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Abstract: A new methodology for solving the fuzzy multiobjective optimization problems is pro-
posed in this paper by considering the fusion of cooperative game theory and genetic algorithm. The
original fuzzy multiobjective optimization problem needs to be transformed into a scalar optimiza-
tion problem, which is a conventional optimization problem. Usually, the assignments of suitable
coefficients to the corresponding scalar optimization problem are subjectively determined by the
decision makers. However, these assignments may cause some biases by their subjectivity. Therefore,
this paper proposes a mechanical procedure to avoid this subjective biases. We are going to formulate
a cooperative game using the α-level functions of the multiple fuzzy objective functions. Under this
setting, the suitable coefficients can be determined mechanically by involving the core values of the
cooperative game, which is formulated using the multiple fuzzy objective functions. We shall prove
that the optimal solutions of the transformed scalar optimization problem are indeed the nondomi-
nated solutions of fuzzy multiobjective optimization problem. Since the core-nondominated solutions
will depend on the coefficients that are determined by the core values of cooperative game, there
will be a lot of core-nondominated solutions that will also depend on the corresponding coefficients.
In order to obtain the best core-nondominated solution, we shall invoke the genetic algorithms by
evolving the coefficients.

Keywords: fuzzy sets; cooperative games; genetic algorithms; fuzzy multiobjective optimization;
scalar optimization

MSC: 90C29; 03E71

1. Introduction

Bellman and Zadeh [1] initiate the research topic of fuzzy optimization. The main
idea of their approach is to combine the fuzzy goals and fuzzy decision space using the
aggregation operators. Tanaka et al. [2] and Zimmermann [3,4] proposed the concept
of aspiration level to study the linear programming problems and linear multiobjective
programming problems. Herrera et al. [5] also used the concept of aspiration level and
triangular norm (t-norm) to aggregate the fuzzy goals and fuzzy constraints. On the other
hand, by mimicking the probability distribution in stochastic optimization, Buckley [6],
Julien [7] and Luhandjula et al. [8] considered the concept of possibility distribution to
study the fuzzy optimization problems. Inuiguchi [9] also used the so-called possibility
and necessity measures to study the modality constrained optimization problems. Those
approaches were mainly to fuzzify the crisp constraints and crisp objective functions. More
precisely, given the following crisp constraints

ai1x1 + ai2x2 + · · ·+ ainxn ≤ bi for i = 1, · · · , m,

where aij and bi are real numbers, we can fuzzify the crisp constraints as follows

ai1x1 + ai2x2 + · · ·+ ainxn≤̃bi for i = 1, · · · , m,
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where the membership functions are assigned using the aspiration level to describe the
degree of violation for the original crisp constraints. Another method is to fuzzify the real
numbers aij and bi using the possibility distributions.

There is another interesting approach without considering the fuzzification. This kind
of approach mainly takes care of the coefficients of optimization problems. Usually, those
coefficients are auumed to be fuzzy intervals (fuzzy numbers). For instance, the fuzzy
linear programming problem (FLP) is formulated as follows

(FLP) maximize
(

Ã(1) ⊗ 1̃{x1}

)
⊕
(

Ã(2) ⊗ 1̃{x2}

)
⊕ · · · ⊕

(
Ã(n) ⊗ 1̃{xn}

)
subject to bj1x1 + bj2x2 + · · ·+ bjnxn ≤ γj for j = 1, · · · , m;

xi ≥ 0 for i = 1, · · · , n,

where the addition ⊕ and multiplication ⊗ of fuzzy intervals are involved and appeared
as the coefficients. Owing to the unexpected fluctuation and turbulence in a uncertain
environment, we sometimes cannot precisely measure the desired data. In this case, the
corresponding optimization problems cannot be precisely formulated, since the data appear
to be uncertain. Therefore, the reasonable way is to consider the fuzzy intervals or fuzzy
numbers to be the coefficients of these optimization problems. In other words, the fuzzy
optimization problems can be formulated such that the coefficients are assumed to be fuzzy
intervals or fuzzy numbers. This kind of approach seems to become a mainstream of the
topic of fuzzy optimization.

Regarding the fuzzy coefficients and using the Hukuhara derivative, Wu [10–13] studied
the duality theorems and optimality conditions for fuzzy optimization problems. The so-
called generalized Hukuhara derivative was adopted by Chalco-Cano et al. [14] to extend
the Karush–Kuhn–Tucker optimality conditions for fuzzy optimization problems with fuzzy
coefficients. The concept of generalized convexity was also considered by Li et al. [15] to study
the optimality conditions of fuzzy optimization problems. On the other hand, regarding the
issue of numerical methods, Chalco-Cano et al. [16] and Pirzada and Pathak [17] proposed
the so-called Newton method to solve the fuzzy optimization problems.

The multiobjective programming problems with fuzzy objective functions was studied
by Luhandjula [18] in which the approach of defuzzification was adopted. An interactive
method was proposed by Yano [19] to solve the multiobjective linear programming prob-
lems in which fuzzy coefficients were considered in the objective functions. Regarding the
applications of fuzzy multiobjective optimization problem, Ebenuwa et al. [20] proposed
a multi-objective design optimization approach for the optimal analysis of buried pipe.
Charles et al. [21] studied a probabilistic fuzzy goal multi-objective supply chain net-
work problem. Roy et al. [22] studied a multiobjective multi-product solid transportation
problem in which the system parameters are assumed to be rough fuzzy variables.

In this paper, we study the fuzzy multiobjective linear programming problem (FMLP)
as follows

(FMLP) maximize
(

H̃(1)(Ã, x
)
, · · · , H̃(u)(Ã, x

))
subject to bj1x1 + bj2x2 + · · ·+ bjnxn ≤ γj for j = 1, · · · , m;

xi ≥ 0 for i = 1, · · · , n,

where the objective functions are fuzzy linear functions given by

H̃(1)
(

Ã(1), x
)
=
(

Ã(11) ⊗ 1̃{x1}

)
⊕
(

Ã(12) ⊗ 1̃{x2}

)
⊕ · · · ⊕

(
Ã(1n) ⊗ 1̃{xn}

)
H̃(2)

(
Ã(2), x

)
=
(

Ã(21) ⊗ 1̃{x1}

)
⊕
(

Ã(22) ⊗ 1̃{x2}

)
⊕ · · · ⊕

(
Ã(2n) ⊗ 1̃{xn}

)
...

H̃(u)
(

Ã(u), x
)
=
(

Ã(u1) ⊗ 1̃{x1}

)
⊕
(

Ã(u2) ⊗ 1̃{x2}

)
⊕ · · · ⊕

(
Ã(un) ⊗ 1̃{xn}

)
.
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In order to introduce the concepts of nondominated solution, we need to propose an
ordering relation among the set of all fuzzy intervals or fuzzy numbers. Using this order-
ing relation, the concept of nondominated solution of fuzzy multiobjective optimization
problems can be defined. One of the main approaches is to transform the original fuzzy
multiobjective optimization problem into a scalar optimization problem by considering the
suitable weights, which is a conventional optimization problem such that the coefficients
are real numbers. Under these settings, the important issue is to show that the optimal
solution of the transformed scalar optimization problem is also a nondominated solution
of the original fuzzy multiobjective optimization problem. This also says that it is sufficient
to just solve the transformed scalar optimization problem. As we can see later, the set
of all nondominated solutions can be a large set, which depends on the weights that are
determined in the step of transformation. In order to find the best nondominated solution,
we are going to design a genetic algorithm by providing a suitable fitness function.

There are many ways to formulate the scalar optimization problem. The issue is
to assign the suitable weights to the fuzzy objective functions. Usually, the weights are
determined by the decision maker using their subjectivity. In order to avoid the possible bias
caused by their subjectivity, this paper considers a cooperative game, which is formulated by
using the fuzzy objective functions. The important assignment of weights are mechanically
determined according to the core values of this formulated cooperative game. This kind of
mechanical assignment can rule out the bias caused by the intuition that are believed by
the decision-makers for determining the weights.

Game theory mainly concerns the behavior of players like cooperation or non-cooperation
such that the decisions determined by the players may affect each other. The pioneering
work was initiated by von Neumann and Morgenstern [23]. Nash [24] proposed the concept
of a two-person cooperative game in which the concept of Nash equilibrium was proposed.
Another solution concept called monotonic solutions was proposed by Young [25]. The
monographs by Barron [26], Branzei et al. [27], Curiel [28], González-Díaz et al. [29] and
Owen [30] also provide detailed concepts of game theory. On the other hand, Yu and
Zhang [31] used the generalized triangular fuzzy number to study a cooperative game with
fuzzy payoffs. Three solution concepts called fuzzy cores were defined using the fuzzy
max order.

Jing et al. [32] studied a bi-objective optimization problem, where the multi-benefit
allocation constraints are modeled. The approach by Lokeshgupta and Sivasubramani [33]
treated the two objective functions as a cooperative game with two players. Alternatively,
the approach by Lee [34] treated the two objective functions as a non-cooperative game
with two players and tried to obtain the Nash equilibrium. Meng and Xie [35] formulated
a competitive–cooperative game method to obtain the optimal preference solutions. A
three-objective optimization problem was studied by Li et al. [36] in which a three-players
game was formulated. The approach by Yu et al. [37] and Zhang et al. [38] also formulated
a three-players game. Zhang et al. [38] considered the sub-game perfect Nash equilibrium,
and Yu et al. [37] incorporated the genetic algorithm to obtain the solutions. A four-
objective optimization problem by Chai et al. [39] and a bi-objective optimization problem
by Cao et al. [40] were solved by using the genetic algorithm in which the non-cooperative
game theory was adopted.

Solving the multiobjective optimization problems via genetic algorithms has attracted
attention for a long time. We may refer to the monographs by Deb [41], Osyczka [42], and
Tan et al. [43] for more details on this topic. Also, the topic of fuzzy the multiobjective
optimization problem can refer to the monograph by Sakawa [44]. On the other hand,
Tiwari et al. [45] studied a nonlinear optimization problem in which a genetic algorithm
was proposed to solve the problem.

