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Abstract: The effect of electromyographic (EMG) activity on agonist muscles during exercises performed
on stable and unstable surfaces remains uncertain. We aimed to review the literature regarding the
comparison of the EMG activity of the agonist muscles of exercises performed on stable and unstable
surfaces. Eighty-six studies that evaluated the EMG activity of 1783 individuals during exercises for
the lower limbs, upper limbs, and core were included. The EMG activities of the pectoralis major
(SMD = 0.28 [95% CI 0.09, 0.47]) and triceps brachii muscles (SMD = 0.45 [95% CI 0.25, 0.66]) were
significantly increased when the unstable device was added to the exercise. Likewise, the EMG activity
of all core muscles showed a significant increase with the unstable surface during the exercises, such
as the rectus abdominis (SMD = 0.51 [95% CI 0.37, 0.66]), external oblique (SMD = 0.44 [95% CI 0.28,
0.61]), internal oblique (SMD = 1.04 [95% CI 0.02, 2.07]), erector spinae (SMD = 0.37 [95% CI 0.04, 0.71]),
and lumbar multifidus (SMD = 0.35 [95% CI 0.08, 0.61]). However, the lower limb muscles did not
show greater EMG activity during the exercise with unstable surfaces compared to the stable surface.
In conclusion, unstable conditions increase the EMG activity of some upper limb and core muscles
compared to a stable surface.

Keywords: upper extremity; lower extremity; abdominal core; electromyography; resistance training

1. Introduction

Instability can be defined as a situation in which a part of the body or the body as
a whole has difficulty maintaining a position, which may be related to a lack of joint,
muscular, or postural stability [1]. Different instability situations are common in sports
situations and activities of daily living. In this sense, athletes and non-athletes have used
resistance training with instability, aiming to adapt their neuromuscular system to sudden
and unforeseen changes in balance [2–6]. Instability can be induced by devices such as
a Swiss ball, Bosu ball, and TRX creating an unstable surface or condition. Training on
unstable surfaces has been commonly adopted in geriatric [7,8] contexts and rehabilitation
programs due to the possibility of obtaining good neuromuscular activation using low
loads [9,10] and improving proprioception and balance stimuli [11,12].

It is speculated that a greater demand for stabilization during exercises on unstable
surfaces would increase neuromuscular recruitment due to the need for motor and stabilizer
components, consequently increasing muscle activation [12]. Resistance training with unsta-
ble devices can be performed for warm-up phases and a lower load of the training program,
which would generate benefits for athletes and recreationally active individuals [13]. Some
studies demonstrate greater electromyographic (EMG) activity for the agonist muscles
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during exercises under unstable conditions [14–17], while other studies do not demon-
strate significant differences between stable and unstable conditions [18–20]. The results
described in the literature are divergent concerning the different muscles evaluated, types
of exercises, and instability devices.

Only two systematic reviews have compared the effects of using unstable surfaces on
electromyographic activity, and both only evaluated periscapular muscles [21,22]. The first
study included 33 studies that evaluated 678 subjects and showed that using unstable
surfaces generated a slight increase in upper trapezius activity and a slight decrease in
serratus anterior activity. At the same time, no effect was observed in the middle and lower
trapezius [21]. The second study evaluated whether different types of instability devices
provide different EMG responses in the serratus anterior and upper trapezius muscles.
The authors verified that only the suspension straps increase the upper trapezius activity
and that any instability device decreases the serratus anterior activity [22].

Health professionals frequently prescribe exercises on unstable surfaces during reha-
bilitation and physical conditioning programs considering the potential benefits of using
this surface type. However, the literature is still uncertain about the EMG activity of the
upper and lower limbs and core muscles. Therefore, a systematic review of the literature
on the subject is necessary and can contribute to prescribing exercises on unstable and
stable surfaces for athletes and non-athletes. This study aimed to systematically review
and meta-analyze the literature related to the EMG activity of the agonist muscles between
exercises performed on stable and unstable surfaces.

2. Materials and Methods

This systematic review was registered prospectively (PROSPERO—CRD42020199935)
and followed the recommendations of the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses [23].

2.1. Data Sources and Searches

The bibliographic search was conducted in the PubMed, Web of Science, Scopus,
Cochrane Library, Scielo, and Lilacs databases in March 2024, based on the PICOS approach
described in detail in Supplementary Online Material S1. In addition, a manual search was
performed in the list of references from similar published systematic reviews and included
studies. Three reviewers (GAB, SPB, and MHP) independently evaluated all titles and
abstracts through the Rayyan program (https://www.rayyan.ai/), and a fourth reviewer
(RCA) was consulted in cases of disagreement. The selection of studies was based on the
eligibility criteria adopted in the PICOS strategy. The investigators contacted the authors to
request any further information by e-mail or Research Gate when needed.

