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Abstract: The ultra-high-speed electric air compressor (UHSEAC) is affected by the electromagnetic
torque components of the ultra-high-speed permanent magnet synchronous motor (UHSPMSM)
during wide-range speed regulation, resulting in intense speed fluctuation. Electromagnetic torque
components are generated by the effects of permanent magnet field harmonics, stator slotting,
and current harmonics. It is very important to conduct simulation comparisons and theoretical
descriptions of different sources of pulsation factors. In this paper, firstly, the electromagnetic
torque model of UHSPMSM with a rated speed of 80,000 rpm is constructed and verified by an
experimental bench. Secondly, the electromagnetic torque components of UHSPMSM are extracted
on the basis of the electromagnetic torque model. Finally, the electromagnetic torque components’
characteristic law is investigated under different ultra-high-speed operating conditions. The results
show that under ultra-high-speed operation, the frequency and amplitude of electromagnetic torque
components become larger with increasing speed. And the amplitude of electromagnetic torque
components becomes larger with increasing torque. This paper constructs the observation object of
the high-frequency state observer and does the preliminaries for the design of the UHSEAC controller.

Keywords: fuel cell; ultra-high-speed electric air compressor; ultra-high-speed permanent magnet
synchronous motor; electromagnetic torque components; amplitude–frequency characteristics

1. Introduction

With the development of high-power fuel cell systems in fuel cell vehicles [1–4], ultra-
high-speed electric air compressors (UHSEAC) with high pressure ratio and flow rate
have been widely studied [5,6]. However, UHSEAC need to be modulated in seconds,
which excites the speed to produce intense fluctuations [7,8]. The speed fluctuation of
the UHSEAC is generated by the influence of the ultra-high-speed permanent magnet
synchronous motor (UHSPMSM) electromagnetic torque components [9,10]. Therefore, it
is very important to study the electromagnetic torque components in order to maintain the
stable torque output of UHSPMSM.

The permanent magnet synchronous motor (PMSM) consists of a wounded stator
and rotor equipped with permanent magnets. The permanent magnet synchronous motor
controller inputs the adjusted three-phase current to the wound stator to generate a rotating
electromagnetic field. When the rotating magnetic field of the stator interacts with the per-
manent magnetic field of the rotor, electromagnetic torque is generated to drive the motor.
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The working process of the permanent magnet synchronous motor involves the influence
of the current, machinery, and magnetic field [11–14]. Scholars explored the mechanism
affecting the torque output stability of PMSM from the above three parts, respectively.
Zhou et al. [15] illustrated that torque pulsations due to air gap magnetic field variations
limit the torque output stability performance of PMSM. Girgin et al. [16] described that
the stator slots have an effect on the torque output stability of PMSM. Yamazaki et al. [17]
analyzed the mechanism of torque ripple generated by the harmonic magnetic field in
PMSM. Qu et al. [18] illustrated that harmonic currents can generate harmonic magnetic
fields and can make the torque output of the PMSM poorly stabilized. Electromagnetic
torque components are generated under the combined influence of permanent magnet
field harmonics, stator slots, and harmonic currents. The above only analyzed the torque
output stability of PMSM for a single factor among them, without considering the three
influencing factors at the same time, which will lead to a too one-sided analysis.

The characteristics of electromagnetic torque components are one of the key points
to study the torque output stability of UHSPMSM. The UHSPMSM is a complex coupling
system [19–22]. Its torque output stability is closely related to electromagnetic parameters,
mechanical parameters, and electronic control parameters. Peng et al. [23] investigated
the effect of rotor permanent magnet width on torque pulsation in a PMSM. Xu et al. [24]
weakened the low-order harmonics of cogging torque and pulsating torque by suppressing
the harmonics of the rotor magnetic pole magnetic field. Caruso et al. [25] found that
the cogging torque component could be eliminated by changing the shape acting on the
rotor laminations. Knypiñski et al. [26] designed algorithms and software for permanent
magnet synchronous motor rotor structure optimization to improve the output performance
of permanent magnet synchronous motors. Jędryczka et al. [27] studied the effect of
harmonic currents on torque pulsations of PMSM. Zhao et al. [28] investigated the effect of
electronic control parameters on the torque output stability of PMSM. The above have only
investigated the effect of medium-conventional parameters on torque output stability of
PMSM in low-speed operation conditions. However, UHSPMSM have the characteristics
of ultra-high-speed and low-torque. The poor control accuracy of UHSPMSM under ultra-
high-speed operating conditions can easily lead to operating instability. Therefore, it is
very important to investigate the characteristics of electromagnetic torque components in
UHSPMSM under different ultra-high-speed operating conditions.