In Section 2, a multiobjective optimization problem with fuzzy coefficients is intro-
duced, and its nondominated solutions are also defined. In Section 3, the concept of
core values in cooperative games is introduced. In Section 4, the multiple objective func-
tions are formulated as a cooperative game. In Section 5, the suitable coefficients of the
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scalar optimization problem are determined by using the core values of the formulated
cooperative games. The different settings of coefficients can generate the different core-
nondominated solutions. Therefore, in Section 6, an genetic algorithm is designed to find
the best core-nondominated solution by providing a suitable fitness function. Finally, a
practical numerical example is provided in Section 7 to illustrate the possible usage of the
methodology proposed in this paper.

2. Formulation

The fuzzy set Ã in R is defined by a membership function ξ Ã : R→ [0, 1]. The α-level
set of Ã is denoted and defined by

Ãα = {x ∈ R : ξ Ã(x) ≥ α}

for all α ∈ (0, 1]. According to the usual topology of R, the 0-level set Ã0 is defined to be
the closure of the support

{x ∈ R : ξ Ã(x) > 0}.

In other words, the 0-level set Ã0 is defined by

Ã0 = cl({x ∈ R : ξ Ã(x) > 0}).

Then, we have Ãα ⊆ Ãβ for α, β ∈ [0, 1] with α > β.
Given a subset A of R, we can treat it as a fuzzy set 1̃A in R with membership function

defined by

ξ1̃A
(x) =

{
1 for x ∈ A
0 for x ̸∈ A.

In particular, if A is a singleton {a}, then we write 1̃{a}. In other words, each real number
a ∈ R can be identified with the membership function 1̃{a}.

We say that Ã is a fuzzy interval when it is a fuzzy set in R satisfying the follow-
ing conditions.

• Ã is normal; that is, ξ Ã(x) = 1 for some x ∈ R.
• The membership function ξ Ã is quasi-concave and upper semicontinuous.
• The 0-level set Ã0 is a closed and bounded subset of R.

Since Ã is normal, it says that the α-level sets Ãα are nonempty for all α ∈ [0, 1]. We
also see that the α-level sets Ãα of fuzzy interval Ã are bounded closed intervals given by

Ãα = [ÃL
α , ÃU

α ] for all α ∈ [0, 1].

Let FR denote the family of all fuzzy intervals in R. The fuzzy optimization problem
considers the fuzzy-valued functions H̃ : X → FR, which is defined on a nonempty subset
X of Rn. It means that, for each x ∈ X, the function value H̃(x) is a fuzzy interval. Now,
given any fixed α ∈ [0, 1], we can generate two real-valued functions

H̃L
α : X → R and H̃U

α : X → R,

which are defined by

H̃L
α (x) =

(
H̃α(x)

)L
α

and H̃U
α (x) =

(
H̃α(x)

)U
α

.

Given any two fuzzy Ã and B̃ in R, according to the extension principle, the addition
and multiplication between Ã and B̃ are defined by

ξ Ã⊕B̃(z) = sup
{(x,y):z=x+y}

min{ξ Ã(x), ξ B̃(y)}



Axioms 2024, 13, 298 5 of 26

and
ξ Ã⊗B̃(z) = sup

{(x,y):z=x∗y}
min{ξ Ã(x), ξ B̃(y)}.

In this paper, the following fuzzy multiobjective optimization problem (FMOP)

(FMOP) maximize
(

H̃(1)
(

Ã(1), x
)

, · · · , H̃(u)
(

Ã(u), x
))

subject to x ∈ X

is considered, where X is a feasible region and is a subset of Rn, Ã(j) are vectors of fuzzy
intervals and H̃(j)(Ã, x) are the fuzzy objective functions of (FMOP) for j = 1, · · · , u. For
example, we can take

H̃(1)
(

Ã(1), x
)
=
(

Ã(11) ⊗ 1̃{x1}
)
⊕
(

Ã(12) ⊗ 1̃{x2}
)
⊕ · · · ⊕

(
Ã(1n) ⊗ 1̃{xn}

)
H̃(2)

(
Ã(2), x

)
=
(

Ã(21) ⊗ 1̃{x1}
)
⊕
(

Ã(22) ⊗ 1̃{x2}
)
⊕ · · · ⊕

(
Ã(2n) ⊗ 1̃{xn}

)
...

H̃(u)
(

Ã(u), x
)
=
(

Ã(u1) ⊗ 1̃{x1}
)
⊕
(

Ã(u2) ⊗ 1̃{x2}
)
⊕ · · · ⊕

(
Ã(un) ⊗ 1̃{xn}

)
,

where the coefficients Ãrs for r = 1, · · · , u and s = 1, · · · , n are taken to be the fuzzy
intervals. In particular, the fuzzy multiobjective linear programming problem (FMLP) is
formulated below

(FMLP) maximize
(

H̃(1)
(

Ã(1), x
)

, · · · , H̃(u)
(

Ã(u), x
))

subject to bj1x1 + bj2x2 + · · ·+ bjnxn ≤ γj for j = 1, · · · , m;

xi ≥ 0 for i = 1, · · · , n,

where the objective functions are fuzzy-valued functions and the constraint functions are
real-valued functions. The meaning of nondominated solution of problem (FMOP) should
be defined based on an ordering relation among the set of all fuzzy intervals, which is
shown below.

Definition 1. Let Ã and B̃ be two fuzzy intervals in R.

• We define Ã ≼ B̃ when ÃL
α ≤ B̃L

α and ÃU
α ≤ B̃U

α for all α ∈ [0, 1].
• We define Ã ≺ B̃ when Ã ≼ B̃ and there exists α∗ ∈ [0, 1] satisfying

ÃL
α∗ < B̃L

α for all 0 ≤ α ≤ α∗ or ÃU
α∗ < B̃U

α for all α∗ ≤ α ≤ 1.

We see that Ã ≺ B̃ implies Ã ≼ B̃. The ordering relation “≺” is transitive on FR in the
sense of Ã ≺ B̃ and B̃ ≺ C̃ implying Ã ≺ C̃.

Definition 2. Given a feasible solution x∗ ∈ X, when there does not exists another feasible solution
x ∈ X satisfying

H̃(j)
(

Ã(j), x∗
)
≼ H̃(j)

(
Ã(j), x

)
for all j = 1, · · · , u

and
H̃(j∗)

(
Ã(j∗), x∗

)
≺ H̃(j∗)

(
Ã(j∗), x

)
for some j∗ ∈ {1, · · · , u},

this feasible solution x∗ is said to be a nondominated solution of fuzzy multiobjective optimization
problem (FMOP).



Axioms 2024, 13, 298 6 of 26

For convenience, we write

H̃(jL)
α

(
Ã(j), x

)
≡
(

H̃(j)
(

Ã(j), x
))L

α
and H̃(jU)

α

(
Ã(j), x

)
≡
(

H̃(j)
(

Ã(j), x
))U

α

for j = 1, · · · , u and α ∈ [0, 1]. Let Γ = {0 = α1, α2, · · · , αm = 1} be a partition of [0, 1]. For
j = 1, · · · , u, we define the following functions

Hj

(
Ã(j), x

)
= wj1 · H̃

(jL)
α1

(
Ã(j), x

)
+ · · ·+ wjm · H̃

(jL)
αm

(
Ã(j), x

)
+ wj,m+1 · H̃

(jU)
α1

(
Ã(j), x

)
+ · · ·+ wj,2m · H̃

(jU)
αm

(
Ã(j), x

)
(1)

where wjk ≥ 0 for all j = 1, · · · , u and k = 1, · · · , 2m satisfying

u

∑
j=1

2m

∑
k=1

wjk = 1.

The following scalar optimization problem

(SOP) maximize H1

(
Ã(1), x

)
+ H2

(
Ã(2), x

)
+ · · ·+ Hu

(
Ã(u), x

)
subject to x ∈ X

is considered. The nondominated solutions of problem (FMOP) can be obtained by follow-
ing the theorem presented below.

Theorem 1. For wjk > 0 for all j = 1, · · · , u and k = 1, · · · , 2m, If x∗ is an optimal solution of
problem (SOP), then it is also a nondominated solution of problem (FMOP).

Proof. Assume that x∗ is not a nondominated solution of problem (FMOP). Then, we want
to lead to a contradiction. In this case, there exists x† satisfying

H̃(j)
(

Ã(j), x∗
)
≼ H̃(j)

(
Ã(j), x†

)
for all j = 1, · · · , u

and
H̃(j∗)

(
Ã(j∗), x∗

)
≺ H̃(j∗)

(
Ã(j∗), x†

)
for some j∗ ∈ {1, · · · , u}.

For j = 1, · · · , u and α ∈ [0, 1], by referring to (1), we have

H̃(jL)
α

(
Ã(j), x∗

)
≤ H̃(jL)

α

(
Ã(j), x†

)
and H̃(jU)

α

(
Ã(j), x∗

)
≤ H̃(jU)

α

(
Ã(j), x†

)
,

which imply
Hj

(
Ã(j), x∗

)
≤ Hj

(
Ã(j), x†

)
for all j = 1, · · · , u. (2)

Since H̃(j∗)(Ã(j∗), x∗) ≺ H̃(j∗)(Ã(j∗), x†), the following conditions are satisfied.

• For α ∈ [0, 1], we have

H̃(j∗L)
α

(
Ã(j∗), x∗

)
≤ H̃(j∗L)

α

(
Ã(j∗), x†

)
and H̃(j∗U)

α

(
Ã(j∗), x∗

)
≤ H̃(j∗U)

α

(
Ã(j∗), x†

)
. (3)

• There exists α∗ ∈ [0, 1] satisfying

H̃(j∗L)
α∗

(
Ã(j∗), x∗

)
< H̃(j∗L)

α

(
Ã(j∗), x†

)
for all 0 ≤ α ≤ α∗ (4)

or
H̃(j∗U)

α∗

(
Ã(j∗), x∗

)
< H̃(j∗U)

α

(
Ã(j∗), x†

)
for all α∗ ≤ α ≤ 1. (5)

We want to show that the following conditions are satisfied.
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• For i = 1, · · · , m, we have

H̃(j∗L)
αi

(
Ã(j∗), x∗

)
≤ H̃(j∗L)

αi

(
Ã(j∗), x†

)
and H̃(j∗U)

αi

(
Ã(j∗), x∗

)
≤ H̃(j∗U)

αi

(
Ã(j∗), x†

)
.