2.2. Study Selection

The studies were included according to the following inclusion criteria: (1) Population:
athletes and non-athletic adults from both sexes who were experienced with exercises
using instability devices; (2) Interventions: exercises for the upper limbs, lower limbs, or
trunk/core using an unstable surface; (3) Comparators: the same exercises performed on
a stable basis; (4) Outcomes: EMG amplitude values of the agonist muscles; (5) Study type:
cross-sectional studies that compared electromyographic activity during an exercise with
and without unstable surfaces. The following exclusion criteria were considered: (a) studies
which did not haves the full text available in English; (b) not published in scientific journals;
and (c) participants with neurological diseases (e.g., Parkinson’s).

2.3. Data Extraction

Characteristics of the sample and details from the data collection and analysis were
extracted by three independent investigators, followed by a consensus. The following
information was collected from each of the studies: (1) authors and publication year of the
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article; (2) sociodemographic characteristics: age, sex, and health condition; (3) assessed
muscles; (4) types of exercises and surfaces; and (5) summary of results.

In the case of studies with insufficient data or which only presented the results in
graphs, the authors were contacted by email or Research Gate to allow their inclusion in the
review. Some studies presented mean values and standard errors, making it not possible to
include the results in the meta-analysis [24–33]. Therefore, in some cases, it was necessary
to transform the standard error values into standard deviations using Review Manager
5.3 (The Cochrane Collaboration, Copenhagen, Denmark) to include these results in the
meta-analysis [24–33]. The authors were contacted for further information if the paper did
not provide enough data. If they did not respond, that study would only be considered for
qualitative analysis in the systematic review.

2.4. Methodological Quality Assessment

The methodological quality of the studies was based on an adapted version of
a standardized quality assessment form for observational studies [34], as recommended in
the Cochrane manual for systematic reviews, to assess different aspects of the external and
internal validity of studies. It was adapted for this review using modified versions of recent
systematic reviews about EMG activity [21,35]. The instrument consisted of nine items
regarding external validity (two items) and internal validity (seven items), with scores
ranging from 0 (worst quality) to 9 (best quality) points.

2.5. Data Analysis

Between-group standardized mean differences (SMD) with 95% confidence intervals
(95% CI) were calculated for study comparisons, and meta-analyses were performed by
pooling the results of each variable using the Review Manager 5.3.4 program. The SMD
used was the effect size known as Hedges’ (adjusted) g. Meta-analyses were conducted
where evidence from the studies was statistically homogeneous. The Chi-squared and
I2 statistics were used to measure the study heterogeneity. Non-significant values in the Chi-
squared test (p > 0.05) and I2 scores of lower than 40% were considered non-significant [36].

Meta-analyses were performed using a random-effects model (inverse variance method)
to calculate each variable’s pooled and weighted mean SMD (SMDp) and 95% CI. The
meta-analyses were organized considering the agonist muscle, while the subgroups were
organized by exercises. A sensitivity analysis was conducted to test the influence of the risk
of bias by removing studies that scored less than 3 points on the methodological quality
scale from the meta-analyses. In addition, we used the funnel plot to identify studies with
possible publication bias, analyzing the subgroups with heterogeneity greater than 60%.
Effect sizes were interpreted according to Hopkin’s scale [36] by considering them trivial
(<0.20), small (0.20–0.59), moderate (0.60–1.19), or large (≥1.20). Statistical significance was
set at p < 0.05.

3. Results

We included 86 studies; however, only 50 were included for quantitative analysis
(Figure 1). Thirty-six studies were not included in the meta-analysis due to the unavailabil-
ity of the data and the small number of studies that analyzed specific exercises.
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Figure 1. Flow diagram showing the reference screening and study selection.

3.1. Study Characteristics

The characteristics and main results of the selected studies are shown in Supplementary
Online Material S1—Tables S1–S3. All studies included in this review were cross-sectional
and analyzed the EMG activity of agonist muscles for the upper (36 studies) and lower limbs
(27 studies) and core (26 studies) during exercises performed on a stable surface compared to
an unstable surface under similar exercise conditions. The following muscles were considered
part of the core: rectus abdominis, transversus abdominis, lumbar multifidus, erector spinae,
internal oblique, and external oblique [37].

The EMG activity was collected from the primary muscle for each exercise (Supplementary
Online Material S1—Table S1); more than one muscle group was assessed in two studies [38,39].
The study conducted by Marshall and Murphy [38] evaluated the agonist muscles of the upper
and lower limbs and core. Meanwhile, Aranda et al. [39] evaluated the agonist muscles of
the upper and lower limbs. The total sample of this review consisted of 1783 individuals,
494 women and 1289 men. Most studies were composed of healthy individuals, with and
without experience in resistance exercises, with a general mean age of 24.0 years, body mass of
72.5 kg, and height of 1.74 m.

A wide variety of exercises were used in the studies; the most common exercises for
the upper limbs included push-ups, push-up plus, knee push-ups, knee push-up plus,
chest press, bench press, and horizontal dumbbell fly. For the lower limbs, squats, isometric
half squats, isometric deep squats, Bulgarian squats, and standard lunges were assessed.
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The exercises that were investigated for the core muscles were a double-leg bridge, single-
leg bridge, side bridge, prone plank, and abdominal crunch. The most unstable devices
used during the exercises were the Swiss ball, Bosu ball, wobble board, ball cushion,
suspension tape, and foam pad.

