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Abstract: The visual servoing of manipulators is challenged by two main problems: the singularity
of the inverse Jacobian and the physical constraints of a manipulator. In order to overcome the
singularity issue, this paper presents a novel approach for image-based visual servoing (IBVS), which
converts the propagation of errors in the image plane into the conduction of virtual forces using the
principle of virtual work. This approach eliminates the need for Jacobian inversion computations
and prevents matrix inversion singularity. To tackle physical constraints, reverse thinking is adopted
to derive the function of the upper and lower bounds of the joint velocity on the joint angle. This
enables the proposed method to configure the physical constraints of the robot in a more intuitive
manner. To validate the effectiveness of the proposed method, an eye-in-hand system based on UR5
in VREP, as well as a physical robot, were established.

Keywords: image-based visual servoing (IBVS); virtual work; manipulator; Jacobian transpose;
physical constraints

1. Introduction

Visual servoing is a crucial technology in intelligent robot systems, as it greatly en-
hances the ability of robots to perceive the environment. Various applications of visual
servoing have been developed, including visual-based formation control [1,2], visual grasp-
ing [3,4], object tracking [5], and human–robot collaboration [6]. Visual servoing employs
image features extracted from visual sensors, such as RGB cameras, as feedback for the
controller. This approach makes the controller more flexible, reliable, and efficient when
dealing with complex scenes.

Scientists have performed a great deal of work in visual servoing. These works are
generally thought to fall into three categories. The first kind of visual servoing is called
image-based visual servoing (IBVS) [7,8] and only uses the pixel coordinates of feature
points as feedback. IBVS is insensitive to calibration errors. The second kind of visual
servoing is called position-based visual servoing (PBVS) [9,10] and uses the 3D positions
of the corresponding feature points as feedback for the controller. The 3D positions can
be obtained through an RGB-D camera (RealSense) or a stereo camera (ZED). This means
that PBVS needs the camera model to be accurate. The last kind of visual servoing is called
hybrid visual servoing (HVS) [11,12], which combines 2D and 3D servoing techniques. HVS
aims to improve precision and robustness in robotic tasks by integrating the advantages of
different dimensional visual information. Compared to other servoing techniques, IBVS
shows better movement in the image plane; however, it is not optimal for 3D motion
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because of the lack of 3D information. By contrast, PBVS has enhanced access to the
movement path of the 3D space but cannot access the optimal route in the image plane.
The hybrid method merges the information of the pixel plane and the 3D space. Both
camera calibration and hand-eye calibration are indispensable in attaining highly accurate
parameters, and these parameters are easily changed through the aging of the equipment or
a change in the relative displacement between the camera and the manipulator. Therefore,
research has focused on IBVS.

Researchers have extensively studied IBVS and made notable contributions. IBVS has
been applied to robot development [1,2] and a quadcopter that mimics bird predation [4].
Keshmiri et al. [13] transformed pixel error propagation into the expected acceleration
of the camera and used the computed torque method (CTM) to obtain the joint angular
acceleration. Some researchers have used light field cameras for feature extraction [14],
while others have usedutilized image feature extraction methods such as Bézier curves [15].
Incremental control laws have been used to avoid the multiple solutions yielded by some
algorithms in inverse kinematics [16]. In addition to the common serial manipulators, there
have been algorithmic studies conducted on parallel manipulator IBVS [17].

However, one common challenge faced by these algorithms is computing the inverse
Jacobian matrix. For kinematic control near singularity, the joint movements of the manip-
ulator may no longer satisfy the end-effector motion requirements, resulting in increases
in joint movement velocity and acceleration. This can lead to significant force and torque
demands, potentially causing the manipulator to be overloaded or generate abnormal
accelerations, increasing energy consumption and mechanical component wear.

To solve this problem, Wang et al. [18] designed a virtual-goal-guided RRT algorithm
for trajectory planning to fit the field of view and other physical constraints. Kazemi
et al. [19] built a cyber–physical system that alternates between exploring the state space
of the camera and the configuration space of the robot to obtain feasible camera/robot
paths, thereby obtaining feasible feature trajectories in the image space. The main idea of
these method is to plan a trajectory that is in compliance with constraints and avoids the
singularities of the manipulator [20]. These methods attempt to avoid singular points, but
they do not actually solve the problem of abnormal motion near the singular points.