• There exists αr ∈ Γ satisfying

H̃(j∗L)
αr

(
Ã(j∗), x∗

)
< H̃(j∗L)

αr

(
Ã(j∗), x†

)
or H̃(j∗U)

αr

(
Ã(j∗), x∗

)
< H̃(j∗U)

αr

(
Ã(j∗), x†

)
.

Using (3), it follows

H̃(j∗L)
αi

(
Ã(j∗), x∗

)
≤ H̃(j∗L)

αi

(
Ã(j∗), x†

)
and H̃(j∗U)

αi

(
Ã(j∗), x∗

)
≤ H̃(j∗U)

αi

(
Ã(j∗), x†

)
for all i = 1, · · · , m. Since Γ is a partition of [0, 1], we consider the following cases.

• Using (4), there exists αr ∈ Γ satisfying αr ≤ α∗ and

H̃(j∗L)
αr

(
Ã(j∗), x∗

)
≤ H̃(j∗L)

α∗

(
Ã(j∗), x∗

)
< H̃(j∗L)

αr

(
Ã(j∗), x†

)
• Using (5), there exists αr ∈ Γ satisfying αr ≥ α∗ and

H̃(j∗U)
αr

(
Ã(j∗), x∗

)
≤ H̃(j∗U)

α∗

(
Ã(j∗), x∗

)
< H̃(j∗U)

αr

(
Ã(j∗), x†

)
.

Therefore, we conclude that there exists αr ∈ Γ satisfying

H̃(j∗L)
αr

(
Ã(j∗), x∗

)
< H̃(j∗L)

αr

(
Ã(j∗), x†

)
or H̃(j∗U)

αr

(
Ã(j∗), x∗

)
< H̃(j∗U)

αr

(
Ã(j∗), x†

)
.

Since each wjk > 0, we have

wj∗1 · H̃
(j∗L)
α1

(
Ã(j∗), x∗

)
+ · · ·+ wj∗m · H̃

(j∗L)
αm

(
Ã(j∗), x∗

)
+ wj∗ ,m+1 · H̃

(j∗U)
α1

(
Ã(j∗), x∗

)
+ · · ·+ wj∗ ,2m · H̃

(j∗U)
αm

(
Ã(j∗), x∗

)
< wj∗1 · H̃

(j∗L)
α1

(
Ã(j∗), x†

)
+ · · ·+ wj∗m · H̃

(j∗L)
αm

(
Ã(j∗), x†

)
+ wj∗ ,m+1 · H̃

(j∗U)
α1

(
Ã(j∗), x†

)
+ · · ·+ wj∗ ,2m · H̃

(j∗U)
αm

(
Ã(j∗), x†

)
,

which also says

Hj∗
(

Ã(j∗), x∗
)
< Hj∗

(
Ã(j∗), x†

)
for some j∗ ∈ {1, · · · , u}.

Using (2), we obtain

H1

(
Ã(1), x∗

)
+ H2

(
Ã(2), x∗

)
+ · · ·+ Hu

(
Ã(u), x∗

)
< H1

(
Ã(1), x†

)
+ H2

(
Ã(2), x†

)
+ · · ·+ Hu

(
Ã(u), x†

)
.

Since x∗ is an optimal solution of problem (SOP), we lead to a contradiction. This completes
the proof.

The assignment of coefficients wjk for j = 1, · · · , u and k = 1, · · · , 2m are frequently
determined by the decision makers via intuition. We may argue that this kind of determi-
nation can subject to bias caused by the decision makers. Therefore, a mechanical way is
suggested in this paper by following the solution concept of game theory to determine the
coefficients wjk. The main idea is that the objective functions H̃(jL)

αi and H̃(jU)
αi are treated as

the payoffs of players.
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3. Cores of Cooperative Games

Given a set N = {1, · · · , n} of players, any nonempty subset S of N is called a coalition.
We consider the function v : 2N → R satisfying v(∅) = 0. A cooperative game is defined to
be an ordered pair (N, v). Given any coalition S, the function value v(S) is interpreted as
the worth of coalition S in the game (N, v).

Given a payoff vector (or an allocation) x ∈ Rn, each xi represents the value received
by player i for i = 1, · · · , n. Many concepts are defined below.

• We say that the vector x ∈ Rn is a pre-imputation when the following group rationality
is satisfied

v(N) = ∑
i∈N

xi.

• We say that the vector x ∈ Rn is an imputation when it is a pre-imputation and satisfies
the following individual rationality

xi ≥ v(i) for i ∈ N.

The set of all imputations is denoted by I(v), and the set of all pre-imputations is denoted
by I∗(v) .

Given a coalition S and a payoff vector x, the excess of S with respect to x is defined by

e(S, x) = v(S)−∑
i∈S

xi.

Now, the core of a game (N, v) is defined by

C(v) =
{

x ∈ Rn : ∑
i∈N

xi = v(N) and ∑
i∈S

xi ≥ v(S) for all S ⊆ N

}

=

{
x ∈ Rn : ∑

i∈N
xi = v(N) and ∑

i∈S
xi ≥ v(S) for all S ⊂ N and S ̸= N

}
.

It is also clear to see

C(v) = {x ∈ I(v) : e(S, x) ≤ 0 for all S ⊆ N}
= {x ∈ I∗(v) : e(S, x) ≤ 0 for all S ⊆ N}.

We can see that the core of a game (N, v) is a set of all imputations such that only nonpositive
excesses are taken into account.

4. Formulation of Cooperative Game

Given any fixed j, the function H̃(jL)
αi is treated as the payoff of player (i, j) for i = 1, · · · , m,

and the function H̃(jU)
αi is treated as the payoff of player (m + i, j) for i = 1, · · · , m. In this

case, the player is taken to be an ordered pair (i, j). Therefore, the set of all players is
given by

N = {(i, j) : i = 1, · · · , 2m and j = 1, · · · , u}.

We have total 2mu players corresponding to 2mu functions. Let

d∗ij = sup
x∈X

H̃(jL)
αi (x) and d∗m+i,j = sup

x∈X
H̃(jU)

αi (x) for i = 1, · · · , m,

where d∗ij are regarded as the ideal payoffs for i = 1, · · · , 2m and j = 1, · · · , u. Therefore,
we must assume

v({(i, j)}) ≤ d∗ij for all i = 1, · · · , 2m and j = 1, · · · , u,
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which means that the true payoff v({(i, j)}) of player (i, j) may not reach the ideal payoff d∗ij.
Given S ⊆ N with s = |S|, this coalition is written as S = {i1, i2, · · · , is}. By intuition,

the payoff of coalition S must be larger than the total payoffs of each player in S such that
the cooperation is meaningful. In other words, the following inequality

v(S) ≥ v({i1}) + v({i2}) + · · ·+ v({is})

must be satisfied. Also, the payoff of coalition S cannot be larger than the total ideal payoffs
on S, which means that the payoff of coalition may not reach the total ideal payoffs. That is
to say, the following inequalities must be satisfied:

v({i1}) + v({i2}) + · · ·+ v({is}) ≤ v(S) ≤ d∗i1 + d∗i2 · · ·+ d∗is (6)

Now, the payoff of coalition S with |S| ≥ 2 is defined by

v(S) =
s

∑
k=1

v({ik}) +
γs

s

s

∑
k=1

v({ik}), (7)

where γs is a non-negative constant. The second term

γs

s

s

∑
k=1

v({ik})

can be treated as the extra payoff subject to cooperation by forming a coalition S with
|S| = s. We assume that this extra payoff is obtained by taking a non-negative constant
γs that multiplies the average of individual payoffs. In this situation, the non-negative
constant γs should be independent of any coalition S with |S| = s.

According to the upper bound of v(S) given in (6), the constant γs must satisfy

s

∑
k=1

v({ik}) +
γs

s

s

∑
k=1

v({ik}) ≤
s

∑
k=1

d∗ik .

Equivalently, we obtain

0 ≤ γs ≤
s ·

s

∑
k=1

(
d∗ik − v({ik})

)
s

∑
k=1

v({ik})
=

s ·
s

∑
k=1

d∗ik
s

∑
k=1

v({ik})
− s ≡ Vs(S) (8)

for s = 2, · · · , 2mu. Now, we define

Vs = min{Vs(S) : S ⊆ N with |S| = s}. (9)

Then, we have
0 ≤ γs ≤ Vs (10)

for s = 2, · · · , 2mu. We also define γ1 = 0 for convenience.

5. Solving the Problem Using Core Values

Recall that the core of cooperative game (N, v) is given by

C(v) =
{

w ∈ R2mu : ∑
i∈N

wi = v(N) and ∑
i∈S

wi ≥ v(S) for all S ⊂ N with S ̸= N

}
.
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Using (7), it follows that w ∈ C(v) if and only if w satisfies

∑
i∈N

wi =
2mu

∑
k=1

v({ik}) +
γ2mu

2mu

2mu

∑
k=1

v({ik})

and

∑
i∈S

wi ≥
s

∑
k=1

v({ik}) +
γs

s

s

∑
k=1

v({ik}) for all S ⊂ N with S ̸= N.

Since the payoffs v(S) are non-negative for S ⊆ N, the positive core C+(v) is defined by

C+(v) = C(v) ∩R2mu
+

=

{
w ∈ R2mu

+ : ∑
i∈N

wi = v(N) and ∑
i∈S

wi ≥ v(S) for all S ⊂ N with S ̸= N

}
.

We normalize the values of wi to be w̄i given by

w̄i =
wi

2mu

∑
j=1

wj

for i = 1, · · · , 2mu.

In this case, we also write C̄+(v) to denote the set of all normalized values w̄ obtained from
w ∈ C+(v).

Now, the following linear programming problem

(LP) minimize ∑
i∈N

wi

subject to ∑
i∈S

wi ≥ v(S) for all S ⊆ N

wi ≥ 0 for i = 1, · · · , 2mu

(11)

is considered. The following property is useful for further study.

Proposition 1. Let w∗ be an optimal solution of problem (LP). If v(N) ≥ v(S) for all S ⊆ N then
w∗ ∈ C+(v).

