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Abstract: Age-related macular degeneration is a visual disorder caused by abnormalities in a part
of the eye’s retina and is a leading source of blindness. The correct detection, precise location,
classification, and diagnosis of choroidal neovascularization (CNV) may be challenging if the lesion
is small or if Optical Coherence Tomography (OCT) images are degraded by projection and motion.
This paper aims to develop an automated quantification and classification system for CNV in
neovascular age-related macular degeneration using OCT angiography images. OCT angiography
is a non-invasive imaging tool that visualizes retinal and choroidal physiological and pathological
vascularization. The presented system is based on new retinal layers in the OCT image-specific
macular diseases feature extractor, including Multi-Size Kernels ξcho-Weighted Median Patterns
(MSKξMP). Computer simulations show that the proposed method: (i) outperforms current state-of-
the-art methods, including deep learning techniques; and (ii) achieves an overall accuracy of 99%
using ten-fold cross-validation on the Duke University dataset and over 96% on the noisy Noor Eye
Hospital dataset. In addition, MSKξMP performs well in binary eye disease classifications and is
more accurate than recent works in image texture descriptors.

Keywords: optical coherence tomography; binary patterns; weighted median filter; macular disease;
age-macular degeneration

1. Introduction

Age-related macular degeneration is a visual disorder caused by abnormalities in a
part of the eye’s retina and is a leading source of visual impairment Ref. [1]. Therefore, early
diagnosis and treatment is critical Ref. [2]. Recently, retinal optical coherence tomography
(OCT) images have been used to attain information regarding the health of the posterior eye
(e.g., the retina and choroid) Ref. [3]. OCT is a quick, non-invasive medical imaging tool that
uses low coherence interferometry to produce cross-sectional images of the retina and optic
nerve head (ONH), or the most anterior part of the visual pathway, from the retina to lamina
the cribrosa, which assess visual disorders, such as optic nerve disease, qualitative and
quantitative. High-resolution (in µm range) scanner techniques such as optical coherence
tomography (OCT) produce three-dimensional cross-sectional images of the eye’s biological
tissues to visualize the individual layers of the posterior segment of the eye, allowing the
diagnosis and monitoring of ocular diseases and anomalies Ref. [4]. This development of
image acquisition reduces the cost of storage, which allows ophthalmologists to utilize
these images to diagnose various eye diseases Refs. [5,6]. However, ophthalmologists
would manually interpret each OCT image in the volumes to make a diagnosis decision.
The increased data makes manual interpretation of the OCT volumes time-consuming
Ref. [7].
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Recent research in academia and industry has allowed artificial intelligence, Machine
Learning, and Deep Learning (DL) to develop computerized algorithms to classify retinal
disorders. These retinal disorders include diabetic macular edema (DME), aged macular
degeneration (AMD), and Choroidal Neovascularization (CNV), see Figure 1. DME is
the cause of glaucoma, where fluids or glucose build-up within the retinal layer causes
vision impairment. Age-related diseases such as Age Macular Degeneration are caused
by a build-up of drusen particles within the retinal epithelium layer. Dry AMD, which is
usually diagnosed in older individuals, may cause daily life disruptions because it impairs
the patient’s central vision. CNV, wet AMD, is when unusual blood vessels grow into the
retina layers, causing fluids to leak and making the retina wet. For some people who are
diagnosed with AMD, too many vascular blood vessels are produced. These new blood
vessels spear from the choroid and then extend into the retina layers. These vessels are also
leaky, allowing fluids and blood with red blood cells to enter the retina layers, distorting
their vision. For this reason, early diagnosis and automated detection are essential in
treating AMD Refs. [6,8,9].
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The correct detection, precise location, classification, and diagnosis of choroidal neovascu-
larization (CNV) may also be challenging if the lesion is small or if OCT images are degraded by
speckle noises. Speckle noises in OCT images must be addressed to achieve good classification
performance. Speckle noise, called multiplicative noise, is a granular noise texture. It degrades
image quality as a consequence of interference among wavefronts in coherent imaging systems,
such as radar, laser imaging, medical ultrasound, and optical coherence tomography. The
speckle noise is signal-dependent and governed by the Fisher-Tippett distribution. Mathe-
matically, Speckle noise Refs. [10–13] is expressed as u(x,y) = v(x,y) + v(x,y)η(x,y), where (x,y)
are pixel position, v(x,y) is the clean image, u(x,y) is the noisy image, η is a Gaussian noise
distribution with zero-mean and some variance σ2. It is well known that smoothing filters can
reduce speckle noise. These techniques convolve an image with various neighbor sizes, 3× 3,
5× 5, etc., using a weighted average or selecting a median value, i.e., a non-weighted median
filter. However, selecting a median value without any weights from a high noise-density image
is not practical because a noise pixel may be selected instead of an image pixel. Therefore, we
propose a new texture descriptor, MSKξMP, which echoes or repeats pixel values in a kernel
to encode OCT images while avoiding a high level of speckle noises. This paper makes the
following contributions:

- Develops a new, simple, and highly accurate local texture descriptor algorithm, Multi-
Size Kernels ξcho-Weighted Median Patterns (MSKξMP), to
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(i) Avoid speckles noises;
(ii) Perform eye disease classifications the Choroidal Neovascularization and Aged

Macular Degeneration;
(iii) Perform highly accurate eye disease classifications between Diabetic Macular

Edema, AMD, and Normal eyes.