In recent years, visual servoing methods based on the optimization algorithm have
been developed for a redundant manipulator. These methods consider the visual servoing
as a linear parameter-varying (LPV) model. A convex objective function of joint velocity has
been built, and several constraints have been applied to the optimization algorithm. These
constraints involve the angle, velocity, and acceleration of a joint, as well as the mapping
between the error derivative and angular velocity. The servo task is then transformed into
a quadratic programming (QP) problem. Afterward, a neural network is used to solve
this QP problem. Hajiloo et al. [21] designed a robust model of a predictive controller to
avoid the inverse of the Jacobian matrix. Jin et al. [22] built a dynamic recurrent neural
network for redundant robots. Zhang et al. [23] changed the network mentioned in [22]
and created a single-layer neural network for image-based visual servoing. Although these
optimization algorithms merge the limitation of joint velocity and angle into one constraint,
they approximate the curve portion of the merged constraint function using a line [24],
which substantially wastes the feasible region and is not very intuitive.

Even though the above-mentioned controllers avoid the inverse of the Jacobian matrix,
the optimization-based derivation process is complex, and once derived, the format is
fixed. Inspired by the principle of virtual work, this article proposes a new visual servoing
framework that converts errors into virtual forces using an impedance model and drives
joint displacement using an admittance model through backward force propagation. This
framework also avoids calculating the Jacobian matrix inversion and can design different
impedance/admittance controllers based on different environments, involving support for
linear and nonlinear functions.

The main contributions of this paper can be summarized by the following three aspects:
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1. This study transforms the propagation of errors into the transmission of virtual forces
and provides an intuitive understanding at the physical level. This transformation
eliminates the inverse of the Jacobian matrix, thus avoiding the risks caused by the
abnormal movements of certain joints near the singularities of a manipulator.

2. This article provides a function that expresses the limits of the joint angular velocity
as a function of the angle. It integrates angle constraints, angular velocity constraints,
and angular acceleration constraints. These limits can be obtained by directly setting
the maximum and minimum values for the angle, angular velocity, and angular
acceleration, without the need to calculate additional parameters.

3. This article demonstrates the design process of a controller, and its effectiveness was
validated through simulation experiments and physical experiments.

The rest of this paper is structured as follows. Section 2 provides an overview of
the model of the eye-in-hand system and presents fundamental definitions. In Section 3,
the proposed image-based visual servoing framework is described in detail, along with a
design example based on this framework. In Section 4, the experiments conducted using
both the VREP simulation platform and real robots are discussed, and the results are
analyzed. The main findings of this study are then summarized, and prospects for future
research are discussed in Section 5.

2. System Modeling

In this section, the construction processes of both the camera and robot models are
described in detail.

2.1. UR5 Robot Model

According to the D-H modeling [25], the coordinate definitions for each joint of the
robot are shown in Figure 1.

x-axis

y-axis

z-axis

Figure 1. D-H coordinate definition.

Here, O0 represents the world coordinate system, and O1 through O6 are the origin of
the D-H coordinate system definitions for the first six joints. O1 is overlapped with O0. In
the process of defining the D-H coordinate system, first, the positive direction of the z-axis
is directed along the axis of rotation toward the next joint. If the previous and current joints
are parallel, the z-axis direction will be consistent with the previous one. Then, the x-axis,
which should be perpendicular to and intersect with the z-axis of the previous coordinate
system, is chosen. Next, the origin of the coordinate system is selected. If zi and zi−1 are
not coplanar, the origin can be uniquely determined. When zi and zi−1 are coplanar, the
origin can be determined by letting xi pass through Oi−1. Finally, the right-hand rule is
used to determine the y-axis to complete the definition of the coordinate system.