Regarding the EMG analysis, 63 studies represented the amplitude using the root
mean square (RMS), three studies used Integrated electromyography (iEMG), three studies
used the linear envelope, three studies used the average integrated EMG, two studies used
Milivolts, two studies using the integral, one study using the absolute integral (mV), one
study using the mean peak (mV), one study using the peak electrical signal, and seven
studies did not specify.

Normalization varied according to the use of maximum voluntary isometric contrac-
tion (MVIC) (40 studies), maximum voluntary contraction (MVC) (17 studies), reference
voluntary contraction (RVC) (2 studies), reference voluntary isometric contractions (RVIC)
(1 study), 1 RM test (2 studies), peak task activity (1 study), and exercise on a stable surface
(1 study). At the same time, 22 did not report this data or did not perform normalization.

3.2. Methodological Quality Assessment

The summary of the methodological quality assessment of the included studies is shown
in Figure 2 and Supplementary Online Material S2. Most studies adequately performed
statistical analysis (81 studies), a randomization of exercises (70 studies), a normalization of
the electromyographic signal (65 studies), and a proper placement of electrodes (72 studies).
However, most of the studies did not perform some essential procedures for methodological
quality, such as a randomization of the MVIC procedures (84 studies) and a sample size
calculation (69 studies).
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The mean score of the methodological quality assessment was 5.4/9, ranging from
3 to 8 points. The Supplementary Online Material S3 provides detailed information on each
study.

3.3. Qualitative Analysis

The following core muscles were assessed by 26 studies: rectus abdominis (23 studies),
external oblique (21 studies), internal oblique (7 studies), erector spinae (12 studies), lumbar
multifidus (8 studies), and transversus abdominis (2 studies). Greater EMG activity during
exercises with the use of unstable surfaces was observed in the muscles rectus abdominis
(12 studies), external oblique (9 studies), internal oblique (3 studies), and transversus
abdominis (1 study). However, some studies did not verify differences between the EMG
activity using unstable and stable surfaces for the erector spinae (9 studies) and lumbar
multifidus (6 studies). A summary of the results is presented in Table 1.
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Table 1. Summary of the qualitative synthesis results.

Muscle ↑ Unstable Surface ↑ Stable Surface ↔ No Difference between Surfaces Total Number of Studies

C
or

e

Rectus abdominis 12 studies [14,15,32,38,40–47] ---- 11 studies [48–58] 23 studies
External oblique 9 studies [15,41,43–47,59,60] 2 studies [42,55] 10 studies [32,38,50–54,56–58] 21 studies
Internal oblique 3 studies [43,46,57] ---- 4 studies [48,50,54,56] 7 studies
Erector spinae 3 studies [14,41,59] ---- 9 studies [32,40,42,46–48,56,58,60] 12 studies

Lumbar multifidus 1 study [14] 1 study [49] 6 studies [31,46–48,50,53] 8 studies
Transversus abdominis 1 study [54] ---- 1 study [54] 2 studies

Lo
w

er
lim

bs

Vastus lateralis 4 studies [5,61–63] 2 studies [64,65] 13 studies [6,18,33,38,39,66–73] 19 studies
Vastus medialis 6 studies [5,61–63,71,74] 1 study [65] 11 studies [4,6,18,66,68–70,72,73,75] 18 studies
Rectus femoris 3 studies [33,63,74] 1 study [72] 9 studies [4,6,18,66,68,70,76–78] 13 studies

Quadriceps ---- 1 study [79] ---- 1 study
Biceps femoris 2 studies [5,74] 1 study [64] 13 studies [4,6,18,33,38,39,65–67,72,75,78,80] 16 studies

Gluteus maximus 3 studies [76,77,80] ---- 2 studies [18,74] 5 studies
Semitendinosus 1 study [6] ---- ---- 1 study

Semimembranosus ---- ---- 1 study [6] 1 study
Hamstring 1 study [76] ---- ---- 1 study

Soleus 1 study [79] ---- ---- 1 study

U
pp

er
lim

bs

Pectoralis major 11 studies [9,10,16,17,25,26,28,30,81–83] 1 study [84] 17 studies [2,3,20,27,38,39,85–95] 29 studies
Triceps brachii 13 studies [16,17,26–28,30,38,81,85,87,90,96,97] 3 studies [84,94,98] 9 studies [2,9,19,24,25,83,86,92,93] 25 studies

Anterior deltoid 8 studies [9,10,17,24,84,88,93,99] 8 studies [2,26–28,82,86,87,90] 8 studies [20,29,39,89,92,94,95,98] 24 studies
Latissimus dorsi 1 study [82] ---- 1 study [19] 2 studies
Middle trapezius ---- 1 study [82] 1 study [19] 2 studies
Posterior deltoid ---- ---- 2 studies [19,82] 2 studies