- Offers a Unique Singular Value Decomposition and Neighborhood Component Anal-
ysis based weighted feature selection method for establishing the optimal accuracy
using SVM and Random Forest classification techniques.

- Presents computer simulation results that show: (i) 99.78% accuracy on the Duke
Dataset, 96.63% and 88.51% on the noisy Noor OCT Volume datasets; (ii) good eye dis-
ease diagnosis and recognition outcomes compared to the recent texture descriptors.

This paper has the following structure: the next section contains a Literature Review
that offers an overview of methods that give detailed descriptions of the MSKξMP algorithm;
the computer simulations section gives numerous experiments showing the performance of
MSKξMP; finally, the conclusion and future work are presented in the last section.

2. Literature Review

In recent years, deep learning networks can perform vision recognition in various
applications such as self-driving cars, natural language and image processing, and medical
diagnosis (e.g., ocular diseases). Ref. [7] proposes an algorithm imitating how ophthalmol-
ogists form diagnoses by focusing on the information provided by OCT images during the
classification process. This process is called a B-scan attentive convolutional neural network
(BACNN). A self-attention module is used to cumulate features based on their clinical
importance to obtain feature vectors. Ref. [1] proposes a multipath CNN architecture for
the diagnosis of AMD. This architecture has five convolutional layers to classify AMD or
normal images.

The multipath convolution layers extract critical global structures with a large filter
kernel and use a sigmoid function as the classifier. Ref. [14] presented a CNN based on
surrogate-assisted classification that classifies retinal OCT images automatically. Initial
preprocessing was performed on each image using image denoising, thresholding, and
morphological dilation to locate binary masks of the retina regions. The preprocessed
images were employed to produce surrogate images in image augmentation, which were
used to train the CNN model.

Several hand-crafted feature techniques show good classification performance on
ocular disorder classifications in OCT images. Ref. [4]’s algorithm extracts features using
multiscale histograms of oriented gradient descriptors and are classified using a support
vector machine. Ref. [15] proposes the automated detection of AMD and DME from retina
OCT images based on sparse coding, spatial pyramids, global representations, and dictio-
nary learning. This process is coupled with preprocessing and a support vector machine
classifier. Ref. [6] proposed a multiclass model for detecting AMD, DME, and normal
using linear configuration patterns (LCPs) to extract pyramid and multiscale features. Re-
cently, [10] proposed a texture descriptor called Alpha Mean Trimmed local binary patterns
(AMT-LBP) based on Alpha Mean Trimmed Filter. The AMT-LBP encodes image pixels
while partially avoiding and exploiting speckle noises. Table 1 summarizes the rest of the
other recent techniques in ocular disorder classification.

The current works using hand-crafted features fall short compared to the deep learning
technique in achieving extremely high classification accuracies. However, deep-learning
models usually require long training times and heavy computational hardware such as
GPUs. They are also data-hungry and complex. A simple, aggressive machine-learning
approach is proposed here to overcome these shortcomings. This technique contains
a smaller number of weights, making them easier to implement, requires less training
time, and does not require specialized hardware Ref. [19]. Textural information is vital in
analyzing eye diseases. Thus, this paper presents a novel texture descriptor, Multi-Size
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Kernel ξcho-Weighted Median Patterns, to distinguish between the various ocular diseases
while achieving very high classification accuracies.

Table 1. Shows prior works and their results.

Article Dataset Algorithm Used Results

Srinivasan [4]

Duke Dataset:
15 normal subjects,
15 patients with
Age-related macular
degeneration (AMD)
15 patients with Diabetic
Macular Edema (DME)

Preprocessing: Denoised, Flattened, and cropped
image; Feature extraction: HOG descriptor using
Image pyramid; Classifier: SVM

Normal 13/15 = 86.67%
AMD 15/15 = 100%
DME 15/15 = 100%

Sun [15]

Preprocessing: Retinal Alignment using
polynomial regression fitting Feature Extraction:
Dictionary Learning, Sparse Coding and Max
Pooling Classifier: Linear SVM

Normal 14/15 = 93.33%
AMD 15/15 = 100%
DME 15/15 = 100%

Wang [16]
Feature Extraction: Spatial Pyramid Features,
Multi-scale Spatial Pyramid Features; Classifier:
SVM

AMD 0.978 ± 0.008, DME 0.940 ± 0.004
Normal 0.996 ± 0.001, Overall Acc 0.980 ± 0.001

Hussain [17]

Feature Extraction: 3D segmentation Canny Edge
Detection, extracting curved boundaries using
polynomials
Classifier: Random Forest

2 Classes Normal vs. DME
Sensitivity: 94.67%, Specificity: 100.00%,
F1-score: 97.22, Accuracy: 97.33%
3 Classes
Accuracy: 96.89%AUC: 0.99

Thomas [1]
Feature extraction: multi-Path CNN with residual
connections
Classifier: Sigmoid Fully Connected layers

Two Class AMD vs. Normal
Accuracy: 96.67%
AUC: 100%

Rong [14]
Preprocessing: Denoising and Flattening
Feature Extraction: Surrogate-Assisted Retinal
CNN

