
Citation: Li, F.; Yang, L.; Wang, H.

Analytic Solutions for Hilfer Type

Fractional Langevin Equations with

Variable Coefficients in a Weighted

Space. Axioms 2024, 13, 284. https://

doi.org/10.3390/axioms13050284

Academic Editors: Johnny Henderson,

Sotiris K. Ntouyas and Kamsing

Nonlaopon

Received: 8 March 2024

Revised: 5 April 2024

Accepted: 17 April 2024

Published: 23 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Article

Analytic Solutions for Hilfer Type Fractional Langevin Equations
with Variable Coefficients in a Weighted Space
Fang Li , Ling Yang and Huiwen Wang *

School of Mathematics, Yunnan Normal University, Kunming 650500, China; fangli860@ynnu.edu.cn (F.L.);
2123080029@ynnu.edu.cn (L.Y.)
* Correspondence: orwang@ustc.edu.cn

Abstract: In this work, analytic solutions of initial value problems for fractional Langevin equations
involving Hilfer fractional derivatives and variable coefficients are studied. Firstly, the equivalence of
an initial value problem to an integral equation is proved. Secondly, the existence and uniqueness of
solutions for the above initial value problem are obtained without a contractive assumption. Finally,
a formula of explicit solutions for the proposed problem is derived. By using similar arguments,
corresponding conclusions for the case involving Riemann–Liouville fractional derivatives and
variable coefficients are obtained. Moreover, the nonlinear case is discussed. Two examples are
provided to illustrate theoretical results.
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1. Introduction

In 1908, Langevin introduced an integer-order equation

mx′′(t) = −λx′(t) + F(t),

where m is the mass of a Brownian particle, x(t) is the particle’s position, −λx′(t) is the
viscous force with coefficient λ and F(t) is the fluctuating force. It is regarded as an effective
tool to describe the evolution of physical phenomena in fluctuating environments [1].

Fractional differential equations are important tools for investigating many practical
problems in physics, chemistry, biology, etc. Many scholars have conducted extensive
research on equations involving Riemann–Liouville or Caputo fractional derivatives—for
details, see [2–5].

For more complex physical phenomena, some researchers have generalized Langevin
equations from integer order to fractional order. In 1996, the above classical Langevin equa-
tion was generalized by Mainardi and Pironi [6] to the fractional Langevin equation (FLE)

x′′(t) +
1
σ

√
a2

ν
D

1
2
0 x′(t) = F(t, x(t)),

where a is the particle’s radius, ν is the fluid’s viscosity, 1
σ is the friction coefficient for unit

mass, F(t, x(t)) = − 1
σ x′(t) + 1

m R(t) and R(t) is a random force.
FLEs have attracted many scholars to study properties of solutions for FLEs—for

instance, the existence and uniqueness of solutions for FLEs with Caputo or Riemann–
Liouville fractional derivatives [7,8], boundary value problems for FLEs [9–12], etc. Baghani
and Nieto [13] studied the following Langevin differential equation with two different
fractional orders:

cDξ(cDν + λ)x(t) = h(t, x(t)).
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In 2000, a fractional derivative operator H Dα,β
a+ (α ∈ (n − 1, n), β ∈ [0, 1]) was intro-

duced by Hilfer, which can be applied to characterize many complicated phenomena in
various engineering and scientific disciplines; for instance, it has applications in regular
variation in thermodynamics, physics and materials (see, e.g., [14]). More applications
can be found in [15,16] and the references therein. When β = 0 or β = 1, H Dα,β

a+ reduces
to RLDα

a+ (Riemann–Liouville fractional derivative operator) or cDα
a+ (Caputo fractional

derivative operator), respectively.
Moreover, we refer to some recent works [17,18] that deal with a qualitative analysis

of FLEs with Hilfer fractional derivatives.
In [17], the authors studied a nonlinear fractional Langevin dynamical system with

impulse as follows:
H Dα1,β

a+ [ H Dα2,β
a+ + A]x(t) = Ku(t) + H(t, x(t)), t ∈ [0, b],

∆I1−γ
0+ x(·)|t=tk = gk(x(t−k )), k = 1, 2, · · · , m,

I1−γ
0+ x(0) = x0, H Dα2,βx(0) = 0, γ = (1 − β)(α1 + α2) + β, t ∈ [0, b].

In [18], the authors investigated the existence and uniqueness of solutions to the
following system of Hilfer FLEs:

H Dα2,β2
a+ [ H Dα1,β1

a+ + λ1]x(t) = f (t, x(t), y(t)), t ∈ [a, b],

H Dp2,q2
a+ [ H Dp1,q1

a+ + λ2]y(t) = g(t, x(t), y(t)), t ∈ [a, b],

x(a) = 0, x(b) =
n
∑

i=1
µi(Iνi y)(ηi),

y(a) = 0, y(b) =
m
∑

j=1
ωj(Iσj x)(ξ j).

