
Citation: Yu, Q.; Ren, Y.; Liu, A.; Yang,

Y. Study on Bonding Behavior

between High Toughness Resin

Concrete with Steel Wire Mesh and

Concrete. Buildings 2024, 14, 1341.

https://doi.org/10.3390/

buildings14051341

Academic Editor: Alberto Taliercio

Received: 7 April 2024

Revised: 4 May 2024

Accepted: 7 May 2024

Published: 9 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

buildings

Article

Study on Bonding Behavior between High Toughness Resin
Concrete with Steel Wire Mesh and Concrete
Qu Yu 1,2 , Yu Ren 1,* , Anhang Liu 1 and Yongqing Yang 1,2

1 School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China;
yuqu2014swjtu@163.com (Q.Y.); lah@my.swjtu.edu.cn (A.L.); yangyongqingx@163.com (Y.Y.)

2 Sichuan Jiaoda Engineering Detection & Consulting Co., Ltd., Chengdu 610031, China
* Correspondence: renyu@my.swjtu.edu.cn

Abstract: This paper investigates the interfacial bonding behavior between high toughness resin
concrete with steel wire mesh (HTRCS) and concrete. A total of five sets of fifteen double shear
specimens were tested for parameters including concrete strength and material properties of HTRCS
composites. The test results showed that the failure mode of DS1 specimens was partial debonding
and fracture, and the rest of the specimens were the fracture of HTRCS. The concrete strength and
reinforcement ratios of HTRCS composites were positively correlated with interfacial adhesion
properties. When the concrete strength was increased from C30 to C40 and C50, the ultimate load
increased by 43.4% and 43.2%, respectively. The ultimate load capacity increased by 32.1%, with the
reinforcement ratio of HTRCS composites increasing from 1.05% to 1.83%. Moreover, the bonding slip
model and the bearing capacity formula for the interface between HTRCS composites and concrete
were proposed, and the calculation values were in good agreement with the test values, with an
average value of 0.978.

Keywords: high toughness resin concrete with steel wire mesh; concrete; interface bonding behavior;
double shear test

1. Introduction

Improving the normal performance and extending the service life of RC structures
through simple and economical reinforcement measures is an inevitable requirement for
the research and application of RC structures [1–3]. Traditional reinforcement methods
include pasting fiber composite fabric [4], pasting steel plates [5], section enlargement
methods [6,7], and using the NSM technique with steel bars or CFRP bars [8,9]. The pasting
fiber composite reinforcement method considers the characteristics of lightweight and high
strength FRP, and at the same time it has the advantage of low thickness of reinforcement;
however, there are problems with the hollowing of the bonded interface, and the quality of
the interface bond cannot be guaranteed [10]. The steel plate external bonding method has
the advantage of convenient construction, but it has the problem that the steel plate cannot
fit the concrete concave and convex surface well [5]. The section enlargement method can
effectively enhance the structural stiffness and bearing capacity, but there are defects that
increase the structural deadweight, prolong the construction period, and reduce the vertical
clearance under the bridge [11]. The NSM technique embeds CFRP bars, steel bars, and
adhesives into the grooves of the concrete members, but it requires extensive interface
treatment [12]. In addition, fewer studies have been conducted on the effects that factors
such as mandatory protective layer thickness and temperature variations have on it [13].