3-Classes—With Surrogates|With Raw Images
AUC: 0.9856|0.9491
Acc: 0.9509|0.9205
Sen: 0.9639|0.9059
Spe: 0.9360|0.9371

Wang [18]
Preprocessing: Mean and Bilateral Filter and
image cropping
Feature Extraction and Classifier: CliqueNet

3-Classes
Accuracy: 0.990
Precision AMD: 0.956|Recall AMD: 1
Precision DME: 1.00|Recall DME: 0.99
Precision Normal: 1.00|Recall Normal: 0.986

Das [7] Feature Extraction: B-Scan Attentive CNN
Classifier: Fully connected layer

3-Classes
Acc: 97.12 ± 2.78, SP: 95.61 ± 4.35,
Se: 97.76 ± 2.07, AUC: 0.97 ± 0.03

Noor Eye Hospital dataset
148 volumes
48 AMD volumes (1565
total images)
50 DME volumes (1104
total images)
50 Normal Volumes (1585
total images)

AMD, Acc = 93.2 ± 2.7, SP = 95 ± 0.1, Se = 92.0 ±
4.4
DME: Acc = 99.3 ± 1.5, SP = 98.9 ± 2.4, Se = 100
Normal: Acc = 92.2 ± 2.3, SP = 93.2 ± 2.3, Se =
87.8±4.8

Wang [4]
Preprocessing: Flattening and Cropping
Feature Extraction: ResNet50 with LSTM modules
Classifier: Fully Connected layers

AMD 90.0 ± 7.1 94.6 ± 9.2
DME 94.0 ± 9.4 97.5 ± 5.6
Normal 98.0 ± 4.5 91.2 ± 5.9
Overall Accuracy: 94.0 ± 4.3 Overall Precision
94.4 ± 4.4 Overall Sensitivity 93.8 ± 4.8

Rasti [9]
Preprocessing: Retinal Flattening
Feature Extraction: Multi-Scale Convolutional
Neural Network Ensemble

3-Classes
Highest Performances: l3 – l2 – l1 – l0
Precision: 99.39 ± 1.21
Recall: 99.36 ± 1.33
F1: 99.34 ± 1.34, AUC: 0.998

3. Methods

Our algorithm has the following steps.

(i) Preprocessing: performs image segmentation using thresholding, then flattens and
aligns the retina layers;

(ii) Generating Hand-Crafted Features: generating hand-crafted features using Multi-Size
Kernels Echo-Weighted Median Patterns (MSKξMP);

(iii) Feature Weights Selection and Classification: best features are selected using Singular
Value Decomposition, and neighborhood component analysis (NCA) is classified
using Gaussian and Polynomial Kernels Support Machine Vector, Random Forest,
Naïve Bayes, Adaboost, and RUS Boost.

3.1. Preprocessing

OCT scanner misalignment between the eye and sensor during the acquisition of the
retinal images cause white areas in the image. Therefore, preprocessing Ref. [10] starts
with removing white areas by assigning white pixels to black pixels. Then, the image is
resized from a square image to a rectangular 256 × 512 image. Next, the image is binarized
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using Otsu thresholding Ref. [20], which generates a binary image (black and white), and a
non-weighted median filter is applied afterward. The purpose of this median filter is not to
remove noise in the image but to remove white areas in the binary image outside the retinal
regions. A morphological dilated operator with a large structuring element is used on the
median filtered image to close fluid region structures in DME and CNV images. Finally, the
retinal layers are flattened by applying the polynomial fit of either the 2nd order or 3rd order
based on the R2 fitness function. In most cases, the 3rd-order polynomial is selected to flatten
the retinal layers.

3.2. Hand-Crafted Features

This section presents new, so-called Multi-Size Kernels ξcho-Weighted Median Pat-
terns (MSKξMP), hand-crafted features. This is an extension of the Local Binary Patterns
(LBP) feature extractor [21] and is used in many applications such as texture analysis, face
recognition, object detection, fault diagnosis, and image retrieval. The advantages of LBP
are that it is computationally simple, efficient, and is invariant to illumination. However,
the disadvantages of LBP are its production of artifacts and noises, which distort the central
pixel value causing classification degradation. To improve the robustness of LBP, different
modifications of LBP were proposed.

In this proposal, we start with the generalized form of the LBP given by the following:

LBP(IC) = ∑
iεR

f (i)s(Ii − IC) (1)

where IC is the center pixel, Ii are the surrounding pixels, f (i) is equal to 2i and R is a region
defined by the kernel size. The kernel size is usually selected to be 3 × 3; however, sizes
such as 5 × 5 and 7 × 7 are also known to be used. s(Ii − IC) = {1, Ii − IC ≥ T; 0, Ii − IC < T}
where T is selected to be zero. The generalized LBP operates on all the pixels in an image
using a specific kernel size. Each of these kernels is placed over a pixel, IC, and is compared
to its surrounding neighboring pixels Ii using Equation (1). If a neighbor pixel is greater
than or equal to the center pixel, then s(·) is assigned 1; if a neighbor pixel is less than the
center pixel, then s(·) is assigned 0. A binary sequence is obtained, and each sequence is
assigned to the appropriate decimal weight, 2i, which is then converted into a decimal
value. The decimal weights, 2i, are then summed and encoded to structural information,
generating an LBP image. The LBP is simple, fast, easy, and robust to illumination changes.
However, it suffers when speckle noises are present.