Proof. Since w∗ is a feasible solution of problem (LP), we have

∑
i∈S

w∗i ≥ v(S) for all S ⊆ N. (12)

We take w̄1 = v(N) and w̄i = 0 for s = 2, 3, · · · , 2mu. Since v(N) ≥ v(S) for all S ⊆ N, it
follows that

w̄ = (w̄1, · · · , w̄2mu) = (v(N), 0, · · · , 0)

is a feasible solution of problem (LP) with objective value v(N), which implies

∑
i∈N

w∗i ≤ v(N).

By taking S = N in (12), we also have

∑
i∈N

w∗i = v(N),

Therefore, we obtain w∗ ∈ C+(v). This completes the proof.
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From the payoff defined in (7), the formulation of cooperative game (N, v) is deter-
mined by the non-negative constants γs for s = 1, · · · , 2mu, which also says that the payoff
function v must be determined by the vector γ = (γ1, · · · , γ2mu). We also write

C+(v) = C+(γ) and C̄+(v) = C̄+(γ).

Proposition 1 shows that the optimal solution w∗ is determined by the payoff functions v. In
this case, we can write w∗(γ) in Proposition 1. Then, the normalized values w̄∗(γ) ∈ C̄+(γ)
are given by

w̄∗i (γ) =
w∗i (γ)

2mu

∑
j=1

w∗j (γ)

for i = 1, · · · , 2mu, (13)

Now, we assign the normalized core values given in (13) to the coefficients of scalar
optimization problem (SOP). In this case, according to Theorem 1, the optimal solution of
problem (SOP) is called the core-nondominated solution of problem (FMOP), which means
that the solution concept of core is involved. Therefore, we can solve the following scalar
optimization problem

(SOP) maximize
u

∑
j=1

m

∑
i=1

w̄∗i (γ) · H̃
(jL)
αi

(
Ã(i), x

)
+

u

∑
j=1

m

∑
i=1

w̄∗m+i(γ) · H̃
(jU)
αi

(
Ã(m+i), x

)
subject to x ∈ X ⊆ R2mu

to obtain the core-nondominated solution. Since the core-nondominated solution depends
on the vector γ of non-negative constants, we also write x∗(γ) for convenience.

Let P be the set of all core-nondominated solutions of problem (FMOP). From (10),
we have

P = {x∗(γ) : 0 ≤ γs ≤ Vs for s = 1, · · · , 2mu}.

Since P is a large set, we intend to find a best core-nondominated solution from P by using
the genetic algorithm. In this case, we plan to maximize the following fitness function

η(γ) =
u

∑
j=1

m

∑
i=1

w̄∗i (γ) · H̃
(jL)
αi

(
Ã(i), x∗(γ)

)
+

u

∑
j=1

m

∑
i=1

w̄∗m+i(γ) · H̃
(jU)
αi

(
Ã(m+i), x∗(γ)

)
,

where 0 ≤ γs ≤ Vs for s = 1, · · · , 2mu.

6. Genetic Algorithms

The purpose is to design an genetic algorithm such that a best core-nondominated
solution can be obtained from the set P of all core-nondominated solutions of problem
(FMOP). Therefore, we are going to maximize the following fitness function

η(γ) =
u

∑
j=1

m

∑
i=1

w̄i(γ) · H̃
(jL)
αi

(
Ã(i), x∗(γ)

)
+

u

∑
j=1

m

∑
i=1

w̄m+i(γ) · H̃
(jU)
αi

(
Ã(m+i), x∗(γ)

)
. (14)

We shall evolve the non-negative vector γ by performing crossover and mutation to find a
best chromosome according to the fitness function given in (14).

From (10), the non-negative constants γs must satisfy

0 ≤ γs ≤ Vs for s = 2, · · · , 2mu.

In this algorithm, each non-negative constant γs will be a random number from the closed
interval [0,Vs] for s = 2, · · · , 2mu. The chromosome in this algorithm is defined to be a
vector γ = (0, γ2, · · · , γ2mu) in R2mu satisfying γ1 = 0 and γs ∈ [0,Vs] for s = 2, · · · , 2mu.

Two phases will be performed in this algorithm. Since the scalar optimization problem
(SOP) depends on the partition Γ = {0 = α1, α2, · · · , αm = 1} of [0, 1], phase I will obtain
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the approximated best core-nondominated solution when the partition Γ is taken to be
fixed. In phase II, we shall use the more finer partition Γ of [0, 1] to perform the algorithm
in phase I until the approximated best core-nondominated solution cannot be improved.

6.1. Phase I

In phase I, given a fixed partition Γ = {0 = α1, α2, · · · , αm = 1} of [0, 1], we are
going to obtain the approximated best core-nondominated solution by solving the scalar
optimization problem (SOP) through performing crossover and mutation operations.

Proposition 2. (Crossover) Let γ̂ = (0, γ̂2, · · · , γ̂2mu) and γ̄ = (0, γ̄2, · · · , γ̄2mu) be two
chromosomes satisfying

0 ≤ γ̂s ≤ Vs and 0 ≤ γ̄s ≤ Vs for s = 2, · · · , 2mu.

Given any λ ∈ (0, 1), we consider the following crossover operation

γ = λγ̂ + (1− λ)γ̄,

where the components are given by

γ1 = 0 and γs = λγ̂s + (1− λ)γ̄s for s = 2, · · · , 2mu.

Then, the new chromosome γ also satisfies 0 ≤ γs ≤ Vs for s = 2, · · · , 2mu.

Proof. Since 0 ≤ γ̂s ≤ Vs and 0 ≤ γ̄s ≤ Vs, it is clear to see that the convex combination
γs = λγ̂s + (1− λ)γ̄s also satisfies 0 ≤ γs ≤ Vs.

Given a vector γ̄ = (0, γ̄2, · · · , γ̄2mu), we shall perform the mutation to obtain γ from
γ̄. Given a fixed s = 2, · · · , 2mu, we first generate a random Gaussian number with mean
zero and standard deviation σs. Then, we assign

γ̂s = γ̄s + N(0, σ2
s ) = γ̄s + σs · N(0, 1).

The new mutated chromosome γ is defined by

γs =


γ̂s if γ̂s ∈ [0,Vs]
Vs if γ̂s > Vs
0 if γ̂s < 0

(15)

where Vs is given in (9) for s = 2, · · · , 2mu.

Proposition 3. (Mutation) Suppose that γ̄ = (0, γ̄2, · · · , γ̄2mu) is a chromosome. We consider
the mutation in the way of (15). Then, the new mutated chromosome γ satisfies

0 ≤ γs ≤ Vs for s = 2, · · · , 2mu.

Proof. It is clear to see from (15).

6.2. Phase II

In phase II, we shall use the more finer partition Γ of [0, 1] to perform the algorithm
proposed in phase I. Assume that the partition Γ = {0 = α1, α2, · · · , αm = 1} of [0, 1] was
considered in phase I. Now, given a new partition Γ̄ = {0 = α1, α2, · · · , αn = 1} of [0, 1],
which is finer than Γ in the sense of Γ ⊂ Γ̄. We shall perform the algorithm proposed
in phase I using this new partition Γ̄. In other words, we are going to continuously
execute Phase II by using the more finer partitions such that the approximated best core-
nondominated solution cannot be improved. Two ways are suggested in this paper to
obtain the finer partition Γ̄ as follows.
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For the first way, we can simply take the partition Γ̄ of [0, 1] such that [0, 1] is equally
divided and satisfies Γ ⊂ Γ̄. The second way is to design another genetic algorithm to
generate a new finer partition Γ̄ by evolving the old partition Γ. More precisely, a population
P = {α1, α2, · · · , αm} is taken from the old partition Γ. After performing the crossover and
mutation operations in the old population P , we can generate new points β1, · · · , βr such
that a new finer partition Γ̄ is obtained as follows

Γ̄ = Γ ∪ {β1, · · · , βr}.

For example, the crossover and mutation operations can be designed as follows.

• (Crossover operation). Take two αs and αt from the old partition P . We perform the
convex combination λαs + (1− λ)αt for different λ ∈ (0, 1), which can generate the
different new points.

• (Mutation operation). Take αs from P . We perform the mutation αs + δ, which δ is a
random number in [0, 1]. When αs + δ is in [0, 1], the new generated point is taken to
be αs + δ. When αs + δ > 1, the new generated point is taken to be αs + δ− 1.

When a new finer partition Γ̄ is generated, the algorithm in phase I is again per-
formed using this new partition Γ̄. In this case, we can obtain a new approximated best
core-nondominated solution. Also, this partition Γ̄ is now regarded as the old partition.
Afterward, a new finer partition Γ̂ of [0, 1] is also generated to satisfy Γ̄ ⊂ Γ̂. Now, we again
perform the algorithms in phase I using this new finer partition Γ̂.

6.3. Computational Procedure

Given a fixed partition Γ = {0 = α1, α2, · · · , αm = 1} of [0, 1], We present the detailed
computational procedure of genetic algorithm for phase I as follows.

• Step 1 (Initialization). The population size of this algorithm is assumed to be p. The

chromosomes in the initial population is determined by setting γ(k) = (γ
(k)
1 , · · · , γ

(k)
2mu),

where γ
(k)
1 = 0 and γ

(k)
s are taken to be the random numbers in [0,V2mu] for all

k = 1, · · · , p and s = 2, · · · , 2mu, where Vs is given in (9). For each γ(k), we solve
the linear programming problem in (11) and use Proposition 1 to obtain the positive
core w∗(γ(k)) ∈ C+(v) for j = 1, · · · , p. Using (13), we also calculate the normalized
positive core w̄∗i (γ

(k)) for i = 1, · · · , 2mu and k = 1, · · · , p. For each chromosome γ(k),
we assign its corresponding fitness value by calculating the following expression

η(γ(k)) =
u

∑
j=1

m

∑
i=1

w̄∗i (γ
(k)) · H̃(jL)

αi

(
Ã(j), x∗(γ(k))

)
+

u

∑
j=1

m

∑
i=1

w̄∗m+i(γ
(k)) · H̃(jU)

αi

(
Ã(j), x∗(γ(k))

)
for k = 1, · · · , p. Then, the p chromosomes γ(k) for k = 1, · · · , p are ranked in
descending order according to their fitness values η(γ(k)) for k = 1, · · · , p. In this
case, the top one is saved to be the (initial) best chromosome and is named as η̄0. We
also save γ(k) to be the old elites γ(∗k) given by γ

(∗k)
s ← γ

(j)
s for s = 1, · · · , 2mu and

k = 1, · · · , p.
• Step 2 (Tolerance). We set the tolerance ϵ. We also set the number m∗ of maximum

times of iterations such that the tolerance ϵ is satisfied. We set t = 0 to mean the initial
generation. We set l∗ = 1 to mean the first time such that the tolerance ϵ is satisfied.
This step is related with the stopping criterion to avoid to be trapped in the local
optimum. Therefore, it can be more clear by referring to step 7.