Let vr ∈ R6 be a column vector representing the motion of the end-effector defined
in the base coordinate system. The upper three dimensions denote translation along the
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x-axis, y-axis, and z-axis, while the lower three dimensions represent rotation around the
x-axis, y-axis, and z-axis. Subsequently, the pose of the end-effector and the Jacobian matrix
between the end-effector motion vr and the joint velocity q̇ can be obtained.

vr = Jrq̇ (1)

The Jacobian matrix Jr is a 6 × N matrix, where N represents the degrees of freedom of
the robot.

2.2. Camera Pin-Hole Model

The key step in modeling the camera as a pin-hole model is to define three coordi-
nate systems: the camera coordinate system, the image coordinate system, and the pixel
coordinate system. In this paper, these coordinate systems are defined as illustrated in
Figure 2.

Figure 2. The definition of the coordinate systems for modeling a camera.

cOcXcYcZ defines the camera coordinate system; IOI X IY defines the image coordinate
system; and pixOuv represents the pixel coordinate system. Let c p = [X, Y, Z]T , I p = [x, y]T ,
and s = [u, v]T denote the coordinates of a point described in the coordinate system of the
camera, image, and pixel, respectively. The following relations can be obtained:u

v
1

 =
1
Z

 f ax 0 u0
0 f ay v0
0 0 1

X
Y
Z

 (2)

where f is the focal length of the camera, u0 and v0 are the center coordinates of the picture
in the pixel frame, and ax and ay are factors that describe the pixel density.

Let vc and ωc denote the translation and rotation motion, respectively, along the x-axis,
y-axis, and z-axis in the camera coordinate system. Therefore, there exists the following
relationship between a static point c p and the motion of the camera:

˙c p = −vc − ωc × c p (3)

In deriving Equation (2) and combining it with Equation (3), an image Jacobian is derived
as Equation (4):

ṡ = JimgVc (4)

where

Jimg =

[
ax 0
0 ay

]
·

− f
Z 0 x

Z
xy
f − f 2+x2

f y

0 − f
Z

y
Z

f 2+y2

f − xy
f −x


is the image Jacobian, and vc ∈ R6 is a six-dimensional column vector representing the
motion of the camera in the camera coordinate system. The first three dimensions are linear
velocity vc, and the last three dimensions are angular velocity ωc.
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2.3. Eye-in-Hand System Model and Kinematics

An eye-in-hand structure is illustrated in Figure 3.

UR5

object

camera

Figure 3. Eye-in-hand system structure.

As mentioned earlier, vr is defined in the robot’s base coordinate system, while vc is
defined in the camera coordinate system. This study used the camera’s pose as the pose
of the end-effector of the manipulator. According to the symbol definitions commonly
used in [26] for rigid body motion, let cR0 represent the rotation matrix from the camera
coordinate system to the base coordinate system. Consequently, the following relationship
can be established:

vc = Γvr , (5)

where

Γ =

[cR0 0
0 cR0

]
.

Therefore, in combining the equations (Equations (1), (4), and (5)), the new Jacobian
matrix relating the change in pixel position ṡ to the joint motion q̇ can be obtained:

ṡ = JimgΓJr q̇. (6)

3. Proposed Method
3.1. Proposed Framework

The general framework of an IBVS controller is shown in Figure 4. Here, s∗ represents
the desired pixel position of a feature point in the image plane, while s represents the
actual pixel position. The difference between the two is the pixel error. The visual servoing
controller calculates the control outputs based on this error to control the motion of the
manipulator. Additionally, in the hand-eye system, a camera captures images and updates
the actual pixel position s of the feature points through image processing, providing
feedback information to the visual servoing controller.