The median LBP Ref. [22] was proposed to address these noises. The median LBP can
be implemented by replacing IC in (1) with the median value of all the pixels within the
region R: IC = Imedian = median(R) = median(I0, I1, I2, . . . IN−1), where N is the number of
pixels in region R. However, the current median LBP does not go far enough to prevent
speckle noises from falling into the texture-based calculation. For example, Figure 2a
illustrates a 3 × 3 kernel with the following values [135, 75, 75; 135, 75, 75; 160, 135, 135].
The 75’s are image pixels without noise and the 135’s and 160’s are noisy pixels. When we
select the median value within the 3 × 3 kernel, we obtain 135, a noisy pixel. To overcome
this deficiency, Multi-Size Kernels ξcho-Weighted Median Patterns are proposed.
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3.3. Multi-Size Kernels Echo-Weighted Median Patterns

MSKξMP is a textural feature descriptor similar to median LBP. MSKξMP encodes the
textural pattern information by comparing surrounding pixels to the median pixel Imedian.
However, this median value is calculated differently than Ref. [22]. Its surrounding pixels
are defined using six different kernel sizes represented using Rn×m, where n’s and m’s have
the following values: 3 × 3, 5 × 5, 7 × 7, 3 × 5, 5 × 7, and 3 × 7. Numerous kernel sizes
are used because each kernel captures a variation of texture within the OCT; one kernel can
miss a specific feature that another kernel size picks up. A larger kernel like the 7 × 7 can
capture regional details that a 3 × 3 kernel can miss and vice versa.

The MSKξMP is calculated in three steps for each kernel size, Rn×m. The first is to
calculate Imedian, the second is to find each mi’s found in Rn×m, and the third step is to
calculate each medianLBPn×m using parameters obtained from steps one and two. The
medianLBPn×m is defined by the following equation:

medianLBPn×m(IC) = ∑
iεRn×m

f (i)s(mi − Imedian) (2)

where IC is the current pixel being encoded and is the center pixel of the kernel. The
combination of all medianLBPn×m are the MSKξMP. The calculation of Imedian is motivated by
the weighted median filter in Ref. [23], which echoes or repeats pixel values a predetermined
number of times. Figure 2b illustrates the 3 × 3 kernel, but now echo-weights are applied.
The integer of each weight indicates the number of repetitions, e.g., the second element, 75,
is repeated two times, or the middle element, 75, is repeated three times. After applying the
echo weight to the 3 × 3 kernel, the median was determined to be 75 or Imedian = 75, which
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is not a noise pixel. These weights can be determined by centering a two-dimensional
Gaussian function onto IC, defined by the following:

G(x, y) =
1

2πσxσy
e
−(x2+y2)

2σxσy

where σx and σy are standard deviations in the x and y directions, respectively. When a
square kernel is utilized, the standard deviations should be the same, σx = σy, and when
a rectangular kernel is utilized, the standard deviations could be different, σx 6= σy. The
selection of σx and σy is flexible, as long as the center pixel has the most weight and
the surrounding weights are not too small compared to the center. Please see Figure 3,
“MSKξMP Weights”. Notice the center weight is only one value higher than its neighboring
values. The Gaussian Function is then normalized by its minimum value, min(G(x,y)),
to ensure its minimum value equals 1. We then took the ceiling of each element in the
normalized Gaussian Function to obtain integer values (or repetition values). The Echo
formula can be represented by the following:

ξ(x, y) =
⌈

G(x, y)
min(G(x, y))

⌉
, (3)

where d· e indicates the ceiling operator, and ξ(x,y) represents the echo weights of our
kernels. The standard deviations utilized in the 3 × 3 weight kernel, shown in Figure 3, are
σx = σy = 1.2. The values of the standard deviations should increase with increasing kernel
size. The weight of the center pixel should always have the highest repetition because this
gives a non-noise pixel a better chance of being selected as the median.

Figure 3 shows MSKξMP images associated with their echo weights for all the kernel
sizes used in this paper. Notice that the MSKξMP images with weights 5 × 7 and 7 × 7 had
the coarsest texture, meaning there were more texture variations and they would provide
the highest performance. For example, the MSKξMP of the CNV images can extract drusen
particles better than the Fibonacci patterns. The DME image had the most noise, however,
the 3 × 3 weighted MSKξMP image could encode less noise compared to the classical LBP.

Finally, Imedian can be written in terms the pixel intensities in Rn×m:

Imedian = mediann×m(ε04 I0, ε14 I1, . . . , εN−14 IN−1) (4)

where4 is a duplication operator, ε0, ε1, . . . εN−1 are elements in the matrix ξ(x,y) and Ii, i
= 0, 1, . . . , N − 1 are the pixel values in Rn×m. ε04 I0 reads the following: I0 is duplicated
ε0 number of times.

