − 2.
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Proof. Multiply ŝ1(P, Q) on the right by the squared matrix E of size n + m − 1 whose i-th
row contains 1 in the i-th position and ∂n+m−1−i in the last position. Observe that det E = 1
and that ŝ1(P, Q)E has entries in D[∂]; in particular, its last column contains 0 followed by
the elements of Ξ1. Thus,

det(s1(P, Q)) = det(ŝ1(P, Q)E) = C1P + D1Q

after developing s1(P, Q)E by its last two columns.

Theorem A3 (First Subresultant Theorem). Let us consider P, Q ∈ D[∂]. If ∂Res(P, Q) = 0
and s∂Res1(P, Q) ̸= 0, then:

1. s∂Res1(P, Q) is a differential operator of order 1;
2. gcrd(P, Q) equals s∂Res1(P, Q) up to multiplication by an element of K.

Proof. If s∂Res1(P, Q) has order zero, then it equals det(S0
1). Therefore, Im(s0) ∩D ̸= 0,

contradicting, by Theorem A2, that ∂Res(P, Q) = 0.
By Lemma A4, we have s∂Res1(P, Q) ∈ Im(s1) ⊂ (P, Q), then s∂Res1(P, Q) is a

multiple of gcrd(P, Q), which proves 2.

Appendix B.2. Characterizing Common Solutions

Given a differential operator L ∈ K[∂], a Picard–Vessiot extension E of K for L is a
differential field extension E = K⟨ψ1, . . . , ψn⟩, where {ψ1, . . . , ψn} is a fundamental set of
solutions, with no new constants in E . It is the equivalent of a splitting field for L(y) = 0.
Under the assumption that the field of constants C is algebraically closed, the classical
Picard–Vessiot theory guaranties the existence and uniqueness (up to differential automor-
phisms) of the Picard–Vessiot field for the equation L(y) = 0. See [28], Proposition 1.22.

Given differential operators P and Q in K[∂], let us consider the Picard–Vessiot ex-
tensions (EP, ∂P) and (EQ, ∂Q) of Σ for the equations P(y) = 0 and Q(y) = 0, respectively,
whose field of constants is C. As a consequence, K[∂] can be included in EP[∂P] and Q can
be naturally extended to act on EP. Analogously, P can be naturally extended to act on EQ.

We give next a proof of Poisson’s formula in [43], Theorem 5 using the strategy of E.
Previato in [27]. Given a fundamental system of solutions ψ1, . . . , ψn of P(y) = 0 in (EP, ∂P),
we denote its Wronskian matrix by

W(ψi) =


ψ1 · · · ψn

∂P(ψ1) · · · ∂P(ψn)
...

. . .
...

∂n−1
P (ψ1) · · · ∂n−1

P (ψn)

.

Note that the natural extension of Q to (EP, ∂P) allows us to consider its action on solutions
of P(y) = 0 and to write Q(ψi). Analogously, the action of P on solutions of Q(y) = 0 is
naturally defined.

Theorem A4 (Poisson’s Formula). Let us consider differential operators P and Q in K[∂] of
orders n and m, and leading coefficients an and bm, respectively. Given fundamental systems of
solutions ψ1, . . . , ψn of P(y) = 0 in EP and ϕ1, . . . , ϕm of Q(y) = 0 in EQ then

∂Res(P, Q) = am
n

det W(Q(ψi))

det W(ψi)
= (−1)mnbn

m
det W(P(ϕi))

det W(ϕi)
. (A12)

Proof. Let us consider the following decomposition of the Sylvester matrix:

S0(P, Q) =

(
M1 M2
M3 M4

)
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where M1 is an upper triangular m × m matrix with an in the main diagonal. By the
following matrix manipulation, where In is the identity matrix of size n and 0 is the zero
matrix of the appropriate size,(

M1 M2
M3 M4

)(
M−1

1 −M−1
1 M2

0 In

)
=

(
Im 0

M3M−1
1 M4 − M3M−1

1 M2

)
we obtain that

∂Res(P, Q) = am
n det(M4 − M3M−1

1 M2). (A13)

From the action of the system Ξ0 on the fundamental system of solutions {ψi}, we obtain

W(Q(ψi)) = (M4 − M3M−1
1 M2)W(ψi). (A14)

Taking determinants in (A14), the first part of formula (A12) follows.

We are ready to review Theorem A5.

Theorem A5 (Resultant Theorem). Let us consider differential operators P and Q in K[∂]. Let E
be a Picard–Vessiot extension of Σ for P(y) = 0 (or Q(y) = 0). Then the system

P(y) = 0 , Q(y) = 0 (A15)

has a nontrivial solution in E if and only if ∂Res(P, Q) = 0.

Proof. Let us consider a fundamental system of solutions ψ1, . . . , ψn of P(y) = 0 in (EP, ∂P),
whose field of constants is C. Thus, V = ⊕iCψi ⊂ EP is the solution set of P(y) = 0. A
nontrivial solution of the system (A15) in EP is therefore a nonzero ψ ∈ V such that
Q(ψ) = 0.

By Poisson’s formula, ∂Res(P, Q) = 0 if and only if det(W(Q(ψi))) = 0. Equivalently,
the columns of W(Q(ψi)) must be linearly dependent over C, namely for some ci ∈ C, not
all zero,

∑
i

ci∂
j
P(Q(ψi)) = 0, j = 0, 1, . . . , n − 1.

In other words, det(W(Q(ψi))) = 0 is equivalent to the existence of a nonzero ψ = ∑i ciψi
in V such that Q(ψ) = 0.

Remark A1. Observe that as a result of Theorems A2 and A5, the differential operators P and Q
have a common factor F in K[∂] if and only if they have a non-trivial solution in EP ∩ EQ.
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