Figure 4. The general framework.
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The error in the pixel coordinate system is defined as e = s∗ − s, and then an
impedance controller is employed to convert the error into a virtual elastic force fv ∈ R2:

fv = I(e) (7)

where I(·) is the impedance controller. The specific form needs to be defined according
to the scenario. In using the principle of virtual work, if a particle is in equilibrium, the
total virtual work of forces acting on the particle is zero for any virtual displacement. Let
the virtual torques applied to each joint after the propagation of fv to the joint space be
denoted as τv, considering the object and manipulator as a whole, with no external forces
acting on it. In order to keep the system in a state of equilibrium, the manipulator needs
to generate a torque opposite to τv to balance it while ensuring that the sum of the power
is zero:

−τv
T q̇ + fv

T ṡ = 0 (8)

Substitute Equation (6) into Equation (8) to obtain

τv
T q̇ = fv

T JimgΓJr q̇ (9)

Then, ∀q̇, it satisfies
(τv

T − fv
T JimgΓJr)q̇ = 0. (10)

Then, Equation (10) can be simplified as follows:

τv = JT fv (11)

where J = JimgΓJr .
Subsequently, an admittance controller A(τv) was designed in the joint space to

transform the virtual torques into joint angles. The proposed framework is illustrated in
Figure 5. The controller can be represented using Equation (12):

q = A(JT I(e, ė)) (12)

where I(·) is the impedance controller, and A(·) is the admittance controller. The specific
forms of these two functions need to be designed according to the specific task requirements.
A demonstration is provided in Section 3.3.

Figure 5. Proposed IBVS framework.

Compared to that in Figure 4, the controller is divided into two parts: an impedance
controller and an admittance controller. The impedance controller generates virtual force
fv based on the error e, while the admittance controller generates joint angles q using the
transmitted virtual torque τv. Therefore, the main challenge lies in designing both the
impedance controller and the admittance controller.

In Figure 5, the controller is partitioned into two components: an impedance controller,
which generates a virtual force fv based on the error e, and an admittance controller, which
determines joint angles q according to the received virtual torque τv. The primary challenge
revolves around designing both the impedance controller and the admittance controller.
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3.2. Physical Constraints

The most common constraints of a manipulator include limitations on the position,
velocity, and acceleration of each joint. These constraints can be described as follows:

q− ≤ q ≤ q+

q̇− ≤ q̇ ≤ q̇+

q̈− ≤ q̈ ≤ q̈+.

(13)

Wang et al. [27] used a two-stage controller to solve the constraint problem. However,
the upper and lower bounds of joint velocities are not constants relative to the joint position,
because when the joint position increases at its maximum velocity, the joint velocity cannot
suddenly become zero when it reaches the upper limit of the joint position. Therefore, it
is essential to derive the upper and lower bounds of the joint velocity at different joint
positions. The limit of q̇ at position q is deduced using reverse thinking. At the lower
bound of the joint angle, one considers starting from zero with the maximum absolute
angular acceleration |q̈+| to obtain the curve of the velocity as a function of the joint angle,
representing the lower limit ofthe velocity (Figure 6).

Figure 6. Description of the reasoning process of reverse thinking.

1
2

q̈+t2 = q − q−

q̇ ≥ max{q̇−,−q̈+t}
(14)

Upon the elimination of the time variable t from the given inequality, a resulting
expression is obtained as follows:

q̇ ≥ max{q̇−,−
√

2 ∗ |q̈+|. ∗ |q− − q|} (15)

where .∗ denotes element-wise multiplication.
The upper bound expression for q can be derived in a similar manner, and it is

presented as Equation (16):

q̇ ≤ min{q̇+,
√

2 ∗ |q̈−|. ∗ |q+ − q|} (16)

3.3. Demonstration of the IBVS Controller Design Using the Proposed Framework

The impedance controller was defined as shown in Equation (7). However, as the error
e becomes small, the value of fv also becomes too small, resulting in a slow convergence
rate in the final stages. Conversely, when the error e is large, fv becomes overly large,
leading to divergence in the discrete controller. To tackle this challenge, a sigmoid-style
function is employed to map the error into a suitable range.