Biceps brachii 1 study [9] ---- 2 studies [2,19] 3 studies
Note: ↔: No differences in electromyographic activity; ↑: Greater electromyographic activity.
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The following lower limb muscles were assessed by 27 studies: vastus lateralis (19 studies),
vastus medialis (18 studies), biceps femoris (16 studies), rectus femoris (13 studies), gluteus
maximus (5 studies), quadriceps (1 study), semitendinosus (1 study), semimembranosus
(1 study), hamstring (1 study), and soleus (1 study). Most of the articles did not demonstrate
significant differences between the surfaces for the muscles vastus lateralis (13 studies), vastus
medialis (11 studies), rectus femoris (9 studies), biceps femoris (13 studies), and semimem-
branosus (1 study). However, some studies verified greater EMG activity during exercise on
unstable surfaces for the gluteus maximus (3 studies), semitendinosus (1 study), hamstring
(1 study), soleus (1 study), and quadriceps (1 study).

Finally, the following upper limb muscles were assessed by 36 studies: pectoralis
major (29 studies), triceps brachii (25 studies), anterior deltoid (24 studies), biceps brachii
(3 studies), latissimus dorsi (2 studies), middle trapezius (2 studies), and posterior deltoid
(2 studies). The results demonstrated that the unstable surface was able to generate greater
EMG activity for the muscles pectoralis major (11 studies), triceps brachii (13 studies),
and anterior deltoid (8 studies). However, most studies did not show differences between
the surfaces for latissimus dorsi (1 study), middle trapezius (1 study), posterior deltoid
(2 studies), and biceps brachii (2 studies).

3.4. Quantitative Analysis

Some studies analyzed more than one type of exercise, so they were included in more
than one meta-analysis. A detailed description of the results for each exercise is presented
in Supplementary Online Material S1—Tables S1–S3.

Table 2 summarizes the meta-analysis results; the forest plots can be found in Supplementary
Online Material S4. When necessary, a sensitivity analysis was performed, removing studies
with methodological quality equal to or less than 3 points (Supplementary Online Material S5).

Most studies used body weight to perform the exercises (e.g., push-up, abdominal
plank, and isometric squat). However, bench press [2,39,94], chest press [20,38], and squat
exercises [5,18,39,66] require external loads with free weights or bars. Thus, the intensity of
the exercises that used external loads is available in Table S1 of Supplementary Material S4.

3.4.1. Core

The EMG activity of the rectus abdominis was compared on stable and unstable surfaces
during seven types of exercises, demonstrating a small effect size and a significant increase
in EMG activity with the insertion of unstable surfaces (SMD = 0.54 [95% CI 0.33, 0.75];
I2 = 56%) (Supplementary Online Material S4—Figure S1). An analysis of exercises by
subgroups only did not show significant differences for single-leg bridge (SMD = 0.21
[95% CI −0.26, 0.68]) and single-legged hold exercises (SMD = 0.32 [95% CI −1.43, 2.07]).
The sensitivity analysis excluding one study with low methodological quality [58] and
three studies with potential publication bias [15,45,57] showed small changes, maintaining
a small effect size and significantly greater EMG activity in favor of the unstable surface
(SMD = 0.51 [95% CI 0.37, 0.66]; I2 = 0%) (Supplementary Online Material S5—Figure S1).

The external oblique was assessed during six types of exercises and showed a small ef-
fect size and significantly greater EMG activity in favor of the unstable surface (SMD = 0.48
[95% CI 0.29, 0.67]; I2 = 39%) (Supplementary Online Material S4—Figure S2). The sub-
group analysis demonstrated that only the abdominal crunch exercise did not present
a significant difference (SMD = 0.12 [95% CI −0.41, 0.66]). The results of the sensitivity
analysis excluding one study due to low methodological quality [58] and one with potential
publication bias [46], showed a significantly greater EMG activity in favor of the unstable
surface, with a small effect size (SMD = 0.44 [95% CI 0.28, 0.61]; I2 = 19%) (Supplementary
Online Material S5—Figure S2).
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Table 2. Summary of the quantitative synthesis results.

Subgroup Categories Types
of Exercises Studies Std. Mean Difference,

Random [95% CI] I-Squared [%]
Std. Mean Difference,

Random [95% CI]
(Sensitivity Analysis)

I-Squared [%]
(Sensitivity Analysis)

C
or

e

Rectus abdominis 7 [14,15,41,43,45,46,48,50–53,57,58] 0.54 [0.33, 0.75] 56% 0.51 [0.37, 0.66] 0%
External oblique 6 [15,41,43,45,46,50–53,57–59] 0.48 [0.29, 0.67] 39% 0.44 [0.28, 0.61] 19%
Internal oblique 1 [43,46] 1.04 [0.02, 2.07] 74% Not possible -
Erector spinae 4 [14,41,46,48,58,59] 0.47 [0.18, 0.76] 53% 0.37 [0.04, 0.71] 52%