Due to the complexity of variable-coefficient functions, it is very hard to obtain repre-
sentations of solutions of FLEs with variable coefficients. Recently, some methods have been
presented to deal with linear fractional differential equations with continuous coefficients,
such as power series methods [19,20] and the Banach fixed point theorem [21]. However,
to the best of our knowledge, there are very few studies on FLEs with Hilfer derivatives
and negative power function coefficients.

Motivated by previous research, in this article, we study the initial value problem (IVP)
for FLEs with Hilfer derivatives and variable coefficients:

H Dα2,β2
a+ ( H Dα1,β1

a+ + λ(t))x(t) + δ(t)x(t) = f (t), t ∈ (a, T], (1)

(I1−γ1
a+ x)(a+) = x0, (2)

where 0 < α2 < γ2 < α1 < γ1, α2 + γ1 > 1, γi = αi + βi(1 − αi)(i = 1, 2) and λ(t) is a
continuous function. More details about δ(t) and f (t) are given later.

The main contribution in this article is presented as follows:

• Using new techniques, we present an explicit representation of solutions to Problems (1)
and (2).

• We obtain the existence and uniqueness of solutions for Problems (1) and (2) without
a contractive assumption.

• We present a nonlinear mixed Fredholm–Volterra integral solution for nonlinear initial
value Problem (22)–(23).

This paper is split into six sections. Some definitions and properties of fractional
derivatives are provided in Section 2. We study the existence and uniqueness of solutions
for the linear case and the nonlinear case in Sections 3 and 4, respectively. In Section 5, we
present two examples to illustrate our results and provide an approximate result. Finally,
in Section 6, we present the conclusions.
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2. Preliminaries

Firstly, we recall the basic definitions and properties of fractional derivatives and
weighted spaces.

Definition 1 ([5]). Let α ∈ (0, 1). The Riemann–Liouville fractional integral Iα
a+ f and derivative

RLDα
a+ f are defined by

(Iα
a+ f )(t) =

1
Γ(α)

∫ t

a
(t − s)α−1 f (s)ds, t > a, f ∈ L1(a, b),

( RLDα
a+ f )(t) =

d
dt
(I1−α

a+ f )(t) =
1

Γ(1 − α)

d
dt

∫ t

a
(t − s)−α f (s)ds, t > a, (3)

where Γ(·) is the Gamma function, provided that the right-hand side of (3) exists.

Definition 2 ([14]). The left-sided Hilfer fractional derivative of order α ∈ (0, 1) and type
β ∈ [0, 1] of f (t) is defined by

H Dα,β
a+ f (t) = Iγ−α

a+
d
dt

I1−γ
a+ f (t) = Iγ−α

a+
RLDγ

a+ f (t), (4)

where γ = α + β(1 − α), provided that the expression on the right-hand side exists.

A modified Hilfer derivative was presented in [20].

Definition 3 ([20]). The left-sided Hilfer fractional derivative of order α ∈ (0, 1) and type
β ∈ [0, 1] of f (t) is defined by

H Dα,β
a+ f (t) = RLD1−γ+α

a+ [(I1−γ
a+ f )(t)− (I1−γ

a+ f )(a+)], (5)

where γ = α + β(1 − α), provided that the right-hand side exists.

It is not difficult to see that the conditions to guarantee the existence of the Riemann–
Liouville derivative in (5) are weaker than those needed for the Hilfer fractional derivative
in (4) [20].

Definition 4 ([5,22]). Let σ ∈ [0, 1), ω ∈ (0, 1) and ξ ∈ [0, 1).

(i) C[a, b] is the space of functions x, which are continuous on [a, b] and ∥x∥C = max
t∈[a,b]

|x(t)|.

(ii) The weighted space Cσ[a, b] is defined by

Cσ[a, b] := {x : (a, b] → R; (t− a)σx(t) ∈ C[a, b]} and ∥x∥Cσ
= max

t∈[a,b]

∣∣(t− a)σx(t)
∣∣.

(iii) Cn
σ [a, b] is the weighted space of functions x, which are continuously differentiable on [a, b]

up to order n − 1 and have the derivative of order n on (a, b] such that x(n) ∈ Cσ[a, b]:

Cn
σ [a, b] := {x ∈ Cn−1[a, b]; x(n) ∈ Cσ[a, b], n ∈ N},

with the norm ∥x∥Cn
σ
=

n−1
∑

k=0
∥x(k)∥C + ∥x(n)∥Cσ

.