First, the error is mapped to the range [0, 10] using Equation (17):

emap =
10 ∗ e

picture_size
(17)
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where picture_size denotes the number of pixels on the longer side of the image, repre-
senting the maximum error. emap stands for the mapped error. The range of [0, 10] is a
hyperparameter. As can be seen from the formula, it serves as a scaling factor for the
sigmoid function. The larger this value is, the stronger the amplification effect of the virtual
force on small errors, which may also lead to oscillation near zero errors. Conversely, the
smaller this value is, the less sensitive it is to small errors. Subsequently, the sigmoid-sytle
function (Equation (18)) is utilized to generate virtual forces:

fv = (
1

1 + exp(−emap)
∗ 2 − 1) ∗ picture_size (18)

Figure 7 illustrates the differences between the linear-style model and the sigmoid-
style model. As the error becomes very small, the sigmoid-style model can amplify the
virtual force and exhibits saturation when the error is large.

error

virtual force

linear style

sigmoid style

Figure 7. Schematic of linear-style and sigmoid-style impedance modules.

In the context of the admittance control module, the external force is conceptualized
as a virtual joint torque. This torque is generated by the impedance controller and is
propagated as a virtual force. We eliminated the spring from the mass–spring–damper
system, and the dynamic description is as follows:

Mq̈ + Cq̇ = τv (19)

where M and C are diagonal matrices.
Let ξ = q̇. Rewrite Equation (19) as a state equation:

ξ̇ = −M−1Cξ + M−1τv. (20)

Let A = −M−1C, B = M−1. Both A and B are also diagonal matrices.
Equation (20) can be discretized using the forward Euler method:

ξ(k + 1) = ξ(k) + (Aξ(k) + Bτv(k))dt (21)

where dt is the control period. Then, the total controller is

q̇(k) = Ωv(q̇(k − 1) + Ωa(Aq̇(k − 1) + Bτv(k − 1))dt)

q(k + 1) = q(k) + q̇(k)dt.
(22)

where q(k) denotes the current angle of the joints, which can be obtained from the robot
sensors or data of the simulation environment; Ωv(·) is the limitation of the joint velocity
using Equations (15) and (16); and Ωa(·) is the limitation of the joint acceleration.
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4. Results and Discussion

In this study, an experiment was conducted using the VREP simulation environment
to validate the proposed method. The UR5 robotic was utilized for this experiment. The
D-H parameters for the UR5 are provided in Table 1.

Table 1. UR5 D-H parameters [28].

Joint Number Joint Name αi (rad) ai (m) di (m) θi (rad)

1 base π/2 0 0.089159 θ1

2 shoulder 0 −0.425 0 θ2

3 elbow 0 −0.39225 0 θ3

4 wrist_1 π/2 0 0.10915 θ4

5 wrist_2 −π/2 0 0.09465 θ5

6 wrist_3 0 0 0.0823 θ6

The physical constraints of the manipulator are shown in Table 2.

Table 2. Limitation of UR5.

UR5 Parameters Limitation Unit

Joint angle [−2π, 2π] rad

Joint velocity [−π, π] rad/s

Joint acceleration [−π/2, π/2] rad/s2

The improved physical constraint boundary function is depicted in Figure 8. If the
joint velocity is beyond the boundary, there must be a physical constraint that is not satisfied
at some times.

joint position [rad]

jo
in

t 
v

el
o

ci
ty

 [
ra

d
/s

]

joint velocity constraint

upper boundary

lower boundary

Figure 8. The proposed joint velocity constraint on the joint angle.

A visual sensor was mounted at the end-effector of the UR5. The parameters of the
camera are shown in Table 3.
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Table 3. The configuration of the camera in VREP.

Camera Parameter Value Unit

Width 640 pixel

Height 480 pixel

f 0.01 meter

u0 319.4716 pixel

v0 239.2442 pixel

ax 45,668.2625 pixels per meter

ay 45,669.5772 pixels per meter

Z 10 meter

The neural network control algorithm proposed in [23] was reproduced for a compari-
son. This method does not include the inverse of the Jacobian matrix and does not have a
singularity problem. The controller in [23] is described as follows:

q̇ = PΩ(−κ1 JT(s − sd)− κ2 JT
∫ t

0
(s − sd)dt) (23)

where ω is the velocity vector of the joint, and PΩ(·) projects the output within the physical
constraints. κ1 and κ2 are the parameters that need to be adjusted. The physical constraints
in [23] are described in Equation (24). Therefore, there is another parameter k in the
physical constraints.

max{q̇−, k ∗ (q− − q)} ≤ q̇ ≤ min{q̇+, k ∗ (q+ − q)} (24)

Hence, to meet the physical constraints, we drew a line between (3.137, 3.142) and
(6.287, 0) in Figure 8 and obtained the parameter k = 1. Table 4 describes the adjusted
parameters in the neural network method.