Lumbar multifidus 3 [14,46,48,53] 0.35 [0.08, 0.61] 32% Not performed -

Lo
w

er
lim

bs Vastus lateralis 4 [5,6,18,33,38,39,61,62,66,68,69,71–73] 0.27 [−0.17, 0.72] 85% 0.03 [−0.14, 0.21] 0%

Vastus medialis 4 [5,6,18,61,62,64,68,69,71–73,75] 0.20 [−0.35, 0.76] 88% −0.10 [−0.40, 0.20] 43%

Rectus femoris 1 [6,68,72] −0.93 [−2.36, 0.50] 94% −0.26 [−1.01, 0.49] 61%

Biceps femoris 4 [5,6,18,33,38,39,64,66,72,75] 0.12 [−0.09, 0.33] 0% 0.09 [−0.14, 0.32] 0%

U
pp

er
lim

bs Pectoralis major 7 [2,3,17,20,25–28,30,38,39,81–83,85,89,90,94] 0.29 [0.14, 0.44] 21% 0.28 [0.09, 0.47] 31%

Triceps brachii 4 [2,17,24–28,30,81,83,85,94,96,97] 0.48 [0.12, 0.84] 80% 0.45 [0.25, 0.66] 7%

Anterior deltoid 4 [2,17,20,24,26–29,38,39,89,90,94] −0.11 [−0.43, 0.21] 72% 0.08 [−0.14, 0.30] 24%
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The internal oblique muscle was assessed during only one type of exercise and showed
a moderate effect size and significantly greater EMG activity for an unstable surface
(SMD = 1.04 [95% CI 0.02, 2.07]; I2 = 74%) (Supplementary Online Material S4—Figure S3).
A sensitivity analysis was not performed in this case.

The erector spinae muscle was analyzed during four types of exercises, showing
a significantly greater EMG activity for an unstable surface, with a small effect size (SMD =
0.47 [95% CI 0.18, 0.76]; I2 = 53%) (Supplementary Online Material S4—Figure S4). However,
the analysis of subgroups shows that only the prone plank with hands exercise showed
a significant difference in favor of the unstable surface SMD = 0.76 [95% CI 0.22, 1.30]).
A sensitivity analysis that excluded one study with low methodological quality [14] and
one subgroup with high heterogeneity showed a similar result, with a small effect size
and significance in favor of the unstable surface (SMD = 0.37 [95% CI 0.04, 0.71]; I2 = 52%)
(Supplementary Online Material S5—Figure S3).

Finally, the lumbar multifidus muscles were analyzed during three exercises and pre-
sented significantly greater EMG activity for the unstable surface and with a small effect size
(SMD = 0.35 [95% CI 0.08, 0.61]; I2 = 32%) (Supplementary Online Material S4—Figure S5).
When analyzing the data of the subgroups, only the single-leg bridge exercise did not show
differences in the EMG activity between the surfaces (SMD = 0.00 [95% CI −0.47, 0.47]).
A sensitivity analysis was not performed in this case.

3.4.2. Upper Limbs

The EMG activity of the pectoralis major muscle was compared between stable and
unstable surfaces during seven types of exercises, showing a significantly greater activity
under unstable conditions but with a small effect size (SMD = 0.29 [95% CI 0.14, 0.44];
I2 = 21%) (Supplementary Online Material S4—Figure S6). Exercise analysis by subgroups
only demonstrated significant differences in favor of the unstable surface for push-ups
(dynamic), with a small effect size (SMD = 0.43 [95% CI 0.17, 0.68]), and push-ups (concentric
phase) with a moderate effect size (SMD = 0.62 [95% CI 0.11, 1.12]). The sensitivity analysis
excluding one study with low methodological quality [30] showed a significantly similar
result with a small effect size (SMD = 0.28 [95% CI 0.09, 0,47]; I2 = 31%) (Supplementary
Online Material S5—Figure S4).

The EMG activity of the triceps brachii muscle was assessed during four types of
exercises, showing a small effect size and significantly increased muscle activity when
an unstable surface was added (SMD = 0.48 [95% CI 0.12, 0.84]; I2 = 80%) (Supplementary
Online Material S4—Figure S7). The analysis of exercises by subgroups also demonstrated
a significant difference in favor of using an unstable surface for push-ups (dynamic), with
a moderate effect size (SMD = 0.79 [95% CI 0.31, 1.26]) and push-up exercises (concentric
phase) showing a small effect size (SMD = 0.58 [95% CI 0.10, 1.05]). A sensitivity analysis
removing three potentially heterogeneous studies [26,27,94] and excluding one study with
low methodological quality [30] showed smaller but still significant differences in favor
of the unstable surface and with a small effect size (SMD 0.45 [95% CI 0.25, 0.66]; I2 = 7%)
(Supplementary Online Material S5—Figure S5).

The EMG activity of the anterior deltoid muscle was assessed during four types
of exercises. Overall, the subgroup analysis did not demonstrate significant differences
between surfaces (SMD = −0.11 [95% CI −0.43, 0.21]; I2 = 72%) (Supplementary Online
Material S4—Figure S8). A sensitivity analysis removing two potentially heterogeneous
studies [26,27] showed similar and non-significant results (SMD = 0.08 [95% CI −0.14, 0.30];
I2 = 24%) (Supplementary Online Material S5—Figure S6).