(iv) We denote the weighted space

Cω,RL
σ,ξ [a, b] = {x ∈ Cσ[a, b]; RLDω

a+x ∈ Cξ [a, b]},
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with the norm ∥x∥Cω,RL
σ,ξ

= ∥x∥Cσ
+ ∥RLDω

a+x∥Cξ
. When ξ = σ, Cω,RL

σ,σ [a, b] is denoted by

Cω,RL
σ [a, b].

(v) We denote the weighted space

Cα,β
σ,ξ [a, b] = {x ∈ Cσ[a, b]; H Dα,β

a+ x ∈ Cξ [a, b]},

with the norm ∥x∥
Cα,β

σ,ξ
= ∥x∥Cσ

+ ∥H Dα,β
a+ x∥Cξ

. When ξ = σ, Cα,β
σ,σ[a, b] is denoted by

Cα,β
σ [a, b].

Clearly, C0[a, b] = C[a, b]. We abbreviate C[a, b], Cσ[a, b], Cn
σ [a, b], Cω,RL

σ [a, b], Cω,RL
σ,ξ [a, b],

Cα,β
σ [a, b] and Cα,β

σ, ξ [a, b] to C, Cσ, Cn
σ , Cω,RL

σ , Cω,RL
σ,ξ , Cα,β

σ and Cα,β
σ,ξ respectively.

Lemma 1 ([5]). If ω ∈ (0, 1) and σ ∈ [0, 1), then Iω
a+ is bounded from Cσ into Cσ.

Lemma 2 ([5]). Let 0 < ω < σ < 1 and y ∈ Cσ; then, (Iω
a+y

)
(t) ∈ Cσ−ω.

Lemma 3 ([5]). Let σ ∈ [0, 1), σ ≤ ω and y ∈ Cσ; then, (Iω
a+y

)
(t) ∈ C.

Lemma 4. Let 0 ≤ σ < ω < 1 and y ∈ Cσ; then,
(

Iω
a+y

)
(a+) = lim

t→a+

(
Iω
a+y

)
(t) = 0.

Lemma 5 ([5]). Let ω1, ω2 > 0, 0 ≤ σ < 1. Then, for φ ∈ Cσ, the following assertions are valid.

(Iω1
a+ Iω2

a+ φ)(t) = (Iω1+ω2
a+ φ)(t),

( RLDω1
a+ Iω1

a+ φ)(t) = φ(t),

( RLDω2
a+ Iω1

a+ φ)(t) = ( Iω1−ω2
a+ φ)(t), for ω1 > ω2.

Lemma 6 ([5]). Let σ ∈ [0, 1) and ω ∈ (0, 1). If y ∈ Cσ and I1−ω
a+ y ∈ C1

σ, then

(
Iω
a+

RLDω
a+y

)
(t) = y(t)−

(I1−ω
a+ y)(a+)

Γ(ω)
(t − a)ω−1. (6)

Lemma 7 ([5]). Let 0 ≤ σ < 1. The space C1
σ[a, b] consists of those and only those functions g,

which are represented in the form

g(t) =
∫ t

a
φ(s)ds + c,

where φ ∈ Cσ and c = g(a).

Theorem 1. Let ω, σ, ξ ∈ (0, 1). If y ∈ Cσ and I1−ω
a+ y ∈ C1

ξ , then

(
Iω
a+

RLDω
a+y

)
(t) = y(t)−

(I1−ω
a+ y)(a+)

Γ(ω)
(t − a)ω−1.

Proof. Since I1−ω
a+ y ∈ C1

ξ , from Lemma 7, there exists φ ∈ Cξ such that

(I1−ω
a+ y)(t) =

∫ t

a
φ(s)ds + c,

where c = (I1−ω
a+ y)(a+). Thus,

I1−ω
a+ [y(t)− (Iω

a+ φ)(t)− c(t − a)ω−1

Γ(ω)
] = 0,
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then

y(t) = (Iω
a+ φ)(t) +

c(t − a)ω−1

Γ(ω)
. (7)

Moreover, note that

(
Iω
a+

RLDω
a+y

)
(t) = Iω

a+(
d
dt

I1−ω
a+ y)(t) = (Iω

a+ φ)(t)

and, combining with (7), we obtain the result.

Theorem 2. Let y ∈ Cα,β
1−γ(β ̸= 0); then,

(
Iα
a+

H Dα,β
a+ y

)
(t) = y(t)−

(I1−γ
a+ y)(a+)

Γ(γ)
(t − a)γ−1.