In recent years, the strengthening method of combining cement mortar and steel wire
mesh has gradually gained the attention of scholars because of its convenient construction
and excellent strengthening performance [14,15]. Marthong [16] used galvanized wire
mesh mortar layers to reinforce concrete columns of different cross-sectional shapes and
found that axial loads increased by 20% and 19% when circular and square columns were
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reinforced with one turn of GSWM, respectively. Zhang et al. [17] investigated the flexural
performance of reinforced concrete (RC) T-beams reinforced with HSSWM-PUC composites
and found that the reinforced beams exhibited a 34% improvement with an increase in PUC
thickness from 20 to 30 mm, and a 31.7% increase in ultimate and yield loads. However, this
method is limited by the tensile properties of ordinary cement mortar, resulting in limited
overall crack resistance of the reinforcement and premature failure of the reinforcement [18].
To solve the problem of early cracking of the reinforcement layer, related studies have
proposed using engineering cementitious composites (ECCs) as binders and anchors [19].
With multicrack development and excellent ductility, ECC has shown it has a good effect on
inhibiting cracks. However, ECC, as an inorganic material, has weak bonding and usually
suffers from interfacial bond failure damage [20]. In addition, by drilling holes on the
concrete surface, planting rebar and other methods can improve the bonding performance
between the interface of ECC and concrete; however, there are also problems that affect its
structural integrity and long construction period [21,22].

Due to the above reasons, this paper proposes high toughness resin concrete with
steel wire mesh (HTRCS) composite material. High toughness epoxy resin concrete has the
advantages of strong adhesion, high tensile strength, high toughness, high fluidity, and
short curing time, which is conducive to rapid construction, shortening the reinforcement
construction period [23]. Meanwhile, steel wire mesh embedded in the resin concrete
enhances the strength of the composite material. Furthermore, the basis of the HTRCS
composite reinforcement of RC members depends on whether HTRCS composite and RC
matrix can work together, that is, the bonding behavior at the interface between HTRCS
composite and concrete. Similar to other cement mortar composites for reinforcing RC
structures, the bond strength of HTRCS composites is mainly related to the cross-sectional
area of the wire mesh in the composite, the cross-sectional area of the resin concrete, and
the strength of the concrete surface [24].

This paper investigates the interfacial bonding behavior between HTRCS composite
material and concrete, which is investigated using a double shear test. Furthermore,
the failure mode, force-displacement response, and strain of the specimens are analyzed.
Moreover, we propose a bond-slip model and a bearing capacity formula for the interface
between the HTRCS composite and the concrete.

2. Experimental Investigation
2.1. Details of the Specimens

To study the bond performance of HTRCS composite reinforced concrete mem-
bers, double shear specimens were designed and fabricated to carry out interfacial bond
tests. The dimensions of the specimens are shown in Figure 1. The test section was
300 mm × 150 mm × 150 mm, and the fixed section was 150 mm × 150 mm × 150 mm.
The thickness of resin concrete was 20 mm and 40 mm, and the dimensions of steel wire
mesh (transverse × longitudinal) were 13 mm × 25 mm, 15 mm × 25 mm, and 30 mm
× 25 mm, respectively. The interfacial test section was bonded at a length of 300 mm
and a width of 120 mm to ensure sufficient and effective bond length to observe strain
transfer. The bond length of the fixed section was 150 mm, while the clip was used to apply
pressure in the normal direction to enhance the interfacial bond. Before casting the HTRCS
composite, the concrete interface needs to be cleaned to keep the interface clean.

A total of five types of specimens were designed for this test, and the main parameters
were concrete strength and HTRCS material properties. Three specimens of each type were
cast, and a total of fifteen double shear specimens were cast. For specimen numbers, “DS”
represents the abbreviation “Double Shear”. DS1, DS2, and DS3 specimens were used to
study the effect of concrete strength on bond performance. DS3 and DS4 specimens were
used to study the effect of the cross-sectional area of the steel wire mesh on bond behavior
when reinforcement ratios were approximately equal. DS4 and DS5 specimens mainly
show the effect of reinforcement ratios in HTRCS on the bond behavior. The specimen
parameters are shown in Table 1.
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Figure 1. Dimensions of the specimens.

Table 1. Types of specimens.