3.4.3. Lower Limbs

The meta-analysis demonstrated no significant difference in the EMG activity between
the surfaces for the muscles of the lower limbs (rectus femoris, vastus lateralis, vastus
medialis, and biceps femoris). The rectus femoris muscle was only assessed during one
type of exercise and showed no significant differences between the surfaces (SMD = −0.93
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[95% CI −2.36, 0.50]; I2 = 94%) (Supplementary Online Material S4—Figure S9). After
a sensitivity analysis excluding the study with low methodological quality [68], the results
remained non-significant (SMD = −0.26 [95% CI −1.01, 0.49]; I2 = 61%) (Supplementary
Online Material S5—Figure S7).

Likewise, the vastus lateralis EMG activity showed no significant difference between
the surfaces when analyzing four types of exercises (SMD = 0.27 [95% CI −0.17, 0.72];
I2 = 85%) (Supplementary Online Material S4—Figure S10). After a sensitivity analy-
sis excluding one study [68] because of the low methodological quality, the results re-
mained non-significant (SMD = 0.03 [95% CI −0.14, 0.21]; I2 = 0%) (Supplementary Online
Material S5—Figure S8).

The vastus medialis EMG activity was assessed during four types of exercises and
showed no significant differences between the surfaces (SMD = 0.27 [−0.17, 0.72]; I2 = 85%)
(Supplementary Online Material S4—Figure S11). A sensitivity analysis was carried out
excluding one study [61] by analyzing the funnel plot and two studies [68,75] because
of the methodological quality, and the results did not demonstrate significant differences
(SMD = −0.10 [95% CI −0.40, 0.20]; I2 = 43%) (Supplementary Online Material S5—Figure S9).

The EMG activity of the biceps femoris muscle was assessed in four types of exercises,
showing no significant differences between the surfaces (SMD = 0.12 [95% CI −0.09, 0.33];
I2 = 0%) (Supplementary Online Material S4—Figure S12). A sensitivity analysis was per-
formed, removing one study with low methodological quality [75] and showed similar results
and no significant differences (SMD = 0.09 [95% CI −0.14, 0.32]; I2 = 0%) (Supplementary
Online Material S5—Figure S10).

4. Discussion

This study aimed to systematically review and meta-analyze the literature related to
the EMG activity of the agonist muscles between exercises performed on stable and unstable
surfaces. Eighty-six cross-sectional studies were included, with an average methodolog-
ical quality score of 5.4 points. The results of this review demonstrated that the use of
an unstable condition was able to generate greater EMG activity for the core agonist mus-
cles and for some muscles of the upper limbs (triceps brachial and pectoralis major) when
compared to the same exercise performed using a stable surface. However, the surface did
not show significant differences for the lower limb agonist muscles. The results according
to the muscle group are discussed below.

4.1. Core

The core musculature plays a fundamental role in stabilizing the trunk. Thus, strength-
ening this musculature is commonly used in rehabilitation processes and aims to improve
sports performance and prevent lesions. When analyzing the results of the present study,
there is a small effect size in favor of using unstable surfaces for the core muscles. Isometric
double-leg bridge, side bridge, and prone plank exercises with or without hand support
performed on unstable surfaces can be an excellent strategy to generate greater EMG activ-
ity for the rectus abdominis muscle compared to the stable surface [14,45,46]. Furthermore,
it is possible to establish a progression using instability devices, or even upper and lower
limb supports to increase the complexity of the exercises.

Still considering the rectus abdominis muscle for dynamic exercises, performing
abdominal crunches using a Swiss ball may be an option to increase the neuromuscular
recruitment of the rectus abdominis muscle, giving preference to the positioning of the
unstable surface in the lumbar region [45,52].

A small effect size is also observed in favor of using unstable surfaces for the external
oblique muscle (SMD = 0.44 [95% CI 0.28, 0.61]). However, we emphasize that only the
abdominal crunch exercise subgroup showed no significant difference when using unstable
surfaces. These findings can be explained by considering the function, origin, and insertion
of the external oblique muscle, acting in the unilateral contraction and rotation of the
trunk [100]. Thus, single-leg bridge, single-legged hold, prone plank, and side bridge



Sports 2024, 12, 111 11 of 18

exercises on unstable surfaces are the main options for increasing the EMG activity of the
external oblique muscle [15,45,46,59].

Only two studies regarding the analysis of the internal oblique muscle were included
in the meta-analysis [43,46]. The results showed a moderate effect size in favor of using
unstable surfaces during the double-leg bridge exercise (SMD = 1.04 [95% CI 0.02, 2.07]).
However, we emphasize that the result of the meta-analysis presents a large confidence
interval and high heterogeneity between the studies, which makes it challenging to analyze
the effect of the unstable surface on the internal oblique muscle. When looking at the
qualitative results in Table 1, we observed that few studies examined this musculature and
that most did not demonstrate differences between the surfaces. Thus, professionals can
choose to use unstable surfaces to vary the exercises and obtain greater EMG activity in
other core muscles.