Proof. Since y ∈ Cα,β
1−γ, we can see that y ∈ C1−γ and H Dα,β

a+ y(t) ∈ C1−γ, then

Iγ−α
a+ [(I1−γ

a+ y)(t)− (I1−γ
a+ y)(a+)] ∈ C1

1−γ

and

{Iγ−α
a+ [(I1−γ

a+ y)(t)− (I1−γ
a+ y)(a+)]}(a+) = 0. (8)

From Lemma 6, it follows that

I1−γ+α
a+

RLD1−γ+α
a+ [(I1−γ

a+ y)(t)− (I1−γ
a+ y)(a+)] = (I1−γ

a+ y)(t)− (I1−γ
a+ y)(a+),

thus, (
Iα
a+

H Dα,β
a+ y

)
(t) = Iα

a+
RLD1−γ+α

a+ [(I1−γ
a+ y)(t)− (I1−γ

a+ y)(a+)]

= RLD1−γ
a+ I1−γ+α

a+
RLD1−γ+α

a+ [(I1−γ
a+ y)(t)− (I1−γ

a+ y)(a+)]

= RLD1−γ
a+ [(I1−γ

a+ y)(t)− (I1−γ
a+ y)(a+)]

= y(t)−
(I1−γ

a+ y)(a+)
Γ(γ)

(t − a)γ−1.

3. Equivalence with an Integral Equation

We consider the following IVP for FLEs with Hilfer derivatives and variable coefficients:
H Dα2,β2

a+ ( H Dα1,β1
a+ + λ(t))x(t) + δ(t)x(t) = f (t), t ∈ (a, T], (9)

(I1−γ1
a+ x)(a+) = x0. (10)

We define the following constants ν, µ > 0 such that

α2 < µ < 1 − γ1 + α2; 0 < ν < µ + γ1 − 1. (11)

Theorem 3. Let δ(t) ∈ Cν and f (t) ∈ Cµ; then, x ∈ Cα1,β1
1−γ1

satisfies (9) and (10) if and only if x
satisfies the following equation

x(t) = −Iα1
a+ [λ(t)x(t) + Iα2

a+(δ(t)x(t))] + Iα1+α2
a+ f (t) +

(t − a)γ1−1

Γ(γ1)
x0. (12)
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Proof. Let x ∈ Cα1,β1
1−γ1

satisfy (9) and (10); then, H Dα1,β1
a+ x(t) + λ(t)x(t) ∈ Cα2,β2

1−γ1,µ, from
Lemma 4, {

I1−γ2
a+ [ H Dα1,β1

a+ x(t) + λ(t)x(t)]
}
(a+) = 0.

Thus,

H Dα2,β2
a+ [ H Dα1,β1

a+ x(t) + λ(t)x(t)] = RLD1−γ2+α2
a+ I1−γ2

a+ [ H Dα1,β1
a+ x(t) + λ(t)x(t)]

=
d
dt

I1−α2
a+ [ H Dα1,β1

a+ x(t) + λ(t)x(t)] ∈ Cµ.

By Theorem 1,

Iα2
a+

H Dα2,β2
a+ [ H Dα1,β1

a+ x(t) + λ(t)x(t)] = Iα2
a+

RLDα2
a+ [

H Dα1,β1
a+ x(t) + λ(t)x(t)]

= H Dα1,β1
a+ x(t) + λ(t)x(t). (13)

Applying Iα2
a+ to (9) and in view of (13), one obtains

H Dα1,β1
a+ x(t) + λ(t)x(t) + Iα2

a+(δ(t)x(t)) = Iα2
a+ f (t). (14)

By Theorem 2, we obtain

Iα1
a+

H Dα1,β1
a+ x(t) = x(t)− (t − a)γ1−1

Γ(γ1)
x0.

Applying Iα1
a+ to (14), one obtains

x(t) = −Iα1
a+ [λ(t)x(t) + Iα2

a+(δ(t)x(t))] + Iα1+α2
a+ f (t) +

(t − a)γ1−1

Γ(γ1)
x0,

which means that x(t) satisfies (12).
If x(t) satisfies (12), then

I1−γ1
a+ x(t)− x0 = I1−γ1+α1

a+
[
− λ(t)x(t)− Iα2

a+(δ(t)x(t)) + Iα2
a+ f (t)

]
.

Clearly, (I1−γ1
a+ x)(a+) = x0 and

RLD1−γ1+α1
a+ [I1−γ1

a+ x(t)− x0] = −[λ(t)x(t) + Iα2
a+(δ(t)x(t))] + Iα2

a+ f (t) ∈ C1−γ1 .

Hence, H Dα1,β1
a+ x(t) exists and belongs to C1−γ1 . Then,

H Dα1,β1
a+ x(t) + λ(t)x(t) = Iα2

a+
[
− δ(t)x(t) + f (t)

]
∈ C1−γ1 ,

which implies

RLD1−γ2+α2
a+ I1−γ2

a+ [ H Dα1,β1
a+ x(t) + λ(t)x(t)] = RLD1−γ2+α2

a+ I1−γ2+α2
a+

[
− δ(t)x(t) + f (t)

]
= −δ(t)x(t) + f (t).