Specimen Concrete
Resin Concrete Steel Wire Mesh

Thickness (mm) Width (mm) Diameter of Single
Bar (mm) Interval (mm) As (mm2) ρ/%

DS1 C30 20

120

2 13 × 25 28.3 1.18
DS2 C40 20 2 13 × 25 28.3 1.18
DS3 C50 20 2 13 × 25 28.3 1.18
DS4 C50 40 4 30 × 25 50.2 1.05
DS5 C50 40 4 15 × 25 87.9 1.83

Note: As is the cross-sectional area of the steel wire mesh, ρ is the reinforcement ratio of HTRCS.

2.2. Fabrication of the Specimens

Figure 2 shows the specimen fabrication process according to Chinese codes [25] with
the following procedure:

(1) Casting concrete: Standard molds were used to cast the concrete.
(2) Preparing wire mesh: Trim the wire mesh to the required dimensions and paste the

strain gauges according to Section 2.4.
(3) Preparing molds: Wooden formwork was made, placing the test and fixed sections of

concrete.
(4) Casting resin concrete: Pouring resin concrete in wooden formwork.
(5) Removing molds: After 24 h, remove the wooden formwork and remove the foam

boards from the loading section.
(6) Specimen curing: The fabricated double shear specimens were cured under standard

conditions for 5 days.
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2.3. Materials Properties

The mix ratio of resin concrete used for the specimens [23] was resin colloid:hardener:
continuous graded aggregate = 4:1.16:24.84. The material properties of resin concrete
and ordinary concrete were measured according to Chinese codes [25]. The compressive
strengths of C30, C40, and C50 ordinary concrete were measured to be 30.1, 42.3, and
54.6 MPa, and the tensile strengths were 2.35, 2.77, and 2.98 MPa, respectively. The tensile
strength was 7.8 MPa, the modulus of elasticity was 12,500 MPa, and the compressive
strength of resin concrete was 102.3 MPa [23], as shown in Table 2. The yield strength of
steel wire mesh was 412 MPa.

Table 2. Properties of resin concrete.

Materials Tensile Strength
(MPa)

Elastic Modulus
(MPa)

Compressive
Strength (MPa)

Resin concrete 7.8 1.25 × 104 102.3

2.4. Testing Procedure

The test setup used in this test is shown in Figure 3. The test setup consists of fixed,
loading, and testing sections, in which the loading section includes load cells and hydraulic
jacks. In the fixing section, normal pressure is applied using a clamp to improve the
interfacial bond between the HTRCS composites and the concrete, thus ensuring that the
damage occurs in the test section. In addition, the specimen should be kept parallel to the
slide throughout the test to ensure that the specimen can slide freely with the rail. The
loading level difference was about 1 kN, and the loading interval between two adjacent
levels was about 3 s. When the displacement suddenly increased or the load increase rate
slowed down, displacement-controlled loading was used, with a loading rate of 0.02 mm/s.
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Figure 3. Test setup.

Figure 4 shows the arrangement of the strain measurement points of the wire mesh,
and the specimen displacement measurement points. The first strain gauge, F1, is used to
simulate the strain at the free end and is positioned in the middle of the loading section.
Strain gauges F2–F8 are set on the test section to measure the strain in the test section. In
addition, two Linear Variable Differential Transformers (LVDTs) were installed at the front
of the test section to measure the relative displacement of the specimens.
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3. Test Results
3.1. Crack Patterns and Failure Modes

The failure modes of the double shear specimens are shown in Figure 5. Partial
debonding and fracture of the HTRCS occurred in the DS1 specimen. The failure mode of
the DS1 specimen was mainly due to the low interfacial bond between the HTRCS and
the concrete when the concrete strength was low. At the same time, with the increase of
load, the local stress concentration at the front end of the test section led to interfacial
debonding and the subsequent fracture of the HTRCS material, as shown in Figure 5a.
The fracture of the HTRCS in the loaded section occurred in the DS2, DS3, DS4, and DS5
double shear specimens, as shown in Figure 5b. This is because when the concrete strength
increases, the interfacial bond strength increases, and therefore no interfacial debonding
occurs. Meanwhile, the deformation of the HTRCS composites was less pronounced before
the specimen fracture because the resin concrete in this study is a linear elastic material
with an ultimate tensile strain of 0.000624. When the specimen was damaged, the resin
concrete was pulled out and the wire mesh did not yield. A crisp sound was emitted at the
time of destruction, and the failure process was rapid.
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The specimen extended interlayer cracks at the vertical cracks, as shown in Figure 6.
Due to that, the resin concrete in the HTRCS composites pulled off when the specimen was
damaged, and the resin concrete was squeezed by the wire mesh; thus, the interlayer cracks
appeared. Furthermore, the bond between the wire mesh and the resin concrete was good
during the whole test, and no significant slippage occurred.
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3.2. Maximum Load and Displacement