Table 4. Adjusted parameters of neural network controller.

Parameters Value

k1 0.000009

k2 0.0000001

k 1

The final parameters applied to the proposed algorithm are shown in Table 5

Table 5. Tested parameters of proposed algorithm.

Parameters Value

M diag(16,000, 16,000, 16,000, 16,000, 16,000, 16,000)

C diag(368,000, 368,000, 368,000, 368,000, 368,000, 368,000)

The control period was dt = 0.05 s in order to fit the real environment, which satisfies
most real-time image frame rates. To verify the performance of the algorithm under
different tasks, after the parameters were properly adjusted, it was maintained constant
across all experiments.
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4.1. Convergence Performance Simulation

Convergence performance is one of the most important indexes used to evaluate a
visual servoing algorithm. We set a static object and designated the target points as (80, 80)
and (320, 240). The former point is near the corner of the image, which easily loses sight of
the object. The latter is at the center of the image, which is near the major target point of
the visual servoing tasks. The experimental environment is shown in Figure 3.

The neural network method needs a long time to converge because it has an integral.
When the error becomes too small, the neural network controller needs a long time to
overcome the accumulated error. The proposed sigmoid-style impedance module enhances
the influence of error on the controller when the error is small. Without the integration
of errors, the proposed algorithm converges close to zero. The final error in the pixel of
the proposed algorithm is (0.01, 0.2), and that of the neural network method is (2.6, 0.8), as
shown in Figure 9.

time [s]

er
ro

r 
[p

ix
le

]

pixel error at x

our method

neural network method

(a)
time [s]

er
ro

r 
[p

ix
le

]

pixel error at y

our method

neural network method

(b)

Figure 9. The curve of the pixel error when the feature point s moves to (80, 80): (a) error along the
x-axis; (b) error along the y-axis.

Figure 10 displays the curve of the joint velocity. Both algorithms speed up with the
maximum joint acceleration at the beginning and then decelerate to zero. At approximately
0.4 s, the acceleration of the neural network method decreased, as shown in Figure 10b–d,
mainly because the error is very small. Hence, velocity was mainly determined through
the integral portion in Equation (23). The proposed algorithm could keep a rapid response
when the error was small.
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Figure 10. Joint speed in the move to (80, 80): (a) base joint; (b) shoulder joint; (c) elbow joint;
(d) wrist_1 joint; (e) wrist_2 joint; (f) wrist_3 joint.
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In many cases, the target point of the visual servoing task is located near the center of
the image; thus, the center of the image (320, 240) is representative.

Figure 11 shows that the proposed algorithm has a fast convergence rate, although the
convergence rate when the servo is near (80, 80) is equivalent. As mentioned before, the
neural network method can converge to a narrow range. However, it needs a long time to
converge to zero.
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pixel error at x
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pixel error at y

our method

neural network method

(b)

Figure 11. The curve of the pixel error when the servo moves to (320, 240): (a) error along the x-axis.
(b) error along the y-axis.

Figure 12 shows the velocity curve of each joint. The velocities in (b), (c), and (d) of
this figure are near zero, which means that these joints are near the target joint angles. The
curve of velocity in (a), (e), and (f) show that the proposed algorithm always exhibits high
acceleration. Thus, the proposed algorithm enhances the performance of the manipulator.
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Figure 12. Joint speed in the move to (320, 240): (a) angular velocity of base joint; (b) angular velocity
of the shoulder joint; (c) angular velocity of the elbow joint; (d) angular velocity of wrist_1 joint;
(e) angular velocity of wrist_2 joint; (f) angular velocity of wrist_3 joint.