Taking into account the fact that I1−γ2
a+ Iα2

a+
[
− δ(t)x(t) + f (t)

]
(a+) = 0 and Definition 3,

we obtain
H Dα2,β2

a+ [ H Dα1,β1
a+ x(t) + λ(t)x(t)] = −δ(t)x(t) + f (t),

this yields (9). The results are proved completely.
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Theorem 4. Let δ(t) ∈ Cν and f (t) ∈ Cµ. Then, there exists a unique solution x(t) ∈ Cα1,β1
1−γ1

to
Problems (9) and (10) given by

x(t) =
∞

∑
k=0

(−1)k(T kΦ)(t),

where

(T z)(t) :=
{[

Iα1
a+λ(·) + Iα1+α2

a+ δ(·)
]
z
}
(t), for z ∈ C1−γ1 ,

Φ(t) :=
(t − a)γ1−1

Γ(γ1)
x0 + Iα1+α2

a+ f (t).

Proof. We define an operator F : C1−γ1 → C1−γ1 as follows:

(Fx)(t) = −Iα1
a+ [λ(t)x(t) + Iα2

a+(δ(t)x(t))] + Iα1+α2
a+ f (t) +

(t − a)γ1−1

Γ(γ1)
x0.

It is easy to see that F is a well-defined operator whose fixed point determines the
solution of Equation (12).∫ t

a
(t − s)θ1−1(s − a)θ2−1ds = (t − a)θ1+θ2−1 · Γ(θ1)Γ(θ2)

Γ(θ1 + θ2)
, 0 < θ1, θ2 < 1,

for x, x̃ ∈ C1−γ1 , we have

(t − a)1−γ1 |(Fx)(t)− (F x̃)(t)|

≤ (t − a)1−γ1
[ (T − a)ν∥λ∥C

Γ(α1)
+

(T − a)α2∥δ∥Cν

Γ(α1 + α2)

] ∫ t

a
(t − s)α1−1(s − a)γ1−ν−1ds · ∥x − x̃∥C1−γ1

= (t − a)α1−ν ΛΓ(γ1 − ν)

Γ(α1 + γ1 − ν)
· ∥x − x̃∥C1−γ1

, (15)

where Λ := (T − a)ν∥λ∥C + Γ(α1)(T−a)α2

Γ(α1+α2)
∥δ∥Cν

. Furthermore, we find

(t − a)1−γ1 |(F 2x)(t)− (F 2 x̃)(t)|

≤ (t − a)1−γ1
[ (T − a)ν∥λ∥C

Γ(α1)
+

(T − a)α2∥δ∥Cν

Γ(α1 + α2)

] ∫ t

a
(t − s)α1−1(s − a)−ν|(Fx)(s)− (F x̃)(s)|ds

≤ ΛΓ(γ1 − ν)(t − a)1−γ1

Γ(α1 + γ1 − ν)

[ (T − a)ν∥λ∥C
Γ(α1)

+
(T − a)α2∥δ∥Cν

Γ(α1 + α2)

]
·
∫ t

a
(t − s)α1−1(s − a)γ1+α1−2ν−1ds · ∥x − x̃∥C1−γ1

= Λ2
1

∏
i=0

Γ(i(α1 − ν) + γ1 − ν)

Γ(i(α1 − ν) + α1 + γ1 − ν)
(t − a)2(α1−ν) · ∥x − x̃∥C1−γ1

. (16)

By induction, we deduce that

(t − a)1−γ1 |(F kx)(t)− (F k x̃)(t)| ≤ Λk(T − a)k(α1−ν)
k−1

∏
i=0

Γ(i(α1 − ν) + γ1 − ν)

Γ(i(α1 − ν) + α1 + γ1 − ν)
· ∥x − x̃∥C1−γ1

.

We write

dk =
k−1

∏
i=0

Γ(i(α1 − ν) + γ1 − ν)

Γ(i(α1 − ν) + α1 + γ1 − ν)
, k = 1, 2, · · · ,
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and from [23] (5.2.13), it follows that

lim
k→∞

k ln k
ln( 1

dk
)
=

1
α1

.

When k is sufficiently large, the right-hand side of (16) is less than L∥x − x̃∥C1−γ1
(L ∈

(0, 1)). By the generalized Banach fixed point theorem, F has a unique fixed point x ∈ C1−γ1
satisfying (12). Then, the following sequence {xn} is convergent in C1−γ1 :{

x0(t) = Φ(t),
xn(t) = x0(t)− (T xn−1)(t), n = 1, 2, · · · .

Furthermore, we find

x1(t) = x0(t)− (T x0)(t),

x2(t) = x0(t) +
2

∑
k=1

(−1)k(T kx0)(t),

· · ·

xn(t) = x0(t) +
n

∑
k=1

(−1)k(T kx0)(t).