When analyzing the erector spinae and lumbar multifidus muscle, there was a small effect
size and significant effect in favor of using unstable surfaces (SMD = 0.37 [95% CI 0.04, 0.71])
and (SMD = 0.35 [95% CI 0.08, 0.61]), respectively. We verified that the subgroup of exercises
that presented the greatest significant difference was the prone plank with hands exercise. Of
the two studies included in the meta-analysis [14,46], only using the TRX instability device
could generate greater EMG activity, especially when the instability device was placed on
the feet [14]. Using the wobble board during an abdominal plank with the hands could not
generate greater EMG activity for the erector spinae muscle [46].

Finally, we emphasize that only two studies evaluated the transversus abdominis
muscle, demonstrating uncertain results for this musculature. Thus, we suggest that further
studies analyze this musculature to verify the effect of adding unstable surfaces.

When comparing our findings with those in the literature, we only found one system-
atic review that evaluated the EMG activity for the core muscles [37]. The authors analyzed
1247 participants, collecting data on the EMG activity of 233 exercises. The results demon-
strate greater activity of the rectus abdominis, external oblique, and erector spinae muscles
in exercises with free weights, while the internal oblique muscle is more activated during
core stability exercises. Low-load exercises for activation with trunk extension generated
the greatest EMG activity for the lumbar multifidus muscle. There is also a scarcity of
studies that have analyzed the EMG activity of the transversus abdominis.

Although the review conducted by Oliva-Lozano and Muyor (2020) [37] also con-
tributes to the prescription of exercises for the core region, the authors did not compare the
effects between stable and unstable surfaces. Thus, no systematic review has compared
the impact of using stable and unstable surfaces for the core musculature. Some studies
highlight that strengthening the core can help transfer forces to the lower and upper limbs
during daily performance and athletic activities [12,13]. Furthermore, specific strengthen-
ing of the trunk muscles is recommended to treat acute and chronic low back pain [101].
Based on the results of the present review, using unstable surfaces can be a complementary
strategy to increase the neuromuscular demand during exercises for the core.

4.2. Lower Limbs

The addition of unstable surfaces for the agonist muscles of the lower limbs did
not show significant differences for the EMG activity of the vastus lateralis (SMD = 0.03
[95% CI −0.14, 0.21]), vastus medialis (SMD = −0.10 [95% CI −0.40, 0.20]), rectus femoris
(SMD = −0.26 [95% CI −1.01, 0.49]), and biceps femoris (SMD = 0.09 [95% CI −0.14, 0.32]).
No exercise subgroup showed a significant difference, even considering different angles of
the squat exercise, with or without external overload and varying the contraction types
(isometric or dynamic).

Regarding the dynamic squat exercises performed with external overload, a load
variation between 30% and 90% of 1 RM is observed [18,64]. The study conducted by Li, Cao,
and Chen (2013) [18] analyzed the effect of the unstable surface during the squat exercise
on the electromyographic activity of the vastus lateralis, vastus medialis, rectus femoris,
and biceps femoris muscles. The authors used an exercise protocol with body weights
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of 30% and 60% of 1 RM. The results demonstrated no significant difference between the
surfaces [18]. Similarly, McBride et al. [64] verified the same exercise considering the vastus
lateralis and biceps femoris muscles with loads between 70% and 90% of 1 RM. The results
also demonstrated no significant differences between stable and unstable surfaces [64].

A variation in knee angle between 15◦ and 100◦ is observed for the isometric squat
exercises [6,38,61,62,65,68,69,71,72,75,78]. The study conducted by Kang et al. [69] analyzed
the isometric squat exercise in three angles (15◦, 45◦, and 60◦). The results demonstrated
different responses for the vastus medialis muscle, with greater EMG activity being ob-
served for an unstable surface at 15◦, while 60◦ generated greater EMG activity for a stable
surface [69]. However, there were no differences between the surfaces for the squat exercise
performed at 45◦ [69].

These values are considered trivial even with significant differences between the
surfaces at different angles (15◦ and 60◦), so we must interpret them cautiously, as they
may not reflect practical changes. Most of the studies included in this review did not find
significant differences between the surfaces during the isometric squat exercise at different
angles [6,38,68,75,78].

A possible justification for not observing an increase in the EMG activity of the agonist
muscles during lower limb exercises could be related to a flattening of the instability
devices, especially inflatable devices (i.e., Balance disc and Bosu ball). A second possibility
may be related to the individuals’ experience with strength training. Thus, the subjects
could perform the exercises on unstable surfaces without much neuromuscular demand.

Although there are no significant differences between the conditions for the ago-
nist muscles, adding unstable surfaces can increase the EMG activity of the stabilizer
muscles during squat exercises [12,13,67]. Furthermore, exercises in unstable conditions
for the lower limbs can improve balance and reduce the risk of falls, especially in older
adults [7,102]. Strength training with instability improves functional mobility and reduces
concerns about falls [7,102].