The second step is to determine mi values. These median values are selected
within sub-regions of Rn×m and are color-coded in red, yellow, and blue, see top
of Figure 4. The pair of regions to the left and right of the center pixel are coded
in yellow, the corner sub-regions are coded in red, and the top and bottom sub-
regions are coded in blue. A sample calculation of mi’s within a 5 × 5 kernel is
illustrated in the following. East (yellow): m1 = median(0, 135) = 67.5, northeast (red):
m2 = median(123, 147, 0, 135) = 106; north (blue): m3 = median(106, 123, 123, 106, 0,
0) = 106; northwest (Red): m4 = median(106, 106, 106, 106) = 106; West (yellow): m5 =
median(106, 106) = 106; southwest (red): m6 = median(70, 70, 70, 70) = 70; south (blue):
m7 = median(70, 153, 153, 70, 153, 153) = 153; and southeast (red): m8 = median(153,
128, 153, 128) = 140.5.
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Once all the mi’s are calculated, we moved to the third step, where we compared mi’s to
Imedian found in the first step using (2). The comparison encoded the mi’s to binaries which
were then multiplied by their respective decimal weights, and the sum was calculated to
obtain medianLBP5 × 5(IC). The rest of the medianLBPn×m’s are obtained similarly. Figure 3
shows that each medianLBPn×m image displays different textural information, which is
beneficial in distinguishing the different types of ocular disorders.

Four histograms were generated for each medianLBPn×m image to extract their features.
One histogram was generated from the entire medianLBPn×m image, which represented the
global features. The other three histograms were generated from local overlapping regions
and labeled with different color brackets, as seen in Figure 4. Each local regions had a size
of 256 × 256 to capture local features. The four histograms from each medianLBPn×m are
concatenated to form the MSKξMP feature vector for each OCT image.

4. Computer Simulation
4.1. Datasets

Three datasets were used to test the performance of MSKξMP. The first dataset,
designated as Dataset 1, was taken from Duke University, Harvard University, and the
University of Michigan Ref. [4]. This dataset consisted of SD-OCT volumetric scans acquired
from 45 patients: 15 normal patients, 15 patients with dry AMD, and 15 patients with DME.
All SD-OCT volumes were acquired in Institutional Review Board-approved protocols
using Spectralis SD-OCT (Heidelberg Engineering Inc., Heidelberg, Germany). The second
dataset, which will be designated as Dataset 2, was acquired from the Noor Eye Hospital
dataset Ref. [9] and consisted of 148 SD-OCT volumes (48 AMD, 50 DME, and 50 Normal),
acquired by using the Heidelberg SD-OCT imaging system at Noor Eye Hospital in Tehran
(NEH). Each volume consisted of 19 to 61 B-scans; the resolution of the B-scans was 3.5 µm,
and the scan dimension was 8.9 × 7.4 mm2.

The third dataset, Dataset 3, was also collected by the Heidelberg SD-OCT imaging system
at Noor Eye Hospital (NEH) and was obtained from the Mendeley database website Ref. [8]. It
contained 16,822 OCTs images of Normal (120 volumes), Drusen (160 volumes), and CNV (161
volumes). However, 12,641 images (3234 CNV, 3740 Drusen, and 5667 Normals) were selected
for our experiments. This is because we were only keeping worst-case condition images for
each volume, whereas if a patient was labeled a CNV case, only CNV B-scans within that
volume were included for training and testing procedures. Normal and drusen B-scans of that
patient were excluded. Note that drusen particles are early signs of aged macular degeneration,
which can be treated in the same class as AMD.

4.2. Feature Weightings, Selection, and Classification

Principal Component Analysis (PCA) is one of the oldest and most widely used
statistical techniques that reduces feature dimensionalities. PCA improves interpretability
while preserving variability, which minimizes informational loss. This means finding new
variables Fi that are linear functions of those in the original features, while successively
maximizing variance and maintaining uncorrelatability. This allows the representation of a
class of features in the following form:

λ1

∑
p
i=1 λi

F1,
λ2

∑
p
i=1 λi

F2, . . .
λp

∑
p
i=1 λi

Fp

where λi eigenvalues are sorted according to the size as λ1 ≥ λ2 ≥ . . . ≥ λp ≥ 0, Fi,
i = 1, 2, . . . p, features, F1 is the best feature and the 2nd, 3rd, . . . , kth (k ≥ 4) are other
principal components.

The PCA used in this paper was based on Singular Value Decomposition (SVD), which
was used to select our best features. X = UΣVT represents the SVD of an input matrix X, where
U represents the reflection of X, the diagonal of Σ represents the variabilities, σ1, . . . , ση, up to
the η-th feature, VT is the ‘eigen vectors’ of X. X will be subtracted by its mean of each column
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of Xmean, to obtain Xm = X − Xmean. This subtraction is commonly used for normalizing PCA
data. We then calculated XPCA, which is defined by the following:

XPCA = VN×N
TXm,N×M

T (5)

where M is selected based on the percentage of variability up to η, η ≥M, N is the number
of total observations in the dataset and the dimensions of XPCA is N rows by M columns.

Our feature selection also included feature weighting using neighborhood component
analysis (NCA) Ref. [24] to refine our feature searching process. NCA is a feature weighting
algorithm utilizing the nearest neighbor to maximize expected leave-one-out classification
accuracy. Then NCA was optimized using stochastic gradient accent to learn a feature
weighting vector. The output of the NCA is a vector, ω, of length of η representing the weight
importance of each feature. Each element in ω is assigned to each column of matrix XPCA.