Taking the limit as n → ∞ in the last identity, we arrive at

x(t) = lim
n→∞

n

∑
k=0

(−1)k(T kΦ)(t) =
∞

∑
k=0

(−1)k(T kΦ)(t)

and x(t) is the unique solution of (9) and (10).

Next, we consider the following IVP for FLEs with Riemann–Liouville derivatives.{ RLDα2
a+ [

RLDα1
a+ + λ(t)]x(t) + δ(t)x(t) = f (t), t ∈ (a, T], (17)

(I1−α1
a+ x)(a+) = x0. (18)

In this case, the constants µ, ν satisfy α2 < µ < 1 − α1 + α2 and 0 < ν < µ + α1 − 1.

Theorem 5. Let δ(t) ∈ Cν and f (t) ∈ Cµ; then, x ∈ Cα1,RL
1−α1

satisfies (17) and (18) if and only if x
satisfies the following equation:

x(t) = −Iα1
a+ [λ(t)x(t) + Iα2

a+(δ(t)x(t))] + Iα1+α2
a+ f (t) +

(t − a)α1−1

Γ(α1)
x0. (19)

Proof. Let x ∈ Cα1,RL
1−α1

satisfy (17) and (18); then, RLDα1
a+x(t) + λ(t)x(t) ∈ Cα2,RL

1−α1,µ. From
Lemma 4, one has {

I1−α2
a+ [ RLDα1

a+x(t) + λ(t)x(t)]
}
(a+) = 0,

and

RLDα2
a+ [

RLDα1
a+x(t) + λ(t)x(t)] =

d
dt

I1−α2
a+ [ RLDα1

a+x(t) + λ(t)x(t)] ∈ Cµ.

By Theorem 1, we have

Iα2
a+

RLDα2
a+ [

RLDα1
a+x(t) + λ(t)x(t)] = RLDα1

a+x(t) + λ(t)x(t). (20)
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Applying Iα2
a+ to (17) and taking (20) into account, one obtains

RLDα1
a+x(t) + λ(t)x(t) + Iα2

a+(δ(t)x(t)) = Iα2
a+ f (t). (21)

Applying Iα1
a+ to (21) and in view of Lemma 6, one obtains

x(t) = −Iα1
a+ [λ(t)x(t) + Iα2

a+(δ(t)x(t))] + Iα1+α2
a+ f (t) +

(t − a)α1−1

Γ(α1)
x0,

which means that x(t) satisfies (19).
If x(t) satisfies (19), then

I1−α1
a+ x(t) = I1

a+
[
− λ(t)x(t)− Iα2

a+(δ(t)x(t)) + Iα2
a+ f (t)

]
+ x0.

Obviously, (I1−α1
a+ x)(a+) = x0 and

d
dt

I1−α1
a+ x(t) =

[
− λ(t)x(t)− Iα2

a+(δ(t)x(t)) + Iα2
a+ f (t)

]
∈ C1−α1 ,

which means that RLDα1
a+x(t) exists and belongs to C1−α1 . Hence,

RLDα1
a+x(t) + λ(t)x(t) = −Iα2

a+(δ(t)x(t)) + Iα2
a+ f (t),

then
RLDα2

a+ [
RLDα1

a+x(t) + λ(t)x(t)] = −δ(t)x(t) + f (t),

which yields (17). The proof is complete.

Similar to the arguments of Theorem 4, we have the following conclusion.

Theorem 6. For α2 < µ < 1 − α1 + α2 and 0 < ν < µ + α1 − 1, if δ(t) ∈ Cν and f (t) ∈ Cµ,
then there exists a unique solution x(t) ∈ Cα1,RL

1−α1
to the following IVP{

RLDα2
a+ [

RLDα1
a+ + λ(t)]x(t) + δ(t)x(t) = f (t), t ∈ (a, T],

(I1−α1
a+ x)(a+) = x0,

and this solution has the form

x(t) =
∞

∑
k=0

(−1)k(T kΨ)(t),

where

Ψ(t) :=
(t − a)α1−1

Γ(α1)
x0 + Iα1+α2

a+ f (t).