Based on this, the research framework of this paper is shown in Figure 1. Based on the
current scholars only for the single-factor analysis of electromagnetic torque components,
this paper comprehensively considers the permanent magnet field harmonics, stator slot-
ting, and current harmonics to extract the electromagnetic torque components. Since they
have only studied the effect of medium-conventional parameters on the torque output sta-
bility of PMSM, this paper analyzes the amplitude–frequency characteristics of UHSPMSM
electromagnetic torque components under ultra-high-speed operating conditions. There
is a simulation comparison and theoretical description of different sources of pulsation
factors. The main innovations of this paper are as follows:

(1) The UHSPMSM electromagnetic torque components that combine the effects of per-
manent magnet field harmonics, stator slotting, and current harmonics are extracted.

(2) The rules of electromagnetic torque components’ amplitude and frequency character-
istics under different ultra-high-speed operating conditions are revealed.

The rest of this paper is organized as follows: Section 2 constructs the UHSPMSM
electromagnetic torque model and verifies the accuracy of the model through experimental
bench. Section 3 extracts the electromagnetic torque components under permanent magnet
magnetic field harmonics, stator slotting, and current harmonics. Section 4 analyzes the
electromagnetic torque components amplitude–frequency characteristics of UHSPMSM.
Section 5 shows the main conclusions.
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2. Modeling and Experimental Verification of UHSPMSM
2.1. UHSEAC Structure

The whole structure of the UHSEAC is shown in Figure 1, which is mainly composed
of the UHSPMSM and supercharger. Because the UHSPMSM has the advantages of high
efficiency and small size [29,30], it used to be the power source. The UHSPMSM is mainly
composed of the housing, stator, and rotor [31–33]. Slots are present on the inner surface
of the stator, and three-phase excitation windings, a/b/c are erected in the slots. The
three-phase excitation winding produces a rotating magnetic field with current input. The
rotor mainly consists of a rotor shaft and permanent magnets. Each end of the rotating
shaft is fastened to an impeller. The surface-mounted permanent magnet mounting method
is used, which has the advantage of lower harmonic content. Then the model is constructed
and simulated based on the parameters of UHSPMSM. The main parameters of UHSPMSM
are shown in Table 1.

The UHSEAC controller adopts a typical vector control method and adopts the speed
control mode [34,35]. The following of the target speed is guaranteed by calculating the
difference between the target speed and the actual speed. After the command calculation is
completed, the d and q axis stator current commands are determined based on the current
speed. Then, the values of d and q axis stator voltages are determined under the action
of the current PID regulator. A space vector pulse width modulation technique is used
to generate a duty cycle signal that controls the switching of the thyristor, thus rotating
the rotor.
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Table 1. Main parameters of UHSPMSM.

Parameter Value Unit

Rated power 22 kW
Rated voltage 380 V
Rated speed 80,000 rpm

Pole pairs 1 N/A
Number of slots 24 N/A

Stator inner diameter 36.85 mm
Stator outer diameter 82 mm

Stator length 70 mm
Stacking coefficient 0.85 N/A

Rotor inner diameter 5.85 mm
Rotor outer diameter 35.85 mm

Rotor shaft length 70 mm
Permanent magnet material Arnold_Magnetics_N35EH_120C N/A

Magnet thickness 6 mm
Magnet span 60 ◦

Permanent magnet installation method Surface mounted N/A
Permanent magnet magnetizing direction Radially magnetized N/A

Permanent magnet material NdFe35 N/A

2.2. Electromagnetic Torque Modeling of UHSPMSM

Ideally, the stator winding produces sinusoidally distributed currents under the control
of the controller. The instantaneous values of the three-phase stator currents are set as ia,
ib, ic, respectively. Based on the winding method of the three-phase winding inside the
UHSPMSM, the voltage equation in the three-phase stationary coordinate system is [36]: Ua

Ub
Uc

 =

R 0 0
0 R 0
0 0 R

 ia
ib
ic

+ p

 ψa
ψb
ψc

 (1)

where Ua, Ub, and Uc are phase a, b, and c voltages; R is the stator phase winding resistance;
ψa, ψb, and ψc are the phase a, b, and c magnetic fluxes; and p is the differential operator.

The three-phase magnetic chain of the stator winding of UHSPMSM is: ψa
ψb
ψc

 =

 La Mab Mac
Mba Lb Mbc
Mca Mcb Lc

 ia
ib
ic

+

 ψ f a
ψ f b
ψ f c

 (2)

where La, Lb, and Lc are the stator three-phase winding self-inductance, respectively;
M represents the stator three-phase winding mutual inductance.