Figure 7 shows the force-displacement curves of the double shear specimens. The
results of maximum load Pmax, average maximum load Pmax, displacement S, and average
displacement S of the specimens are shown in Table 3. The relationship between force and
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displacement was basically linear for all specimens. This is due to the fact that the resin
concrete in HTRCS composites is a linear elastic material, and the wire mesh did not yield
when the resin concrete reached its ultimate strength. Therefore, HTRCS composites can be
treated as linear elastic materials, the interfacial bonding is sufficient, and no interfacial
peeling occurs, so the load-displacement curves are basically linear.

Buildings 2024, 14, x FOR PEER REVIEW 7 of 14 
 

the difference in the reinforcement ratio in the HTRCS composites is small. The ultimate 
load of the DS4 specimen is increased by 27.1% compared to the DS3 specimen. A com-
parison of the DS4 and DS5 specimens shows that when the cross-sectional area of resin 
concrete is determined, the reinforcement ratio of HTRCS composites is positively related 
to the ultimate load capacity of the specimens, and the ultimate load capacity increased 
by 32.1% with the reinforcement ratio of HTRCS composites increasing from 1.05% to 
1.83%. 

  
(a) DS1 (b) DS2 

  
(c) DS3 (d) DS4 

 

 

(e) DS5 

Figure 7. Force-displacement curves. 

Table 3. Maximum load and displacement. 

Specimen Pmax (kN) maxP  (kN) s/mm S  (mm) Failure Modes 

DS1-1 21.18 

22.37 

0.026 

0.026 

Partial debonding 
and fracture 

DS1-2 24.75 0.023 
Partial debonding 

and fracture 

DS1-3 21.16 0.029 
Partial debonding 

and fracture 
DS2-1 32.92 32.07 0.054 0.049 Fracture of HTRCS 

Figure 7. Force-displacement curves.

A comparison of the DS1, DS2, and DS3 specimens shows that the load carrying
capacity is affected by the strength of the concrete. The ultimate loads of the DS2 and DS3
specimens are 43.4% and 43.2% higher than that of the DS1 specimen, respectively. This is
because when the concrete is lower, the bond between HTRCS composites and concrete is
weaker. After debonding at the front end of the test section, the partial HTRCS material
fractured, so the bearing capacity of the DS1 specimen was lower. From specimens DS2
and DS3, it can be seen that their ultimate loads are basically the same. This is because
when the concrete strength is increased, the interfacial bond is enhanced, and the ultimate
load of the specimens is mainly related to the reinforcement ratio of HTRCS, which is the
same for both groups of specimens.
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Table 3. Maximum load and displacement.

Specimen Pmax (kN) ¯
Pmax (kN) s/mm ¯

S (mm) Failure Modes

DS1-1 21.18
22.37

0.026
0.026

Partial debonding and fracture
DS1-2 24.75 0.023 Partial debonding and fracture
DS1-3 21.16 0.029 Partial debonding and fracture

DS2-1 32.92
32.07

0.054
0.049

Fracture of HTRCS
DS2-2 32.31 0.048 Fracture of HTRCS
DS2-3 30.98 0.046 Fracture of HTRCS

DS3-1 32.05
32.02

0.061
0.083

Fracture of HTRCS
DS3-2 33.86 0.108 Fracture of HTRCS
DS3-3 30.16 0.081 Fracture of HTRCS