We then searched for sets of optimal features by reducing the number of columns of
XPCA through iterations. The values of the weights in ω were used for removing features
from XPCA at iteration. The weights can be written as the following:

ω(l) =
(
ω1, ω2, . . . , ωMl

)
, η ≥ Ml (6)

where Ml, is the number of features remaining after some features have been removed at lth
iteration. This idea was taken from Ref. [25] “Drop Out”, where a Neural Network with a
large number of parameters tended to overfit a dataset, causing a decrease in performance.
The function of dropout is to drop neuron units with low weights from the neural network
during training after multiplying feature weights to feature vectors. Our algorithm utilized
this idea to drop features with weights that were below a certain threshold. By dropping
these unimportant features, we achieved faster training times and prevented overfitting. To
multiply feature weights to feature vectors,ω can be rewritten in matrix form by replicating
each element and putting them in column wise fashion. Ω(l) is defined by the following:

Ω(l) =


ω1 0 . . . 0
0 ω2 . . . 0

0
0

0
. . .

. . .

. . .
0

ωMl


where Ω has N number of rows. We can rewrite our input classification matrix, XPCA

(l), in
terms of Ω and at lth iteration using the following:

XPCA
(l) =

{
VN×N

TXm,N×Ml
TΩ(l), τω(l) > ω(l)

}
(7)

where xi,PCA
(l) is the feature vector in the ith row of XPCA

(l), “·” indicates point matrix
multiplication operation, τω(l) is the weight removal threshold at lth iteration, and Xm,N×Ml
is the updated feature matrix with M1 number of features. The features that are dropped
have feature weights below τω(l) at the l iteration. XPCA(l) is a new classification input
matrix and is inputted to each of the classifiers. The classifiers used during each iteration
are RUS-Boost Ref. [26], and Naïve Bayes Ref. [27] and support vector machine using
Polynomial and Gaussian Ref. [28], Random Forest Ref. [29] and Adaboost Ref. [30]. τω(l)

values selected for this paper ranged from 0.1 to 1 with increments of 0.01. The classification
accuracies, a(l,k), were recorded in each lth iteration at the kth classifier. a(l,k) was defined
by the following:

a(l, k) = Ck

{
XPCA

(l)
}

, k = 1, 2, . . . , 6

where Ck was one of the kth classifiers listed above. The maximum accuracy was found
using the following:

lmax = arg max
l,k

(a(l, k))
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lmax = arg max
l,k

(
Ck

{
(VNxN

TXm,N×Ml
TΩ(l), τω(l) > ω(l)

})
(8)

where argmax(·) determines the maximum location or accuracy of lth at kth classifier.
Dataset 1, 2, and 3 were trained in this fashion. The η was selected to be 100 for Dataset 1,
and 70 for Dataset 2 and 3. Figure 4 shows the MSKξMP OCT Image recognition system
from start to finish.

4.3. Performance Evaluation

To evaluate and determine the performance of the proposed feature extraction approach,
the accuracy, sensitivity, specificity, precision, and F1-score were compared with the results of
HOG Ref. [4], BACNN Ref. [7], Alpha Mean Trimmed Patterns Ref. [10], Fibonacci Patterns
Ref. [19], Classical LBP Ref. [21], Vision Transformer Ref. [31], ResNet Ref. [32], VGG16
Ref. [33], and Inception V3 Ref. [34]. By definition, higher values on these indexes imply
better quality measures of classification. Mathematical formulas of these measurements are
given below:

Accuracy =
Tp + Tn

Tp + Tn + Fp + Fn

Sensitivity = Recall =
Tp

Tp + Fn

Speci f icity =
Tn

Tn + Fp

Precision =
Tp

Tp + Fp

F1 Score =
2 ∗ precision ∗ recall

precision + recall

where Tp and Tn are the true positive and true negative and Fp and Fn are the false positive
and false negative, respectively.

5. Results and Discussions

For datasets 1 and 2, four different classification schemes were tested using MSKξMP,
AMD vs. DME vs. Normal, AMD vs. DME, DME vs. Normal, Normal vs. AMD, and all
classes. Since dataset 1 was slightly imbalanced, AMD (723 images), DME (1101), and has
Normal (1407), using accuracy as the only measurement would not be enough to detail
the efficacies of the MSKξMP. Using measurements such as recall, specificity, precision,
and F1-score was more effective. For dataset 3, we also tested using four classification
schemes: Normal vs. CNV, CNV vs. Drusen, Normal vs. Drusen, and all classes, Normal vs.
CNV vs. Drusen. Our experiments included kernel sizes up to 3 × 9 and 5 × 9, however,
these window sizes were too large, and important features detected may not be within
the local areas of the pixel, IC. Therefore, kernel sizes up to n × 9 were omitted from the
result section. As using more kernels with varying sizes would have diminishing returns
and performance improvements would be minimal. Using six kernels is the right balance
between computation times and performances of our MSKξMP.