• Step 3 (Mutation). We set t ← t + 1 to mean the t-th generation. By referring to
Proposition 3, each chromosome γ(k) is mutated, and is assigned to γ(k+p) using (15)
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for k = 1, · · · , p. For each s = 2, · · · , 2mu, the random Gaussian numbers with mean
zero and standard deviation σs are generated in which σs is taken by

σs = βs · η(γ(k)) + bs.

The constant βs is the proportionality to scale η(γ(k)) and the constant bs represents
the offset. Then, we assign

γ̂
(k)
s = γ

(k)
s + σs · N(0, 1) = γ

(k)
s +

(
βs · η(γ(k)) + bs

)
· N(0, 1).

In this case, the mutated chromosome γ(k+p) is obtained in which the components are
given by γ

(k+p)
1 = 0 and

γ
(k+p)
s =


γ̂
(k)
s if γ̂

(k)
s ∈ [0,Vs]

Vs if γ̂
(k)
s > Vs

0 if γ̂
(k)
s < 0

for s = 2, · · · , 2mu and k = 1, · · · , p. After this mutation step, we shall have 2p
chromosomes γ(k) for k = 1, · · · , 2p.

• Step 4 (Crossover). By referring to Proposition 2, randomly select γ(k1) and γ(k2) for
k1, k2 ∈ {1, · · · , 2p} with k1 ̸= k2. A random number λ ∈ (0, 1) is generated. In this
case, the new chromosome is taken by

γ(2p+1) = λγ(k1) + (1− λ)γ(k2),

where the components are given by

γ
(2p+1)
s = λγ

(k1)
s + (1− λ)γ

(k2)
s ∈ [0,Vs] for s = 1, · · · , 2mu.

After this step, we shall have 2p + 1 chromosomes γ(k) for j = 1, · · · , 2p + 1.
• Step 5 (Calculate New Fitness). Using Proposition 1 and (13), for each new chro-

mosome γ(k+p), we calculate the normalized positive core w̄∗i (γ
(k+p)) by solving the

linear programming problem in (11) for i = 1, · · · , 2mu and k = 1, · · · , p + 1. For
each γ(k+p), we assign its corresponding fitness value by calculating the following
expression

η(γ(k+p)) =
u

∑
j=1

m

∑
i=1

w̄∗i (γ
(k+p)) · H̃(jL)

αi

(
Ã(j), x∗(γ(k+p))

)
+

u

∑
j=1

m

∑
i=1

w̄∗m+i(γ
(k+p)) · H̃(jU)

αi

(
Ã(j), x∗(γ(k+p))

)
for k = 1, · · · , p + 1.

• Step 6 (Selection). The p old elites γ(∗k) for j = 1, · · · , p and the p + 1 new chromo-
somes γ(k) for k = 1, · · · , p + 1 obtained from Steps 3 and 4 are ranked in descending
order according to their fitness values η(γ(∗k)) and η(γ(k)), respectively. In this case,
the top p chromosomes are saved as the new elites γ(∗k) for k = 1, · · · , p. Also, the
top one is saved as the best chromosome that is named as η̄t for the t-th generation.

• Step 7 (Stopping Criterion). After step 6, we may obtain η̄t−1 = η̄t, which seems
to be trapped in the local optimum. In order to escape this trap, we are going to
proceed more iterations for m∗ times by referring to step 2 even though the criterion
∥ η̄t − η̄t−1 ∥< ϵ is satisfied. When the criterion ∥ η̄t − η̄t−1 ∥< ϵ is satisfied and the
iterations reach m∗ times, we stop the algorithm and return the solution for phase I.
Otherwise, the new elites γ(∗k) for k = 1, · · · , p are copied as the next generation γ(k)
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for k = 1, · · · , p. Then, we set l∗ ← l∗ + 1, and proceed to step 3. We also remark that
the number l∗ counts the times such that the tolerance ∥ η̄t − η̄t−1 ∥< ϵ is satisfied.

After step 7, given a fixed partition Γ = {0 = α1, α2, · · · , αm = 1} of [0, 1], an approx-
imated best core-nondominated solution can be obtained, which is denoted by x∗(Γ). It
also means that this solution is determined the partition Γ. Then, the algorithm proceeds to
phase II by considering more finer partitions of [0, 1] as follows.

• Step 1. A new finer partition Γ̄ is generated to satisfy Γ ⊂ Γ̄.
• Step 2. By using this new finer partition Γ̄ to perform the genetic algorithm in phase I,

we can obtain a new approximated best core-nondominated solution x∗(Γ̄).
• Step 3. Given a pre-determined tolerance ϵ, once the criterion ∥ x∗(Γ)− x∗(Γ̄) ∥< ϵ is

reached, the algorithm halts and returns the final solution x∗(Γ̄). Otherwise, Γ̄ is set as
the old partition Γ, and proceeds to step 1 to generate a new finer partition.

Finally, after step 3, we obtain the approximated best core-nondominated solution.
In other words, by referring to Theorem 1, an approximated nondominated solution of
problem (FMOP) is obtained.

7. Numerical Example

The membership function of triangular fuzzy interval Ã = (aL, a, aU) is defined by

ξ Ã(r) =


r− aL

a− aL if aL ≤ r ≤ a

aU − r
aU − a

if a < r ≤ aU

0 otherwise.

Then, its α-level set Ãα = [ÃL
α , ÃU

α ] is given by

ÃL
α = (1− α)aL + αa and ÃU

α = (1− α)aU + αa.

In particular, we consider the triangular fuzzy intervals as follows

4̃ = (3.5, 4, 4.5), 5̃ = (4, 5, 5.5) and 6̃ = (5, 6, 7).

Then, their α-level sets are given by

4̃α = [3.5 + 0.5 · α, 4.5− 0.5 · α]
5̃α = [4 + α, 5.5− 0.5 · α]
6̃α = [5 + α, 7− α].

In this case, the following fuzzy linear programming problem

maximizae
(
5̃⊗ 1̃x1

)
⊕
(
4̃⊗ 1̃x2

)
⊕
(
6̃⊗ 1̃x3

)
subject to x1 − x2 + x3 ≤ 20

3x1 + 2x2 + 4x3 ≤ 42
3x1 + 2x2 ≤ 30
x1, x2, x3 ≥ 0

will be solved. According to the above formulation, we equally divide the unit closed
interval [0, 1] by taking α1 = 0, α2 = 0.5 and α3 = 1. Let Ã = (5̃, 4̃, 6̃). Using the above
notations, we obtain

H̃L
α1

(
Ã, x

)
= H̃L

0
(
Ã, x

)
= 3.5x1 + 4x2 + 5x3

H̃L
α2

(
Ã, x

)
= H̃L

0.5
(
Ã, x

)
= 3.75x1 + 4.5x2 + 5.5x3
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H̃L
α3

(
Ã, x

)
= H̃L

1
(
Ã, x

)
= 4x1 + 5x2 + 6x3

and
H̃U

α1

(
Ã, x

)
= H̃U

0
(
Ã, x

)
= 4.5x1 + 5.5x2 + 7x3

H̃U
α2

(
Ã, x

)
= H̃U

0.5
(
Ã, x

)
= 4.25x1 + 5.25x2 + 6.5x3

H̃U
α3

(
Ã, x

)
= H̃U

1
(
Ã, x

)
= 4x1 + 5x2 + 6x3

We see that H̃L
α3

(
Ã, x

)
= H̃U

α3

(
Ã, x

)
. Next, we are going to solve the following scalar

optimization problem

maximize w1H̃L
α1

(
Ã, x

)
+ w2H̃L

α2

(
Ã, x

)
+ w3H̃L

α3

(
Ã, x

)
+ w4H̃U

α1

(
Ã, x

)
+ w5H̃U

α2

(
Ã, x

)
subject to (x1, x2, x3) ∈ X,

where the feasible set X is given by

X =
{
(x1, x2, x3) ∈ R3

+ : x1 − x2 + x3 ≤ 20, 3x1 + 2x2 + 4x3 ≤ 42 and 3x1 + 2x2 ≤ 30
}

.

In order to formulate the corresponding cooperative game, we must obtain the ideal
objective values d∗ = (d∗1 , · · · , d∗5) given by

d∗1 = sup
x∈X

H̃L
α1

(
Ã, x

)
= 75

d∗2 = sup
x∈X

H̃L
α2

(
Ã, x

)
= 84

d∗3 = sup
x∈X

H̃L
α3

(
Ã, x

)
= 93

d∗4 = sup
x∈X

H̃L
α1

(
Ã, x

)
= 103.5

d∗5 = sup
x∈X

H̃L
α2

(
Ã, x

)
= 98.25

Therefore, we consider five players N = {1, 2, 3, 4, 5} such the cooperative game (N, v) is
defined by

v({1}) = 0.5 · d∗1 , v({2}) = 0.6 · d∗2 and v({3}) = 0.7 · d∗3
and

v({4}) = 0.5 · d∗4 and v({5}) = 0.7 · d∗5 .