4. Nonlinear Case

We consider the following IVP for nonlinear FLEs with Hilfer derivatives and variable
coefficients:

H Dα2,β2
a+ ( H Dα1,β1

a+ + λ(t))x(t) + δ(t)x(t) = f (t, (Iη
a+x)(t)), t ∈ (a, T], (22)

(I1−γ1
a+ x)(a+) = x0, (23)

where µ < η < 1.
We define the constants ν, µ > 0 as (11) and let δ(t) ∈ Cν. Similar to the arguments of

Theorem 3, we have the following result.
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Theorem 7. Let f (t, y(t)) ∈ Cµ for any y ∈ Cµ; then, x ∈ Cα1,β1
1−γ1

satisfies (22) and (23) if and
only if x satisfies the following equation:

x(t) = −Iα1
a+ [λ(t)x(t) + Iα2

a+(δ(t)x(t))] + Iα1+α2
a+ f (t, (Iη

a+x)(t)) +
(t − a)γ1−1

Γ(γ1)
x0. (24)

Set the operator G : C1−γ1 → C1−γ1 as follows:

(Gx)(t) = −Iα1
a+ [λ(t)x(t) + Iα2

a+(δ(t)x(t))] + Iα1+α2
a+ f (t, (Iη

a+x)(t)) +
(t − a)γ1−1

Γ(γ1)
x0,

clearly, G is a well-defined operator, whose fixed point is the solution of Equation (24).

Theorem 8. Let f (t, y(t)) ∈ Cµ for any y ∈ Cµ. If there exists a non-negative function l(t) ∈ Cµ

such that
| f (t, y(t))− f (t, ỹ(t))| ≤ l(t)|y(t)− ỹ(t)|,

then problem (22)–(23) have a unique solution x(t) ∈ Cα1,β1
1−γ1

given by (24).

Proof. For x, x̃ ∈ C1−γ1 , note that

| f (t, (Iη
a+x)(t))− f (t, (Iη

a+ x̃)(t))|

≤
(t − a)−µ∥l∥Cµ

Γ(η)

∫ t

a
(t − s)η−1(s − a)γ1−1ds · ∥x − x̃∥C1−γ1

=
(t − a)η+γ1−µ−1Γ(γ1)∥l∥Cµ

Γ(γ1 + η)
· ∥x − x̃∥C1−γ1

,

We have

(t − a)1−γ1 |Iα1+α2
a+ f (t, (Iη

a+x)(t))− Iα1+α2
a+ f (t, (Iη

a+ x̃)(t))|

≤
(t − a)1−γ1∥l∥Cµ

Γ(γ1)(T − a)α2+η−µ+ν

Γ(α1 + α2)Γ(γ1 + η)

∫ t

a
(t − s)α1−1(s − a)γ1−ν−1ds · ∥x − x̃∥C1−γ1

=
Λ̃(t − a)α1−νΓ(γ1 − ν)

Γ(α1 + γ1 − ν)
· ∥x − x̃∥C1−γ1

,

where Λ̃ =
∥l∥Cµ Γ(α1)Γ(γ1)(T−a)α2+η−µ+ν

Γ(α1+α2)Γ(γ1+η)
. Combining with (15), we obtain

(t − a)1−γ1 |(Gx)(t)− (Gx̃)(t)| ≤ M(t − a)α1−νΓ(γ1 − ν)

Γ(α1 + γ1 − ν)
· ∥x − x̃∥C1−γ1

,

where M := Λ + Λ̃. By similar arguments of Theorem 4 and induction, we deduce that

(t − a)1−γ1 |(Gkx)(t)− (Gk x̃)(t)| ≤ Mk(T − a)k(α1−ν)
k−1

∏
i=0

Γ(i(α1 − ν) + γ1 − ν)

Γ(i(α1 − ν) + α1 + γ1 − ν)
· ∥x − x̃∥C1−γ1

,

and for sufficiently large k, the right side of the above inequality is smaller than
L̃∥x − x̃∥C1−γ1

(L̃ ∈ (0, 1)). With the help of the generalized Banach fixed point theorem,
x ∈ C1−γ1 satisfying (24) is the unique fixed point of G.
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In particular, we take the following IVP for Hilfer-type fractional Langevin integro-
differential equations with variable coefficients into account:

H Dα2,β2
a+ ( H Dα1,β1

a+ + λ(t))x(t) + l(t)(Iη
a+x)(t) = f (t), t ∈ (a, T], (25)

(I1−γ1
a+ x)(a+) = x0, (26)

where µ < η < 1.

Theorem 9. Let l(t) ∈ Cµ and f (t) ∈ Cµ. Then, there exists a unique solution x(t) ∈ Cα1,β1
1−γ1

to
problem (25)–(26) given by

x(t) =
∞

∑
k=0

(−1)k
[

Iα1
a+λ(·) + Iα1+α2

a+ l(·)Iη
a+

]k[ (t − a)γ1−1

Γ(γ1)
x0 + Iα1+α2

a+ f (t)
]
.

Proof. It follows from Theorem 8 that (25) and (26) have a unique solution

x(t) = −
[

Iα1
a+(λ(t)x(t)) + Iα1+α2

a+ (l(t)Iη
a+x(t))

]
+

(t − a)γ1−1

Γ(γ1)
x0 + Iα1+α2

a+ f (t).