5.1. Dataset 1, 2 and 3 Results

The highlights of our experiments on datasets 1 and 2 are shown in Table 2 and Figure 5,
which show the performance measurements of our MSKξMP. The highest accuracy was
achieved by SVM using polynomial kernel at 99.78% on dataset 1 and 96.59% on dataset 2.
We achieved 100% on some of the binary classifications, Normal vs. AMD and Normal vs.
DME, both using SVM with polynomials as well. Rus-Boost and Naïve Bayes seem to perform
the worst, while Adaboost and Random Forest have similar performance to each other. This
is because Adaboost and Random Forest both utilize an ensemble of weaker classifiers to
create one stronger classifier: K-nearest-neighbor Classifiers to create Adaboost and decision
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trees for creating Random Forest. The highest accuracy was achieved by SMV polynomial.
Regarding misclassifications, SVM polynomial kernel did not misclassify any normal images,
only misclassified two DME class images, and using SVM Gaussian only two DME images are
misclassified for dataset 1, see confusion matrixes Figure 5. Something to note on dataset 2’s
results are their sensitivities (recall) and specificity, notice the specificity was 98.33%, which is
higher than the accuracy and sensitivity; this suggests high confidence in their true negatives.

Table 2. Results from datasets 1, 2 and 3.

Dataset 1

3 Classes AdaBoost Naïve Bayes SVM: Poly R. Forest SVM: RBF Rus Boost

precision 0.9714 0.8809 0.9976 0.9806 0.9958 0.8340
sensitivity 0.9696 0.8696 0.9971 0.9754 0.9941 0.8385
specificity 0.9857 0.9317 0.9989 0.9885 0.9978 0.9240
accuracy 0.9725 0.8737 0.9978 0.9790 0.9957 0.8480

F-measure 0.9705 0.8740 0.9974 0.9779 0.9949 0.8354

2 Classes Normal vs. AMD Normal vs. DME DME vs. AMD

Classifier SVM: Poly SVM: Poly SVM: Poly
precision 0.9996 1.0000 0.9970

sensitivity 0.9993 1.0000 0.9961
specificity 0.9993 1.0000 0.9961
accuracy 0.9995 1.0000 0.9967

F-measure 0.9995 1.0000 0.9966

Dataset 2

3 Classes AdaBoost Naïve Bayes SVM: Poly R. Forest SVM: RBF Rus Boost

precision 0.8500 0.8066 0.9662 0.9256 0.9601 0.7347
sensitivity 0.8476 0.7975 0.9663 0.9260 0.9601 0.7410
specificity 0.9223 0.8977 0.9833 0.9615 0.9799 0.8655
accuracy 0.8481 0.8002 0.9669 0.9243 0.9603 0.7332

F-measure 0.8487 0.7997 0.9663 0.9249 0.9599 0.7326

2 Classes Normal vs. AMD Normal vs. DME DME vs. AMD

Classifier SVM: Poly SVM: Poly SVM: Poly
precision 0.9740 0.9877 0.9760

sensitivity 0.9740 0.9870 0.9753
specificity 0.9740 0.9870 0.9753
accuracy 0.9740 0.9877 0.9764

F-measure 0.9740 0.9873 0.9757

Dataset 3

3 Classes AdaBoost Naïve Bayes SVM: Poly R. Forest SVM: RBF Rus Boost

precision 0.7350 0.6730 0.8931 0.8343 0.8952 0.6608
sensitivity 0.6907 0.6609 0.8851 0.7908 0.8758 0.6327
specificity 0.8499 0.8385 0.9431 0.8985 0.9395 0.8191
accuracy 0.7256 0.6894 0.8920 0.8175 0.8887 0.6616

F-measure 0.7022 0.6652 0.8888 0.8026 0.8837 0.6414

2 Classes Normal vs. Drusen Normal vs. CNV Drusen vs. CNV

Classifier SVM: Poly SVM: Poly SVM: Poly
precision 0.9001 0.9817 0.9358

sensitivity 0.8887 0.9782 0.9327
specificity 0.8887 0.9782 0.9327
accuracy 0.8993 0.9815 0.9345

F-measure 0.8935 0.9799 0.9339
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The main takeaway from the results in dataset 3 is that our MSKξMP was able to
achieve 89.3% in accuracy using SVM polynomial kernel with specificity of 94.37%. This
means high confidences in the true negative diagnoses. The other classifiers performed
similarly to dataset 1 and dataset 2. Normal vs. CNV achieved the highest accuracy at
98.53% due to the significant differences between their visual features. It can be observed
that MSKξMP was able to achieve 93.69% accuracy with the CNV vs. Drusen classification
scheme. This is a good score because while CNV images contain drusen particles that may
cause some confusion with AMD images, our feature extractor was able to differentiate
between these two classes reliably.

Figure 6 shows ROC curves for our best results “SVM: Polynomial” in all three datasets.
For each dataset, we plotted three ROC curves with one class being the positive class of the
other two classes. For example, dataset 1 have three classes: Normal, DME, and AMD. One
curve plots the True Positives vs. the False Positives using Normal as the positive class and
DME and AMD as the negative classes. The area under the curves (AUC) are also computed
for each respective curve. Notice the AUCs for dataset 1 were higher and the AUCs of dataset
3 were lower, which reflects their respective accuracies, sensitivities, and specificity.
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5.2. Ablation Study

For our ablation study, we tested the feature extraction capabilities of each kernel
size and weights (shown in Figure 3) on dataset 1. From Table 3, it can be observed that
the accuracies measured were highest with the 5 × 7 and 7 × 7 kernels. For each kernel
size, the accuracies were about 0.5–3% below our highest achieved accuracy of 99.78%
(all kernels). Concatenating the feature vectors generated from each kernel size helped
improve the performances of our MSKξMP and indicated that each sized kernel captured
different textural information from the OCT image, both locally and regionally. Based
on this ablation study, we decided to omit the 3 × 3 kernel and test combined features
generated by 5 × 5, 7 × 7, 3 × 5, 5 × 7 and 3 × 7. We were able to achieve an accuracy of
99.78% by SVM polynomial kernel without using the 3 × 3 kernel.