By referring to (8), for |S| = 2, we have

V2({1, 2}) =
2 ·
(
d∗1 + d∗2

)
v({1}) + v({2}) − 2 =

2 ·
(
d∗1 + d∗2

)
0.5 · d∗1 + 0.6 · d∗2

− 2 = 1.61774

V2({1, 3}) =
2 ·
(
d∗1 + d∗3

)
v({1}) + v({3}) − 2 =

2 ·
(
d∗1 + d∗3

)
0.5 · d∗1 + 0.7 · d∗3

− 2 = 1.27485

V2({1, 4}) =
2 ·
(
d∗1 + d∗4

)
v({1}) + v({4}) − 2 =

2 ·
(
d∗1 + d∗4

)
0.5 · d∗1 + 0.5 · d∗4

− 2 = 2

V2({1, 5}) =
2 ·
(
d∗1 + d∗5

)
v({1}) + v({5}) − 2 =

2 ·
(
d∗1 + d∗5

)
0.5 · d∗1 + 0.7 · d∗5

− 2 = 1.26041

V2({2, 3}) =
2 · (d∗2 + d∗3)

v({2}) + v({3}) − 2 =
2 · (d∗2 + d∗3)

0.6 · d∗2 + 0.7 · d∗3
− 2 = 1.06493

V2({2, 4}) =
2 ·
(
d∗2 + d∗4

)
v({2}) + v({4}) − 2 =

2 ·
(
d∗2 + d∗4

)
0.6 · d∗2 + 0.5 · d∗4

− 2 = 1.67107
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V2({2, 5}) =
2 · (d∗2 + d∗5)

v({2}) + v({5}) − 2 =
2 · (d∗2 + d∗5)

0.6 · d∗2 + 0.7 · d∗5
− 2 = 1.05853

V2({3, 4}) =
2 ·
(
d∗3 + d∗4

)
v({3}) + v({4}) − 2 =

2 ·
(
d∗3 + d∗4

)
0.7 · d∗3 + 0.5 · d∗4

− 2 = 1.36329

V2({3, 5}) =
2 · (d∗3 + d∗5)

v({3}) + v({5}) − 2 =
2 · (d∗3 + d∗5)

0.7 · d∗3 + 0.7 · d∗5
− 2 = 0.85714

V2({4, 5}) =
2 ·
(
d∗4 + d∗5

)
v({4}) + v({5}) − 2 =

2 ·
(
d∗4 + d∗5

)
0.5 · d∗4 + 0.7 · d∗5

− 2 = 1.34785.

Using (9), we obtain

V2 = min{V2({1, 2}),V2({1, 3}),V2({1, 4}),V2({1, 5}),V2({2, 3}),V2({2, 4}),V2({2, 5}),
V2({3, 4}),V2({3, 5}),V2({4, 5})} = 0.85714.

For |S| = 3, we have

V3({1, 2, 3}) =
3 ·
(
d∗1 + d∗2 + d∗3

)
0.5 · d∗1 + 0.6 · d∗2 + 0.7 · d∗3

− 3 = 1.94117

V3({1, 2, 4}) =
3 ·
(
d∗1 + d∗2 + d∗4

)
0.5 · d∗1 + 0.6 · d∗2 + 0.5 · d∗4

− 3 = 2.63909

V3({1, 2, 5}) =
3 ·
(
d∗1 + d∗2 + d∗5

)
0.5 · d∗1 + 0.6 · d∗2 + 0.7 · d∗5

− 3 = 1.92580

V3({1, 3, 4}) =
3 ·
(
d∗1 + d∗3 + d∗4

)
0.5 · d∗1 + 0.7 · d∗3 + 0.5 · d∗4

− 3 = 2.27697

V3({1, 3, 5}) =
3 ·
(
d∗1 + d∗3 + d∗5

)
0.5 · d∗1 + 0.7 · d∗3 + 0.7 · d∗5

− 3 = 1.66083

V3({1, 4, 5}) =
3 ·
(
d∗1 + d∗4 + d∗5

)
0.5 · d∗1 + 0.5 · d∗4 + 0.7 · d∗5

− 3 = 2.25391

V3({2, 3, 4}) =
3 ·
(
d∗2 + d∗3 + d∗4

)
0.6 · d∗2 + 0.7 · d∗3 + 0.5 · d∗4

− 3 = 2.03139

V3({2, 3, 5}) =
3 · (d∗2 + d∗3 + d∗5)

0.6 · d∗2 + 0.7 · d∗3 + 0.7 · d∗5
− 3 = 1.48107

V3({2, 4, 5}) =
3 ·
(
d∗2 + d∗4 + d∗5

)
0.6 · d∗2 + 0.5 · d∗4 + 0.7 · d∗5

− 3 = 2.01536

V3({3, 4, 5}) =
3 ·
(
d∗3 + d∗4 + d∗5

)
0.7 · d∗3 + 0.5 · d∗4 + 0.7 · d∗5

− 3 = 1.76363.

Therefore, we obtain

V3 = min{V3({1, 2, 3}),V3({1, 2, 4}),V3({1, 2, 5}),V3({1, 3, 4}),V3({1, 3, 5}),V3({1, 4, 5})
V2({2, 3, 4}),V2({2, 3, 5}),V2({2, 4, 5}),V2({3, 4, 5})} = 1.48107.

For |S| = 4, we have

V4({1, 2, 3, 4}) =
4 ·
(
d∗1 + d∗2 + d∗3 + d∗4

)
0.5 · d∗1 + 0.6 · d∗2 + 0.7 · d∗3 + 0.5 · d∗4

− 4 = 2.94505
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V4({1, 2, 3, 5}) =
4 ·
(
d∗1 + d∗2 + d∗3 + d∗5

)
0.5 · d∗1 + 0.6 · d∗2 + 0.7 · d∗3 + 0.7 · d∗5

− 4 = 2.31721

V4({1, 2, 4, 5}) =
4 ·
(
d∗1 + d∗2 + d∗4 + d∗5

)
0.5 · d∗1 + 0.6 · d∗2 + 0.5 · d∗4 + 0.7 · d∗5

− 4 = 2.92335

V4({1, 3, 4, 5}) =
4 ·
(
d∗1 + d∗3 + d∗4 + d∗5

)
0.5 · d∗1 + 0.7 · d∗3 + 0.5 · d∗4 + 0.7 · d∗5

− 4 = 2.62857

V4({2, 3, 4, 5}) =
4 ·
(
d∗2 + d∗3 + d∗4 + d∗5

)
0.6 · d∗2 + 0.7 · d∗3 + 0.5 · d∗4 + 0.7 · d∗5

− 4 = 2.41881.

Therefore, we obtain

V4 = min{V4({1, 2, 3, 4}),V4({1, 2, 3, 5}),V4({1, 2, 4, 5}),V4({1, 3, 4, 5}),V4({2, 3, 4, 5})}
= 2.31721.

Finally, we obtain

V5 = V5(1, 2, 3, 4, 5) =
5 ·
(
d∗1 + d∗2 + d∗3 + d∗4 + d∗5

)
0.5 · d∗1 + 0.6 · d∗2 + 0.7 · d∗3 + 0.5 · d∗4 + 0.7 · d∗5

− 5 = 3.29449.

For s = |S| ≥ 2, according to (7), we have

v(S) =
s

∑
k=1

v({ik}) +
γs

s

s

∑
k=1

v({ik}).

More precisely, for |S| = 2, we have

v({1, 2}) =
(

1 +
γ2

2

)
(v({1}) + v({2})) =

(
1 +

γ2

2

)
(0.5 · d∗1 + 0.6 · d∗2)

v({1, 3}) =
(

1 +
γ2

2

)
(v({1}) + v({3})) =

(
1 +

γ2

2

)
(0.5 · d∗1 + 0.7 · d∗3)

v({1, 4}) =
(

1 +
γ2

2

)
(v({1}) + v({4})) =

(
1 +

γ2

2

)
(0.5 · d∗1 + 0.5 · d∗4)

v({1, 5}) =
(

1 +
γ2

2

)
(v({1}) + v({5})) =

(
1 +

γ2

2

)
(0.5 · d∗1 + 0.7 · d∗5)

v({2, 3}) =
(

1 +
γ2

2

)
(v({2}) + v({3})) =

(
1 +

γ2

2

)
(0.6 · d∗2 + 0.7 · d∗3)

v({2, 4}) =
(

1 +
γ2

2

)
(v({2}) + v({4})) =

(
1 +

γ2

2

)
(0.6 · d∗2 + 0.5 · d∗4)

v({2, 5}) =
(

1 +
γ2

2

)
(v({2}) + v({5})) =

(
1 +

γ2

2

)
(0.6 · d∗2 + 0.7 · d∗5)

v({3, 4}) =
(

1 +
γ2

2

)
(v({3}) + v({4})) =

(
1 +

γ2

2

)
(0.7 · d∗3 + 0.5 · d∗4)

v({3, 5}) =
(

1 +
γ2

2

)
(v({3}) + v({5})) =

(
1 +

γ2

2

)
(0.7 · d∗3 + 0.7 · d∗5)

v({4, 5}) =
(

1 +
γ2

2

)
(v({4}) + v({5})) =

(
1 +

γ2

2

)
(0.5 · d∗4 + 0.7 · d∗5).

For |S| = 3, we have

v({1, 2, 3}) =
(

1 +
γ3

3

)
(v({1}) + v({2}) + v({3})) =

(
1 +

γ3

3

)
(0.5 · d∗1 + 0.6 · d∗2 + 0.7 · d∗3)

v({1, 2, 4}) =
(

1 +
γ3

3

)
(v({1}) + v({2}) + v({4})) =

(
1 +

γ3

3

)
(0.5 · d∗1 + 0.6 · d∗2 + 0.5 · d∗4)
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v({1, 2, 5}) =
(

1 +
γ3

3

)
(v({1}) + v({2}) + v({5})) =

(
1 +

γ3

3

)
(0.5 · d∗1 + 0.6 · d∗2 + 0.7 · d∗5)

v({1, 3, 4}) =
(

1 +
γ3

3

)
(v({1}) + v({3}) + v({4})) =

(
1 +

γ3

3

)
(0.5 · d∗1 + 0.7 · d∗3 + 0.5 · d∗4)

v({1, 3, 5}) =
(

1 +
γ3

3

)
(v({1}) + v({3}) + v({5})) =

(
1 +

γ3

3

)
(0.5 · d∗1 + 0.7 · d∗3 + 0.7 · d∗5)

v({1, 4, 5}) =
(

1 +
γ3

3

)
(v({1}) + v({4}) + v({5})) =

(
1 +

γ3

3

)
(0.5 · d∗1 + 0.5 · d∗4 + 0.7 · d∗5)

v({2, 3, 4}) =
(

1 +
γ3

3

)
(v({2}) + v({3}) + v({4})) =

(
1 +

γ3

3

)
(0.6 · d∗2 + 0.7 · d∗3 + 0.5 · d∗4)

v({2, 3, 5}) =
(

1 +
γ3

3

)
(v({2}) + v({3}) + v({5})) =

(
1 +

γ3

3

)
(0.6 · d∗2 + 0.7 · d∗3 + 0.7 · d∗5)

v({2, 4, 5}) =
(

1 +
γ3

3

)
(v({2}) + v({4}) + v({5})) =

(
1 +

γ3

3

)
(0.6 · d∗2 + 0.5 · d∗4 + 0.7 · d∗5)

v({3, 4, 5}) =
(

1 +
γ3

3

)
(v({3}) + v({4}) + v({5})) =

(
1 +

γ3

3

)
(0.7 · d∗3 + 0.5 · d∗4 + 0.7 · d∗5).