Similar to the arguments of Theorem 4, one has

x(t) =
∞

∑
k=0

(−1)k
[

Iα1
a+λ(·) + Iα1+α2

a+ l(·)Iη
a+

]k[ (t − a)γ1−1

Γ(γ1)
x0 + Iα1+α2

a+ f (t)
]
.

Similar to the arguments of Theorem 4, we can deduce the corresponding conclusions
of the IVP for Riemann–Liouville-type FLEs. We set α2 < µ < 1 − α1 + α2 and 0 < ν <
µ + α1 − 1.

Theorem 10. Let f (t, y(t)) ∈ Cµ for any y ∈ Cµ. If there exists a non-negative function l(t) ∈ Cµ

such that
| f (t, y(t))− f (t, ỹ(t))| ≤ l(t)|y(t)− ỹ(t)|,

then x(t) ∈ Cα1,RL
1−α1

given by

x(t) = −Iα1
a+ [λ(t)x(t) + Iα2

a+(δ(t)x(t))] + Iα1+α2
a+ f (t, (Iη

a+x)(t)) +
(t − a)α1−1

Γ(α1)
x0,

is the unique solution to the following IVP{
RLDα2

a+ [
RLDα1

a+ + λ(t)]x(t) + δ(t)x(t) = f (t, (Iη
a+x)(t)), t ∈ (a, T],

(I1−α1
a+ x)(a+) = x0.

In particular, if δ(t) = 0 and f (t, (Iη
a+x)(t)) = g(t) − l(t)(Iη

a+x)(t), then the explicit
solution x(t) is given by

x(t) =
∞

∑
k=0

(−1)k
[

Iα1
a+λ(·) + Iα1+α2

a+ l(·)Iη
a+

]k[ (t − a)α1−1

Γ(α1)
x0 + Iα1+α2

a+ g(t)
]
.
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5. Applications

Example 1. Consider the following IVP for a Hilfer-type fractional Langevin differential equation
with variable coefficients:

H D
1
4 , 1

5
0+ ( H D

1
2 , 3

5
0+ + t2)x(t) + t−

1
18 x(t) = t−

3
10 , t ∈ (0, T], (27)

(I
1
5
0+x)(0+) = 1. (28)

Taking α1 = 1
2 , α2 = 1

4 , β1 = 3
5 , β2 = 1

5 , λ(t) = t2, δ(t) = t−
1
18 , f (t) = t−

3
10 , x0 = 1,

µ = 3
10 and ν = 1

18 from Theorem 4, it follows that x(t) ∈ C
1
2 , 3

5
1
5

in the form

x(t) =
∞

∑
k=0

(−1)k
[

I
1
2
0+ t2 + I

3
4
0+ t−

1
18

]k[ t−
1
5

Γ( 4
5 )

+ I
3
4
0+ t−

3
10

]
is the unique solution to problem (27)–(28).

Example 2. Consider the following IVP for a Riemann–Liouville-type fractional Langevin integro-
differential equation with variable coefficients:

RLD
1
3
0+(

RLD
4
5
0+ + t)x(t) + t−

1
5 I

1
2
0+x(t) = t−

2
5 , t ∈ (0, 1], (29)

(I
1
5
0+x)(0+) = 1. (30)

Taking α1 = 4
5 , α2 = 1

3 , η = 1
2 , λ(t) = t, δ(t) = 0, l(t) = t−

1
5 , f (t) = t−

2
5 , x0 = 1 and

µ = 2
5 , from Theorem 10 it follows that x(t) ∈ C

4
5 ,RL
1
5

in the form

x(t) =
∞

∑
k=0

(−1)k
[

I
4
5
0+ t + I

17
15
0+ t−

1
5 I

1
2
0+

]k[ t−
1
5

Γ( 4
5 )

+ I
17
15
0+ t−

2
5

]
is the unique solution to problem (29)–(30).

Clearly, the approximate solution xn(t) of problem (27)–(28) can be given by

xn(t) =
n

∑
k=0

(−1)k
[

I
1
2
0+ t2 + I

3
4
0+ t−

1
18

]k[ t−
1
5

Γ( 4
5 )

+ I
3
4
0+ t−

3
10

]
.

Approximate solutions of Problems (27) and (28) evaluated at some points t ∈ (0, 1]
with the step ∆t = 0.01 using different values of n(= 5, 10, 20, 40) are shown in Figure 1.

Figure 1. Approximate solutions for (27) and (28).
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6. Conclusions

In this paper, the existence and uniqueness results of solutions of IVPs for FLEs with
Hilfer derivatives and variable coefficients are obtained in weighted spaces. The variable-
coefficient function δ(t)(∈ Cν) is not necessarily continuous on a closed interval. Our
technique is also useful to solve more general equations. Moreover, the boundary value
problem for corresponding equations can be studied.
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