DS4-1 40.05
40.69

0.058
0.056

Fracture of HTRCS
DS4-2 42.14 0.066 Fracture of HTRCS
DS4-3 39.88 0.045 Fracture of HTRCS

DS5-1 56.89
53.75

0.018
0.017

Fracture of HTRCS
DS5-2 54.73 0.019 Fracture of HTRCS
DS5-3 49.64 0.015 Fracture of HTRCS

A comparison of the DS3 and DS4 specimens shows that the ultimate load of the spec-
imens is positively correlated with the cross-sectional area of the reinforcement when the
difference in the reinforcement ratio in the HTRCS composites is small. The ultimate load
of the DS4 specimen is increased by 27.1% compared to the DS3 specimen. A comparison
of the DS4 and DS5 specimens shows that when the cross-sectional area of resin concrete
is determined, the reinforcement ratio of HTRCS composites is positively related to the
ultimate load capacity of the specimens, and the ultimate load capacity increased by 32.1%
with the reinforcement ratio of HTRCS composites increasing from 1.05% to 1.83%.

3.3. Strain-Distance Analysis

The strain distribution of the specimen is shown in Figure 8. Strain gauge F1 simulates
the strain at the free end, with the distance of 0 mm in the test section. Strain gauges F2–F8
draw the strain distribution curve according to the actual distance from the end of the test
section. Because the strain distribution curves of three specimens in each type are basically
the same, one specimen in each group is selected for display.

The DS1 specimen was damaged when the strain reached 400 µε, while the strains of
the DS2 and DS3 specimens reached 600 µε, which is close to the ultimate tensile strain
of resin concrete. Meanwhile, the stress transfer distance is about 140 mm for the DS1
specimen and 190 mm for the DS2 and DS3 specimens. A comparison of the DS1, DS2,
and DS3 specimens shows that as the strength of the concrete increases, the bonding effect
between the interfaces is enhanced, the HTRCS composite is more fully utilized, and the
strain transfer range is increased.

The strain transfer distance of the DS4 specimen is about 190 mm, and that of the DS5
specimen is about 260 mm. By comparing the DS4 and DS5 specimens, it can be seen that
with the increase of the reinforcement rate in HTRCS, the strain transfer distance increases
and the stress transfer effect is more significant.
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4. Bond-Slip Model and Bearing Capacity Formula
4.1. Bond-Slip Model

In order to investigate the material properties of HTRCS composites and the effect of
concrete strength on the bonding behavior at the interface between HTRCS composites and
concrete, the local stress-slip curves need to be obtained first. The strain distance curves
(Figure 8) from the double shear experiments were converted by the conversion formula
proposed in [26], and the expressions are given as follows:

τi =
EHtH(εi − εi−1)

∆d
(1)

Si =
∆d
2
(ε0 + 2

i−1

∑
j

ε j − εi) (2)

where τi and Si are the interfacial bonding stress and slip at strain gauge i; ε0 is the strain at
the free end, which is the strain of F1; ε j(j = 1, . . . , i) is the strain at strain gauge j; EH is the
elastic modulus of the HTRCS composite; tH is the thickness of the HTRCS composite; and
∆d is the corresponding distance between each strain gauge.
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In exploring the interfacial bonding behavior between HTRCS and concrete, we
assumed that the deformation of resin concrete and steel wire mesh before specimen
damage are the same. Therefore, the expressions for the ultimate stress and modulus of
elasticity of HTRCS are as follows:

fH = ( frc Arc + εrcEs As)/AH (3)

EH = (Erc Arc + Es As)/AH (4)

where f H is the tensile stress of the HTRCS; f rc is the tensile strength of the resin concrete;
AH, Arc, and As are the cross-sectional area of the HTRCS, resin concrete, and steel wire
mesh, respectively; Erc and Es are the elasticity moduli of the resin concreteand steel wire
mesh, respectively; εrc is the tensile strain of the resin concrete; and εrc = 0.000624.