For |S| = 4, we have

v({1, 2, 3, 4}) =
(

1 +
γ4

4

)
(0.5 · d∗1 + 0.6 · d∗2 + 0.7 · d∗3 + 0.5 · d∗4)

v({1, 2, 3, 5}) =
(

1 +
γ4

4

)
(0.5 · d∗1 + 0.6 · d∗2 + 0.7 · d∗3 + 0.7 · d∗5)

v({1, 2, 4, 5}) =
(

1 +
γ4

4

)
(0.5 · d∗1 + 0.6 · d∗2 + 0.5 · d∗4 + 0.7 · d∗5)

v({1, 3, 4, 5}) =
(

1 +
γ4

4

)
(0.5 · d∗1 + 0.7 · d∗3 + 0.5 · d∗4 + 0.7 · d∗5)

v({2, 3, 4, 5}) =
(

1 +
γ4

4

)
(0.6 · d∗2 + 0.7 · d∗3 + 0.5 · d∗4 + 0.7 · d∗5).

Finally, for |S| = 5, we have

v({1, 2, 3, 4, 5}) =
(

1 +
γ5

5

)
(0.5 · d∗1 + 0.6 · d∗2 + 0.7 · d∗3 + 0.5 · d∗4 + 0.7 · d∗5).

Under the above settings, the computational procedure is presented below.

• Step 1 (Initialization). The population size is taken to be p = 20. The initial population

is given by γ(k) = (γ
(k)
1 , γ

(k)
2 , γ

(k)
3 , γ

(k)
4 , γ

(k)
5 ) such that γ

(k)
1 = 0 and γ

(k)
s are random

numbers in [0,V5] = [0, 3.29449] for all s = 2, 3, 4 and k = 1, · · · , 20. Given each
chromosome γ(k), we solve the linear programming problem in (11) given by

(LP) minimize w1 + w2 + w3 + w4 + w5
subject to w1 ≥ v({1}), w2 ≥ v({2}), w3 ≥ v({3}), w1 + w2 ≥ v({1, 2})

w1 + w3 ≥ v({1, 3}), w1 + w4 ≥ v({1, 4}), w1 + w5 ≥ v({1, 5})
w2 + w3 ≥ v({2, 3}), w2 + w4 ≥ v({2, 4}), w2 + w5 ≥ v({2, 3})
w3 + w4 ≥ v({3, 4}), w3 + w5 ≥ v({3, 5}), w4 + w5 ≥ v({4, 5})
w1 + w2 + w3 ≥ v({1, 2, 3}), w1 + w2 + w4 ≥ v({1, 2, 4})
w1 + w2 + w5 ≥ v({1, 2, 5}), w1 + w3 + w4 ≥ v({1, 3, 4})
w1 + w3 + w5 ≥ v({1, 3, 5}), w1 + w4 + w5 ≥ v({1, 4, 5})
w2 + w3 + w4 ≥ v({2, 3, 4}), w2 + w3 + w5 ≥ v({2, 3, 5})
w2 + w4 + w5 ≥ v({2, 4, 5}), w3 + w4 + w5 ≥ v({3, 4, 5})
w1 + w2 + w3 + w4 ≥ v({1, 2, 3, 4}), w1 + w2 + w3 + w5 ≥ v({1, 2, 3, 5})
w1 + w2 + w4 + w5 ≥ v({1, 2, 4, 5}), w1 + w3 + w4 + w5 ≥ v({1, 3, 4, 5})
w2 + w3 + w4 + w5 ≥ v({2, 3, 4, 5})
w1 + w2 + w3 + w4 + w5 ≥ v({1, 2, 3, 4, 5})
w1 ≥ 0, w2 ≥ 0, w3 ≥ 0, w4 ≥ 0, w5 ≥ 0.
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More precisely, we are going to solve the following linear programming problem

(LP) minimize w1 + w2 + w3 + w4 + w5
subject to w1 ≥ 0.5 · d∗1 , w2 ≥ 0.6 · d∗2 , w3 ≥ 0.7 · d∗3 , w4 ≥ 0.5 · d∗4 , w5 ≥ 0.7 · d∗5

C12, C13, C14, C15, C23, C24, C25, C34, C35, C45
C123, C124, C125, C134, C135, C145, C234, C235, C245, C345
C1234, C1235, C1245, C1345, C2345, C12345
w1 ≥ 0, w2 ≥ 0, w3 ≥ 0, w4 ≥ 0, w5 ≥ 0,

where the detailed constraints are given below

C12 : w1 + w2 ≥
(

1 +
γ
(k)
2
2

)
(0.5 · d∗1 + 0.6 · d∗2)

C13 : w1 + w3 ≥
(

1 +
γ
(k)
2
2

)
(0.5 · d∗1 + 0.7 · d∗3)

C14 : w1 + w4 ≥
(

1 +
γ
(k)
2
2

)
(0.5 · d∗1 + 0.5 · d∗4)

C15 : w1 + w5 ≥
(

1 +
γ
(k)
2
2

)
(0.5 · d∗1 + 0.7 · d∗5)

C23 : w2 + w3 ≥
(

1 +
γ
(k)
2
2

)
(0.6 · d∗2 + 0.7 · d∗3)

C24 : w2 + w4 ≥
(

1 +
γ
(k)
2
2

)
(0.6 · d∗2 + 0.5 · d∗4)

C25 : w2 + w5 ≥
(

1 +
γ
(k)
2
2

)
(0.6 · d∗2 + 0.7 · d∗5)

C34 : w3 + w4 ≥
(

1 +
γ
(k)
2
2

)
(0.7 · d∗3 + 0.5 · d∗4)

C35 : w3 + w5 ≥
(

1 +
γ
(k)
2
2

)
(0.7 · d∗3 + 0.7 · d∗5)

C45 : w4 + w5 ≥
(

1 +
γ
(k)
2
2

)
(0.5 · d∗4 + 0.7 · d∗5)

C123 : w1 + w2 + w3 ≥
(

1 +
γ
(k)
3
3

)
(0.5 · d∗1 + 0.6 · d∗2 + 0.7 · d∗3)

C124 : w1 + w2 + w4 ≥
(

1 +
γ
(k)
3
3

)
(0.5 · d∗1 + 0.6 · d∗2 + 0.5 · d∗4)

C125 : w1 + w2 + w5 ≥
(

1 +
γ
(k)
3
3

)
(0.5 · d∗1 + 0.6 · d∗2 + 0.7 · d∗5)

C134 : w1 + w3 + w4 ≥
(

1 +
γ
(k)
3
3

)
(0.5 · d∗1 + 0.7 · d∗3 + 0.5 · d∗4)
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C135 : w1 + w3 + w5 ≥
(

1 +
γ
(k)
3
3

)
(0.5 · d∗1 + 0.7 · d∗3 + 0.7 · d∗5)

C145 : w1 + w4 + w5 ≥
(

1 +
γ
(k)
3
3

)
(0.5 · d∗1 + 0.5 · d∗4 + 0.7 · d∗5)

C234 : w2 + w3 + w4 ≥
(

1 +
γ
(k)
3
3

)
(0.6 · d∗2 + 0.7 · d∗3 + 0.5 · d∗4)

C235 : w2 + w3 + w5 ≥
(

1 +
γ
(k)
3
3

)
(0.6 · d∗2 + 0.7 · d∗3 + 0.7 · d∗5)

C245 : w2 + w4 + w5 ≥
(

1 +
γ
(k)
3
3

)
(0.6 · d∗2 + 0.5 · d∗4 + 0.7 · d∗5)

C345 : w3 + w4 + w5 ≥
(

1 +
γ
(k)
3
3

)
(0.7 · d∗3 + 0.5 · d∗4 + 0.7 · d∗5)

C1234 : w1 + w2 + w3 + w4 ≥
(

1 +
γ
(k)
4
4

)
(0.5 · d∗1 + 0.6 · d∗2 + 0.7 · d∗3 + 0.5 · d∗4)

C1235 : w1 + w2 + w3 + w5 ≥
(

1 +
γ
(k)
4
4

)
(0.5 · d∗1 + 0.6 · d∗2 + 0.7 · d∗3 + 0.7 · d∗5)

C1245 : w1 + w2 + w4 + w5 ≥
(

1 +
γ
(k)
4
4

)
(0.5 · d∗1 + 0.6 · d∗2 + 0.5 · d∗4 + 0.7 · d∗5)

C1345 : w1 + w3 + w4 + w5 ≥
(

1 +
γ
(k)
4
4

)
(0.5 · d∗1 + 0.7 · d∗3 + 0.5 · d∗4 + 0.7 · d∗5)

C2345 : w2 + w3 + w4 + w5 ≥
(

1 +
γ
(k)
4
4

)
(0.6 · d∗2 + 0.7 · d∗3 + 0.5 · d∗4 + 0.7 · d∗5)

C12345 : w1 + w2 + w3 + w4 + w5

≥
(

1 +
γ
(k)
5
5

)
(0.5 · d∗1 + 0.6 · d∗2 + 0.7 · d∗3 + 0.5 · d∗4 + 0.7 · d∗5).