According to the theory of electromagnetism, the electromagnetic torque equation is:

Te =
1
ω
(ψaia + ψbib + ψcic) (3)

where ω is the UHSPMSM speed and Te is the electromagnetic torque.
According to the Clark and Park transformation principle, the following transforma-

tion relations can be obtained: id
iq
i0

 =
2
3

 cos θ cos(θ − 2
3 π) cos(θ + 2

3 π)
− sin θ − sin(θ − 2

3 π) − sin(θ + 2
3 π)

1
2

1
2

1
2

 ia
ib
ic

 (4)

where id, iq, and i0 are the d, q, and 0 axis currents; θ is the angle between the a-phase axis
and the d-axis; and the 3D matrix is the transformed matrix after performing the Clark and
Park transforms.
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The voltage equation for UHSPMSM in the d, q, and coordinate system is:{
Ud = Rid +

dψd
dt −ωrψq

Uq = Riq +
dψq
dt + ωrψd

(5)

The magnetic chain equation of UHSPMSM in the d and q coordinate system is:{
ψd = Ldid + ψPM
ψq = Lqiq

(6)

where ψPM is the permanent magnet magnetic chain, and Ld, Lq are the d and q axis inductances.
Considering that the permanent magnets are mounted in a surface-mounted way,

there are Ld = Lq = L. The electromagnetic torque equation in the synchronous rotating
coordinate system is obtained as:

Te =
3
2

pψPMiq (7)

where p is the pole pairs.
The main parameters in the electromagnetic torque model of UHSPMSM are shown

in Table 2.

Table 2. Main parameters in the electromagnetic torque model of UHSPMSM.

Parameter Value Unit

Permanent magnet chain, ψ 58 mWb
Stator phase winding resistance, R 98 mΩ

d and q axis inductances, Ld/Lq 0.25 mH
Pole pairs, p 1 N/A

Based on the working mechanism and parameters of the UHSPMSM, the Maxwell 2D
model of the UHSPMSM was built in ANSYS Electronics Desktop 2020R1 software.

2.3. Model Experimental Verification

(1) Experimental device

In order to verify the accuracy of the UHSPMSM model, this paper built the UHSEAC
external characteristics experimental bench, as shown in Figure 2. The experimental bench
is mainly composed of an air supply system, testing equipment, power supply equipment,
upper computer, wiring harness, and industrial chiller. The air supply system includes:
UHSEAC and its controller, air filter, air outlet pipeline, electromagnetic back pressure
valve. Testing equipment includes: temperature sensor, pressure sensor, flow differential
pressure sensor. Power supply equipment includes: high-voltage DC power supply and
low-voltage DC power supply.

(2) Experimental method

In the experiment, different target speeds were set, and the data such as voltage and
current in the controller of the UHSEAC were recorded. Firstly, fix the opening degree
of electromagnetic back pressure valve as 36%. Secondly, open the data sending window
of the software of the upper computer, set the target speed of 70,000 rpm. Thirdly, after
the UHSEAC stops running, save the current and voltage from UHSEAC controller and
high-voltage power supply. Finally, set the target speeds of 80,000 rpm and 90,000 rpm in
turn, and repeat according to the above experimental steps.
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Figure 2. UHSEAC experimental bench diagram.

(3) Experimental result

The experimental data are extracted from the experiment of external characteristics of
UHSEAC when the speed is 70,000 rpm, 80,000 rpm, and 90,000 rpm under the condition
that the opening degree of the back pressure valve is 36%. According to the current
and voltage data of the controller of the UHSEAC, the electromagnetic torque of the
actual UHSPMSM can be obtained through calculation. In the Maxwell 2D model of the
UHSPMSM, the same three-phase current input as in the experiment was set, and finally,
the electromagnetic torque data obtained from the experiment was compared with the
simulation results. The maximum error between the simulation and the experimental
results is 1.6%, as shown in Figure 3. The error range requirement is satisfied, thus verifying
the accuracy of model.
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3. Extraction of Electromagnetic Torque Components for UHSPMSM

Electromagnetic torque components mainly consist of the following parts: ripple
torque due to the nonlinear distribution of the magnetic field of the permanent magnets,
cogging torque due to stator slotting, and pulsating torque due to current harmonics
generated by the nonlinear characteristics of the UHSEAC controller.

(1) Ripple torque

UHSPMSM have technical limitations due to the rotor permanent magnet manufactur-
ing level and precision processes. The rotor permanent magnet magnetic field contains a
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large magnetic field harmonic component. The harmonic magnetic field of the permanent
magnet contains a series of spatial harmonics in the air gap that vary with position. This
leads to nonlinearities in the distribution of the permanent magnet’s own magnetic chain
with the stator current acting through induction to produce ripple torque.