Therefore, we suggest that training programs use exercises on unstable surfaces, as
there are no differences in the EMG activity of the agonist muscles. Thus, the initial stages
of training programs can optimize neural adaptations and improve balance by increasing
the complexity of exercises performed on unstable surfaces. Furthermore, this type of
training can also be used when the objective is to prevent falls and improve functional
mobility in older people. However, the exercises must be performed using stable surfaces
when the aim is to improve muscular strength and power.

4.3. Upper Limbs

The addition of unstable surfaces for the agonist muscles of the upper limbs re-
sulted in greater EMG activity with a small effect size of the pectoralis major (SMD = 0.28
[95% CI 0.09, 0.47]) and triceps brachii (SMD = 0.45 [95% CI 0.25, 0.66]). The subgroups
that showed significant differences in favor of unstable surfaces were the dynamic push-up
exercises and those with concentric phases. Performing the suspended flexion exercise
resulted in greater EMG activity for the pectoralis major and triceps brachii muscles when
using unstable surfaces. A possible explanation for these results is the multidirectional
instability projected by the suspension tapes [26–28].

Loads for the bench press and chest press exercises ranged from 50% to 80% of
1 RM [20,39,93,94], and the studies did not demonstrate differences between surfaces in all
muscles included in the meta-analyses. In this case, high loads can result in a flattening of
the ball and promote greater stability during exercises. Thus, we believe that loads close to
60% of 1 RM would be the best option for using unstable surfaces when using the Swiss
ball during the fly, bench press, and chest press exercises [9,10].

The results for the anterior deltoid muscle demonstrated no differences between the
surfaces (SMD = 0.08 [95% CI −0.14, 0.30]). It is difficult to discuss the findings for the other
muscles evaluated, since there are few studies, and none of them had quantitative data.
The results of the present study contribute to understanding the effect of adding unstable
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surfaces on the agonist muscles since systematic reviews have focused on the role of the
stabilizer muscles [21,22].

Considering the present study’s results, using unstable surfaces during push-up
exercises can be an excellent strategy to increase the EMG activation of the pectoralis
major and triceps brachii muscles. However, the physical condition of individuals must
be considered. The literature shows that performing push-ups on unstable surfaces can
increase the EMG activity of the upper trapezius [21], especially in individuals with scapular
dyskinesis [103]. Depending on the goal, we may also consider other ways to progress the
push-up exercise before introducing unstable surfaces [104].

It was also observed that there are no significant differences between stable and
unstable conditions regarding exercises performed with free weights. However, exercises
on unstable surfaces for the upper limbs can be used as a pre-activation strategy [105] or
as a primary exercise [10] with loads of 30% of 1 RM. Another factor that we must take
into account when prescribing exercises is the direction of the loads (axial or rotational)
and the distal segment (fixed or mobile) [106]. A study conducted by Nascimento et al. [9]
used an unstable surface in exercises with rotational load and this provided superior EMG
activity of the agonist muscles. In contrast, instability in exercises with axial load favors the
EMG activity of the scapular stabilizing muscles.

Performing exercises on surfaces for the upper limbs can increase the EMG activity of
the trunk muscles due to the need for movement control and can provide benefits when
training with low loads [12,13]. However, using stable surfaces is recommended if the
objective is to gain strength and power in the upper limbs. Finally, health professionals
can prescribe training using stable and unstable surfaces considering the objective and
conditioning of individuals.

The present study has some strengths: (1) it is the first systematic review with meta-
analysis which sought to evaluate the effect of an unstable surface on the EMG activity of
the agonist muscles; (2) the search was performed in six databases; (3) blind peer review;
(4) an analysis by subgroups of exercises and type of muscle contraction; and (5) sensitivity
analysis. However, this review also faced difficulties due to the heterogeneity of the
intervention, such as different exercise intensities and devices used for instability by the
primary studies. Furthermore, some primary studies did not provide the values necessary
for the quantitative synthesis. In some cases, it was not possible to perform sensitivity
analysis considering the relative intensity of the exercises due to the small number of
studies. The methodological quality of the included studies was low, and the EMG has its
limitations related to its low sensitivity. Given the above, we suggest that future studies
present the results quantitatively and be careful in the methodological aspects of the study
(e.g., sample calculation, randomization of exercises, and CIVM).

Considering the results of the present study, we emphasize that professionals can
choose to insert unstable surfaces according to their goals. Using unstable surfaces may be
a strategy to increase the recruitment of some agonist muscles of the upper limbs, such as
the pectoralis major and the triceps brachii, and for all agonist core muscles. In addition,
this type of training can be used to vary stimuli or as a progression during resistance
training. However, additional benefits of using unstable surfaces are not seen during lower
limb exercises.

5. Conclusions

It is concluded that using unstable surfaces generated a slight increase in electromyo-
graphic activity, considering the pectoralis major and triceps brachii muscles as agonists of
the upper limbs and that the core musculature participated as an agonist in all exercises.
However, no effect was observed on lower limb muscles.
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