Proposition 1 says that the optimal solution w∗(γ(k)) of problem (LP) is a positive
core for k = 1, · · · , 20. According to (13), we also calculate the normalized positive
core as follows

w̄∗i (γ
(k)) =

w∗i (γ
(k))

w∗1(γ
(k)) + w∗2(γ

(k)) + w∗3(γ
(k)) + w∗3(γ

(k)) + w∗4(γ
(k))

for i = 1, 2, 3, 4, 5 and k = 1, · · · , 20. Each chromosome γ(k) is assigned a fitness value
given by

η(γ(k)) = w̄∗1(γ
(k)) · H̃L

α1

(
x∗(γ(k))

)
+ w̄∗2(γ

(k)) · H̃L
α2

(
x∗(γ(k))

)
+ w̄∗3(γ

(k)) · H̃L
α3

(
x∗(γ(k))

)
+ w̄∗4(γ

(k)) · H̃U
α1

(
x∗(γ(k))

)
+ w̄∗5(γ

(k)) · H̃U
α2

(
x∗(γ(k))

)
.
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for k = 1, · · · , 20. We rank the 20 chromosomes γ(k) for k = 1, · · · , 20 in descending
order of their corresponding fitness values η(γ(k)) for k = 1, · · · , 20. The top one is
saved to be the (initial) best chromosome named as η̄0. Save γ(k) as an elite γ(∗k) given
by γ

(∗k)
s ← γ

(k)
s for s = 1, · · · , 5 and j = 1, · · · , p.

• Step 2 (Tolerance). Set t = 0, m∗ = 20, l∗ = 1 and the tolerance ϵ = 10−6.
• Step 3 (Mutation). We set t ← t + 1 to mean the t-th generation. For k = 1, · · · , 20,

each chromosome
γ(k) =

(
0, γ

(k)
2 , γ

(k)
3 , γ

(k)
4 , γ

(k)
5

)
is mutated, and is assigned to

γ(k+20) =
(

0, γ
(k+20)
2 , γ

(k+20)
3 , γ

(k+20)
4 , γ

(k+20)
5

)
by using (15). Generate the random Gaussian numbers with mean zero and standard
deviation σs, where σs is taken to be the following form

σs = βs · η(γ(k)) + bs for s = 2, 3, 4, 5.

The constant βs is the proportionality to scale η(γ(k)) and the constant bs represents
the offset. In this example, we take

β2 = 0.02, β3 = 0.01, β4 = 0.02, β5 = 0.01

and bs = 0 for s = 2, 3, 4, 5. Then, we assign

γ̂
(k)
s = γ

(k)
s + σs · N(0, 1) = γ

(k)
s +

(
βs · η(γ(k)) + bs

)
· N(0, 1).

Therefore, we obtain the mutated chromosome γ(k+p) with components given by
γ
(k+p)
1 = 0 and

γ
(k+20)
s =


γ̂
(k)
s if γ̂

(k)
s ∈ [0,Vs]

Vs if γ̂
(k)
s > Vs

0 if γ̂
(k)
s < 0

for s = 2, 3, 4, 5 and k = 1, · · · , 20. After this step, we shall have 40 chromosomes γ(k)

for k = 1, · · · , 40.
• Step 4 (Crossover). We randomly select

γ(k1) =
(

0, γ
(k1)
2 , γ

(k1)
3 , γ

(k1)
4 , γ

(k1)
5

)
and γ(k2) =

(
0, γ

(k2)
2 , γ

(k2)
3 , γ

(k2)
4 , γ

(k2)
5

)
for k1, k2 ∈ {1, · · · , 40} with k1 ̸= k2. We generate a random number λ ∈ (0, 1), the
new chromosome is given by

γ(41) = λγ(k1) + (1− λ)γ(k2)

with components

γ
(41)
s = λγ

(k1)
s + (1− λ)γ

(k2)
s for s = 2, 3, 4, 5.

After this step, we shall have 41 chromosomes γ(k) for j = 1, · · · , 41.
• Step 5 (Calculate New Fitness). For the new generated chromosomes

γ(k+20) =
(

0, γ
(k+20)
2 , γ

(k+20)
3 , γ

(k+20)
4 , γ

(k+20)
5

)
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for k = 1, · · · , 20, using Proposition 1 and (13), we calculate the normalized positive
value w̄∗i (γ

(k+20)) by solving the linear programming problem in (11) for i = 1, 2, 3, 4, 5
and k = 1, · · · , 20 + 1. Each chromosome γ(k+20) is assigned a fitness value given by

η(γ(k+20)) = w̄∗1(γ
(k+20)) · H̃L

α1

(
x∗(γ(k+20))

)
+ w̄∗2(γ

(k+20)) · H̃L
α2

(
x∗(γ(k+20))

)
+ w̄∗3(γ

(k+20)) · H̃L
α3

(
x∗(γ(k+20))

)
+ w̄∗4(γ

(k+20)) · H̃U
α1

(
x∗(γ(k+20))

)
+ w̄∗5(γ

(k+20)) · H̃U
α2

(
x∗(γ(k+20))

)
.

for k = 1, · · · , 20.
• Step 6 (Selection). We rank the 20 old elites

γ(∗k) =
(

0, γ
(∗k)
2 , γ

(∗k)
3 , γ

(∗k)
4 , γ

(∗k)
5

)
for k = 1, · · · , 20

and the 41 new chromosomes

γ(k) =
(

0, γ
(k)
2 , γ

(k)
3 , γ

(k)
4 , γ

(k)
5

)
for k = 1, · · · , 41

obtained from Steps 3 and 4 in descending order of their corresponding fitness values
η(γ(∗k)) and η(γ(k)). The top 20 chromosomes are saved to be the new elites

γ(∗k) =
(

0, γ
(∗k)
2 , γ

(∗k)
3 , γ

(∗k)
4 , γ

(∗k)
5

)
for k = 1, · · · , 20.

Also, the top one is saved to be the best chromosome named as η̄t for the t-th generation
• Step 7 (Stopping Criterion). After step 6, we may obtain η̄t−1 = η̄t−1, which seems

to be trapped in the local optimum. In order to escape this trap, we proceed more
iterations for m∗ = 20 times even though the criterion ∥ η̄t − η̄t−1 ∥< ϵ is satisfied.
When the criterion ∥ η̄t − η̄t−1 ∥< ϵ is satisfied and the iterations reach 20 times, we
stop the algorithm and return the solution for phase I. Otherwise, the new elites

γ(∗k) =
(

0, γ
(∗k)
2 , γ

(∗k)
3 , γ

(∗k)
4 , γ

(∗k)
5

)
for k = 1, · · · , 20

must be copied to be the next generation

γ(k) =
(

0, γ
(k)
2 , γ

(k)
3 , γ

(k)
4 , γ

(k)
5

)
for k = 1, · · · , 20.

We set l∗ ← l∗ + 1 and the algorithm proceeds to step 3. Note that the number l∗

counts the times for satisfying the tolerance ∥ η̄t − η̄t−1 ∥< ϵ.

The computer code is implemented using Microsoft Excel VBA. The best fitness value
is 119.6879088 and the approximated core-nondominated solution is x∗(Λ) = (x1, x2, x3) =
(0, 15, 3).

Now, we consider more finer partitions of [0, 1] according to the suggestion of phase II.

• Step 1. From Section 6.2, we consider a new finer partition by equally divide the unit
interval [0, 1]. Therefore, we take

Λ̄ = {α1 = 0, α2 = 0.25, α3 = 0.5, α4 = 0.75, α5 = 1}.

It is clear to see Λ ⊂ Λ̄.
• Step 2. Using this new finer partition Λ̄ from Step 1 and the genetic algorithm in

phase I, a new approximated best core-nondominated solution x∗(Λ̄) = (0, 15, 3) can
be obtained.

• Step 3. Step 2 says x∗(Λ) = x∗(Λ̄) = (0, 15, 3). Therefore, the final best core-
nondominated solution is given by (x1, x2, x3) = (0, 15, 3).



Axioms 2024, 13, 298 24 of 26

Finally, using Theorem 1, we obtain the approximated nondominated solution (x1, x2, x3) =
(0, 15, 3) of the original fuzzy linear programming problem.

8. Conclusions

This paper proposes a new methodology by incorporating the core values of coop-
erative games and the genetic algorithms to solve the fuzzy multiobjective optimization
problem, which is a new attempt for solving this kind of problem. Usually, the fuzzy mul-
tiobjective optimization problem can be transformed into a conventional single-objective
optimization problem such that the suitable weights are determined by the decision makers.
In order to avoid the possible biased assignment of weights, a mechanical procedure is
proposed in this paper by assigning the core values of cooperative game as the weights of
this conventional single-objective optimization problem.

The purpose is to use the popular numerical methods of optimization to solve this
conventional single-objective optimization problem. For example, for solving the fuzzy
multiobjective linear programming problem, this original problem can be transformed
into a conventional single-objective linear programming problem, In this case, the simplex
method can be used to solve the desired problem. Frequently, the core-nondominated
solutions can be a large set. Therefore, the genetic algorithms is adopted to obtain the
best core-nondominated solution from this large set of core-nondominated solutions. This
paper does not intend to use the genetic algorithm to directly solve the fuzzy multiobjective
optimization problems. The genetic algorithm used in this paper is just to obtain the
best core-nondominated solution from a large set of core-nondominated solutions. The
monograph by Sakawa [44] provides the method for using the genetic algorithms to directly
solve the fuzzy multiobjective optimization problems. Although the genetic algorithms is
adopted in this paper to obtain the best core-nondominated solution, some other heuristic
algorithms like Particle Swarm Optimization, Scatter Search, Tabu Search, Ant Colony
Optimization, Artificial Immune Systems, and Simulated Annealing can still be used to
obtain the best core-nondominated solutions.

Although the core values of cooperative games are considered in this paper, many
other solution concepts of cooperative games can also be adopted to set up conventional
single-objective optimization problem, which can be the future research. The theory of
non-cooperative games may be another way to set up the conventional single-objective
optimization problem, which can be the future research.
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