4.2. Object Tracking Task Simulation

Object tracking is another widely used application in dynamic object grasping and
photography. We set up the environment as shown in Figure 13.
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Direction

Starting Point

Path

Figure 13. Circle path of visual servoing environment.

We built a curved path and let the blue ball move along it at a speed of 0.1 m/s.
This movement can reflect the response performance when the error changes in differ-
ent directions.

Figure 14a shows the pixel error on the x-axis, and (b) shows the pixel error on the
y-axis. Both systems can track the target within a margin of error of 0.35 s. Compared with
the method in [23], the proposed algorithm shows a smaller pixel error both on the x- and
y-axes.
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Figure 14. The curve of the pixel error when the feature point s moves to (320, 240) with a dynamic
object: (a) error along the x-axis; (b) error along the y-axis.

Figure 15 shows that the proposed algorithm can speed up to a higher velocity, which
means that it can catch the target faster. The proposed algorithm also has a faster response
to velocity, which is especially obvious in Figure 15a.
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Figure 15. Cont.
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Figure 15. The curve of the joint speed when the feature point s moves to (320, 240) with a dy-
namic object: (a) base joint; (b) shoulder joint; (c) elbow joint; (d) wrist_1 joint; (e) wrist_2 joint;
(f) wrist_3 joint.

4.3. Physical Experiment

To validate the feasibility of the proposed algorithm in practical applications, we
replicated the simulation environment at a 1:1 scale. However, because of the difficulty of
maintaining a fixed trajectory for a small ball to follow a constant speed in a real-world
environment, we conducted only static servo experiments. Using a UR5 with a body
manufactured in 2015 (The manufacturer is Universal Robots USA, Inc 27175 Haggerty
Road, Suite 16048377 Novi, MI, USA, We introduced the UR5 in 2017 by purchasing a third
party mobile robot equipped with UR5 in Shenzhen, China) and a control system upgraded
to version CB3.1 (Figure 16), we controlled the UR5 by sending velocity commands through
TCP/IP protocol communication using a Python (version 3.10.12) script running on a
laptop. During actual operation, the maximum control frequency of the UR5 in this control
mode was 10 Hz, due to the reporting frequency of the state of UR5 being 10Hz. Therefore,
we adjusted the control cycle of the controller to 0.1 s.

Internal 

wiring 

of UR5

Network 

cable

USB3.0 cable

Figure 16. The environment of the real experiment.

The notebook configuration adopted in this study was as follows: an Intel 9th Genera-
tion Core i7, 16 GB DDR4, and an NVIDIA GeForce RTX 2060 GPU. With this configuration,
the controller’s computation time ranged from 3 ms to 5 ms, which is significantly shorter
than the control cycle of 100 ms.

The parameters of the real camera can be obtained from the Intel RealSense API.
Table 6 shows the detailed parameters.
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Table 6. The parameters of realsense D435i.

Parameter Value Unit

Width 640 pixel

Height 480 pixel

f 0.604 meter

u0 321.294 pixel

v0 244.492 pixel

ax 406.743 pixels per meter

ay 883.042 pixels per meter

Z 10 meter

In this study, the traditional PID control was also incorporated into the comparison.
The design of the PID controller is depicted in the following figure (Figure 17).

robot env

feature extraction Visual sensor

Figure 17. The traditional PID controller.

Here, Kp, Ki, and Kd, respectively, represent the proportional, integral, and derivative
coefficients. J† is the pseudoinverse of the Jacobian matrix.

The parameters of the controller used in the physical experiment are shown in Table 7.

Table 7. Adjusted parameters of physical experiment.

Parameters Value Belongs to

k1 0.000002 neural network controller

k2 0.000000004 neural network controller

k 1 neural network controller

Kp 0.7 PID controller

Ki 0 PID controller

Kd 0.0001 PID controller

M 55,000 proposed algorithm

C 790,000 proposed algorithm

Our proposed algorithm shows superiority over the compared method, as it converged
approximately 2 s earlier than others (Figure 18). From the error curve, it can be observed
that, initially, the convergence speed of the proposed algorithm is not the fastest. However,
in the final 10 pixels, the convergence speed of the proposed algorithm surpasses those of
other comparative algorithms.
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Figure 18. The curve of the pixel error when the moves to (80, 80).