After plotting the local stress-slip curves, the local stress-slip relationship closer to the
free end is selected for fitting the overall stress-slip curve. In addition, the stress-slip model
is compared to the formulae presented in [27,28], in which the model shape is controlled by
three parameters with the following expression:

τ = τmax
S
S0

n
(n − 1) + (S/S0)

n (5)

where τmax is the maximum shear stress, S0 is the slip at peak, and n is the coefficient of the
softening branch.

The fitting diagram of the interface bond-slip curve is shown in Figure 9. The fitting
results are somewhat discrete, but basically reflect the bond-slip relationship at the interface.
Similarly, bond-slip curves were plotted for all specimens, and the obtained curve control
parameters, τmax, S0, the tensile strength of concrete (f t), and the elasticity modulus of
the HTRCS (EH), are listed in Table 4. According to the experimental data, the softening
coefficient n is uniformly taken as 3.6.
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From Table 4, it can be seen that the bond-slip curve parameters are more significantly
affected by the HTRCS material properties and concrete strength. Considering the dimen-
sionless design,

√
ftEH is the independent variable, and τmax and S0 are the dependent

variables. Figure 10 illustrates the regression analysis and gives Equations (5) and (6) with
their R2 as 0.859 and 0.791, respectively.

τmax = 0.577e0.001
√

ftEH (6)

S0 = 0.0008e0.013
√

ftEH (7)
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Table 4. Parameters of bond-slip curve.

Specimens τmax S0 f t/MPa EH/MPa

DS1-1 5.42 0.0125 2.35 2.0 × 104

DS1-2 5.35 0.0110 2.35 2.0 × 104

DS1-3 4.72 0.0120 2.35 2.0 × 104

DS2-1 5.10 0.0201 2.77 2.0 × 104

DS2-2 5.91 0.0134 2.77 2.0 × 104

DS2-3 5.8 0.0200 2.77 2.0 × 104

DS3-1 6.65 0.0172 2.98 2.0 × 104

DS3-2 6.22 0.0175 2.98 2.0 × 104

DS3-3 6.21 0.0190 2.98 2.0 × 104

DS4-1 8.50 0.0260 2.98 2.4 × 104

DS4-2 9.33 0.0197 2.98 2.4 × 104

DS4-3 7.64 0.0250 2.98 2.4 × 104

DS5-1 5.98 0.0195 2.98 1.9 × 104

DS5-2 6.09 0.0287 2.98 1.9 × 104

DS5-3 6.10 0.0190 2.98 1.9 × 104
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As can be seen from Figure 10, τmax and S0 are shown to be positively correlated
with

√
ftEH, indicating that the higher the concrete strength and the elastic modulus of

HTRCS, the better the bond behavior between the interface of HTRCS and concrete. The
high R2 values of the equation established by regression analysis indicate that the bond-slip
model of HTRCS and concrete established in this paper has good accuracy. Furthermore,
an accurate bond-slip model is also required for the establishment of an interfacial bearing
capacity formula.

4.2. Bearing Capacity Formula

There are few studies on the load bearing capacity formulae at the interface between
HTRCS and concrete. However, HTRCS composite material can be regarded as a sheet,
and its bond to concrete can be referred to as the bond between an FRP sheet and concrete.
Lu [29] and Neubauer [30] have conducted a series of tests and an extensive finite element
study on the bond between the sheet and concrete, and they concluded that the load bearing
capacity equation is mainly affected by factors such as the elastic modulus of the bonding
material, thickness, bond length, and concrete strength. With reference to the relevant
literature, for the interface bonding between HTRCS and concrete, the following bearing
capacity calculation formula is proposed:

Pu = kβwβlbH
√

2EHtH ft (8)
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βw =

√
2.25 − bf/bc

1.25 + bf/bc
(9)

βl =
L
Le

(2 − L
Le

), L < Le (10)

βl = 1, L ≥ Le (11)

Le = 1.33
√

Eftf
ft

(12)

where Pu is the interface bearing capacity; k is the interface bonding coefficient; βw is the
width influence coefficient; βl is the anchorage length coefficient; bH is the width of the
HTRCS; bc is the width of the concrete; L is the actual adhesive length; Le is the effective
bonding length; and f t is the tensile strength of the concrete.