Table 3. Results of ablation study.

Ablation Study

Kernel
Size 3 × 3 5 × 5 7 × 7 3 × 5 5 × 7 3 × 7

precision 0.9684 0.9832 0.9902 0.9772 0.9904 0.9746
sensitivity 0.9636 0.9808 0.9878 0.9743 0.9890 0.9734
specificity 0.9821 0.9920 0.9950 0.9872 0.9955 0.9868
accuracy 0.9666 0.9842 0.9904 0.9762 0.9910 0.9749

F-measure 0.9659 0.9820 0.9890 0.9757 0.9897 0.9739

5.3. Comparisons to Recent State of the Art

Comparing dataset 1 with recent state of the art shows our MSKξMP is able to achieve
slightly higher accuracies, as shown in Tables 4 and 5. Das Ref. [7]’s BACNN achieved
an accuracy of 97.76% with a plus or minus of 2.24%, meaning BACNN was able to
achieve 100% but with extremely high fluctuation. Even though our experiments were
based on ten-fold validations, our fluctuation was only about 0.3–0.4%, which is more
stable than BACNN. Compared to other state of the arts, our MSKξMP outperformed very
deep CNNs such as Refs. [13,32,34] as well as the recent discovery of vision transformer
algorithm Ref. [31]. Also, our MSKξMP was able to outperform recent state of the art
texture descriptors such as Refs. [10,19], by 99.78% to 94.96% and 99.16% respectively, see
Table 6. Table 7 shows datasets 2 and 3 comparisons between the recent state of the art
and our MSKξMP. Our accuracies either outperformed or were comparable against deep
learning techniques such as Ref. [35]. Note that Ref. [35] had high fluctuations across all
performance measurements, ±0.8–3%, whereas our results with MSKξMP only fluctuated
within 0.1–0.2%.

Table 4. Dataset 1 comparisons to recent state of the art.

Dataset 1: Comparisons to State of the Art

Author Method Sensitivity (%) Specificity
(%)

Accuracy
(%)

DAS [7]

HOG+SVM [4] 88.47 96.48 90.83
VGG16 [33] 94.80 91.15 93.73

InceptionV3 [34] 91.46 98.22 93.46
ResNet [32] 89.59 98.22 92.14

BACNN 97.76 95.61 97.12

Our Work 99.71 99.89 99.78
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Table 5. Dataset 1 comparisons to recent state of the art.

Author Thomas
[3]

Srinivasan
[4]

Hussain
[17] Wang [18] Jiang [31] Luo [36] Mousavi

[37] Karri [38] Our
Work

Accuracy 96.66% 95.56% 96.89% 99.00% 99.69% 94.20% 98.38% 91.33% 99.78%

Table 6. Dataset 1 comparisons to recent texture descriptors.

Comparisons to Other Recent Texture Descriptors: Dataset 1

Technique AMT-LBP [10] LBP [21] Fibonacci [19] MSKξMP

precision (%) 99.24 97.62 95.11 99.76
sensitivity (%) 98.95 97.01 94.60 99.71
specificity (%) 99.61 98.67 97.33 99.89
accuracy (%) 99.16 97.31 94.96 99.78

F-measure 99.09 97.30 94.84 99.74

Table 7. Dataset 2 and 3 comparisons to recent state of the art.

Dataset 2: Three Class Classification

Author Technique Sensitive (%) Precision (%) Accuracy (%)

Wang [4] OCANet-CK 88.50 89.40 88.60
VOCT-RNN 94.00 94.40 93.80

Our Work MSKξMP 96.63 96.61 96.68

Dataset 3: Three Class Classification

Author Technique Sensitive (%) Specificity (%) Accuracy (%)

Sotoudeh-Paima
[35]

FPN-
EfficientNetB0 86.60 93.30 87.80

FPN-ResNet50 89.80 94.80 90.10
Our Work MSKξMP 88.51 94.31 89.20

6. Conclusions and Future Work

This work presents a new image textural descriptor, MSKξMP, for differentiating
between ocular diseases such as AMD, Drusen, DME, and CNV in OCT images. The
presented method can be used to encode textural patterns at local and regional scales
and to improve edges in various directions while avoiding speckle noises. The computer
simulations show that our measurements outperformed (a) the current state-of-the-art deep
learning techniques and vision transformer; and (b) the FPN-EfficientNetB0 in dataset 3
and is comparable to the FPN-ResNet50 network. Some of our binary classifications from
dataset 1 also performed well, achieving perfect accuracy, or close to it. MSKξMP had
high specificity, suggesting high confidence in their true negatives. Future work should be
focused on constructing 3D retinal images, such as 3D OCT images, by extracting volume
and depth information to determine the spread of the disease. The 3D structures should be
used for multi-view classification.
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