The first column in Figure 19 shows the curves of the joint velocity in, it can be seen that
the PID controller using the pseudoinverse algorithm tends to concentrate the joint motion
on a certain joint, causing the acceleration of that joint to quickly reach its upper limit,
thereby affecting the convergence speed of the error. However, in using the transposition
method, it can be seen that, initially, all joints reach the maximum acceleration, and in
the subsequent stage, the acceleration of all joints does not exceed the joint’s acceleration
limit, and the speed distribution is relatively uniform. In comparison, this method is more
conducive to the performance of the robotic arm.
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Figure 19. (First row): neural network method. (Second row): PID controller. (Third row):
proposed algorithm.

The third column in Figure 19 shows the trajectory of featrue point s at each sample
time, it can be observed that the transposition method and inverse method exhibit different
directions of fastest convergence. According to our understanding of the proposed frame-
work, when the virtual power is transformed into the joint space, the inverse method guides
the joint motion by calculating the velocity using kinematics, whereas the transposition
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method guides the joint motion by generating the target velocity through the admittance
control based on virtual torque. In assuming that the propagated virtual power in both
algorithms is the same, there is an inverse relationship between the joint velocity obtained
by the inverse method and the virtual torque derived from the transposition method. Thus,
it can be inferred that in the direction where the inverse method converges rapidly, the
transposition method converges slower, whereas in the direction where the inverse method
converges slowly, the transposition method exhibits a faster convergence.

Compared with the two transposed methods, it can be seen that the proposed method
has a more aggressive speed adjustment and faster convergence rate when the error is
small, which indicates the effectiveness of the proposed architecture for a visual servo
controller design. Moreover, from the acceleration curve, it can be seen that in the first 0.1 s,
the reference method experiences a maximum acceleration due to excessive output caused
by a large error, which reaches the physical acceleration limit of the joint. Thanks to the
design of the impedance controller, the algorithm based on the proposed framework can
limit the output to prevent divergence in discrete systems when there is a large error, while
amplifying the impact of errors on joints when there is a small error, thereby achieving
a faster convergence speed in small errors. Furthermore, from the speed curve, it can be
seen that while the joint with the fastest speed has almost the same speed as the reference
method with our proposed method, the other joints rotate faster with our proposed method
than with the reference method. As shown in the trajectory image on the right, our solution
has a faster convergence speed while maintaining an equivalent overshoot compared to
the reference method.

5. Conclusions

This paper proposes a new image-based visual servoing framework for redundant
manipulators, which use Jacobian transport instead of inversion. The framework can
effectively avoid the singular value of the Jacobian matrix. For physical constraints, we
elucidated the relationship between joint acceleration and the boundary function of joint
velocities on joint angles, which can set the joint acceleration directly. The dynamic and
static experiments used the same configuration, which ensured that the system could
move to any point in the picture. The results show that our method performs well for
dynamic tracking and lower amplitude fluctuations when the target arrives. The physical
experiment verified the feasibility of our algorithm. To meet the end-velocity requirements
of the end-effector, the inverse Jacobian method may cause joints in singular points to
operate at high speeds, seriously affecting the safe operation of the manipulator. However,
because virtual force propagation is used in the proposed method, joints in singular points
are not subjected to (or receive minimal) force traction, resulting in joint speeds approaching
zero. Based on this feature, we will further use this method as a downstream algorithm for
reinforcement learning to operate a manipulator for grasping.
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Abbreviations
The following abbreviations are used in this manuscript:

IBVS Image-Based Visual Servo;
PBVS Position-Based Visual Servo;
HVS Hybrid Visual Servo;
CTM Computed Torque Method;
RRT Rapidly Exploring Random Tree;
LPV Linear Parameter-Varying;
QP Quadratic Programming.
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