In the above established formula for calculating the interfacial bond bearing capacity
of HTRCS composite material and concrete, the interfacial bond coefficient k is unknown.
Through regression analysis, k = 0.286 is obtained, and the square of the correlation coeffi-
cient is found to be 0.857, as shown in Figure 11.
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Currently, there are fewer studies on HTRCS composites, and even fewer on the
interfacial bonding properties between HTRCS and concrete, so this paper is only based on
experimental data to validate the bearing capacity equations established above. Table 5
shows the comparison between the calculated and test values for each specimen, SD is
standard deviation, and COV is coefficient of variation. The prediction accuracy of the
proposed load-bearing capacity formula is good, and the average value of the ratio of test
values to calculated values is 0.978; the SD is 0.115 and the COV is 0.118. Therefore, the
proposed formulae can accurately predict the interfacial bearing capacity between HTRCS
and concrete. However, the applicability of the proposed prediction model is limited. The
effects of factors such as interfacial bond length, the width ratio of concrete to composite
layers, and interfacial cleanliness on interfacial bond behavior have not been tested and
analyzed in depth. Therefore, in future studies, it is necessary to further explore the
modification of the formulae by the key parameters and provide suggestions for engineers
in practical applications.
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Table 5. Comparison between test values and calculation values.

Specimens Pu,exp/kN Pu,cal/kN Pu,exp/Pu,cal

DS1-1 21.18 28.03 0.76
DS1-2 24.75 28.03 0.88
DS1-3 21.16 28.03 0.75
DS2-1 32.92 30.42 1.08
DS2-2 32.31 30.42 1.06
DS2-3 30.98 30.42 1.02
DS3-1 32.05 31.59 1.01
DS3-2 33.86 31.59 1.07
DS3-3 30.16 31.59 0.95
DS4-1 56.89 49.12 1.16
DS4-2 54.73 49.12 1.11
DS4-3 49.64 49.12 1.01
DS5-1 40.05 43.72 0.92
DS5-2 42.14 43.72 0.96
DS5-3 39.88 43.72 0.91

Average 0.978
SD 0.115

COV 0.118

5. Conclusions

In this paper, the interfacial bond behavior of HTRCS material and concrete is dis-
cussed through a double shear test. The main parameters involve concrete strength and
HTRCS material properties. The failure modes, force-displacement relationship, and strain
distribution of specimens are analyzed. The bond-slip model and bearing capacity formula
are proposed. The following conclusions are drawn:

(1) The failure mode of DS1 specimens was partial debonding and fracture, and the rest
of the specimens were the fracture of HTRCS. The bond between the wire mesh and
the resin concrete was good, and there was no obvious slip.

(2) The concrete strength and reinforcement ratios of HTRCS composites were positively
correlated with interfacial adhesion properties. When the concrete strength was
increased from C30 to C40 and C50, the ultimate load increased by 43.4% and 43.2%,
respectively. The ultimate load capacity increased by 32.1% with the reinforcement
ratio of HTRCS composites increasing from 1.05% to 1.83%.

(3) The stress transfer effect is positively correlated with the concrete strength and rein-
forcement ratio of HTRCS; the higher the concrete strength and reinforcement ratio of
HTRCS, the further the stress transfer distance.

(4) A bond-slip model for the interface between HTRCS and concrete is proposed and
corrected according to the test parameters. The calculation formula for the interface
bearing capacity is also proposed, and the test values are in good agreement with the
calculated values, with an average value of 0.978.
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