Electromagnetic power influenced by the harmonics of the permanent magnets gen-
erated by the UHSPMSM during operation is converted into mechanical power output.
Therefore, the ripple torque obtained is:

Tem1 =
Pe1

ωm
= −3

2
p

∞

∑
k=1

[(6k + 1)ψ(6k+1) + (6k− 1)ψ(6k−1)]id sin 6kpθ (8)

where Pe1 is the electromagnetic power affected by the harmonics of the permanent magnet,
ωm is the mechanical angular velocity of the rotor of the UHSPMSM, Tem1 is the ripple
torque, and θ is the position angle of the rotor surface.

UHSPMSM has a ripple torque of the order 6 k. Its frequency is:

ft1 = 6k ·
( pnr

60

)
= 6k f (k = 1, 2, 3 · · · ) (9)

where, ft1 is the ripple torque fluctuation frequency, nr is the rotor mechanical speed, rpm,
and f is the fundamental wave electric frequency of the UHSPMSM.

(2) Cogging torque

When the rotor moves relative to the stator tooth and slot structure, there is a large
difference in the permeability of the tooth and slot material. This makes the air gap magnetic
field no longer an ideal sinusoidal distribution. The cogging torque is generated by the
interaction of the air gap magnetic field harmonics affected by stator cogging with the
stator input current.

The electromagnetic power generated by the cogging slotting of the UHSPMSM during
operation is converted into a mechanical power output. Therefore, the cogging torque
obtained is:

Tem2 =
Pe2

ωm
=

3
2

p
∞

∑
k=1

ψqkiq cos 6kpθ (10)

where Pe2 is the electromagnetic power affected by the cogging, and Tem2 is the cogging torque.
The UHSPMSM has a cogging torque of the order 6 k. Its frequency is:

ft2 = 6k ·
( pnr

60

)
= 6k f (k = 1, 2, 3 · · · ) (11)

where ft2 is the electromagnetic torque fluctuation frequency.

(3) Pulsating torque

The nonlinear characteristics of the UHSEAC controller leads to current harmonic
components in the UHSPMSM stator. The current fed into the stator has mainly harmonics
of the 5th, 7th, 11th, and 13th order. However, due to the property that the higher the
order of the current harmonics, the smaller the amplitude, only the 5th and 7th harmonics
are generally considered in the analysis process. The pulsating torque is due to the inter-
action of the stator input current harmonics with the fundamental magnetic field of the
permanent magnets.

The three-phase current input to the stator of the UHSPMSM is:

iabc,h =

ia,h
ib,h
ic,h

 =

 ih sin(hpθ + ϕh)
ih sin

(
hpθ − 2π

3 + ϕh
)

ih sin
(
hpθ + 2π

3 + ϕh
)
 (12)
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Electromagnetic power influenced by current harmonics generated by the UHSPMSM
during operation is converted into mechanical power output. Therefore, the pulsating
torque obtained is:

Tem3 =
Pe3

ωm
=

3
2

p{ψ1ih cos[(h− 1)pθ + ϕh]} (13)

where Pe3 is the electromagnetic power affected by current harmonics, and Tem3 is the
pulsating torque.

The pulsating torque is generated by the hth time harmonic in conjunction with the
magnetic field of the permanent magnet. Its fluctuation frequency is (h − 1)f. The pulsating
torque frequency is characterized as:

ft3 = (h− 1) f (h = 1, 5, 7 · · · ) (14)

(4) Electromagnetic torque components

By analyzing the influencing factors generated by electromagnetic torque components,
electromagnetic torque components can be expressed as:

T∗e = − 3
2 p

∞
∑

k=1
[(6k + 1)ψ(6k+1) + (6k− 1)ψ(6k−1)]id sin 6kpθ

+ 3
2 p

∞
∑

k=1
ψqkiq cos 6kpθ + 3

2 p{ψ1ih cos[(h− 1)pθ + ϕh]}
(15)

where Te
* is the electromagnetic torque components.

The electromagnetic torque components frequency is characterized as:

f ∗ = 6k f + (h− 1) f (k = 1, 2, 3 · · · ; h = 1, 5, 7 · · · ) (16)

4. UHSPMSM Electromagnetic Torque Components’ Amplitude–Frequency Characteristics
4.1. Electromagnetic Torque Components’ Characteristics at Different Speeds

The UHSPMSM used in this study belongs to the type of frequency conversion speed
regulation. It is realized by adjusting the base frequency of the stator input current to
regulate the speed. The rated speed of the UHSPMSM studied in this paper is 80,000 rpm.
The electromagnetic torque component characteristics of the UHSPMSM at 70,000 rpm,
80,000 rpm, and 90,000 rpm will be studied. From the UHSEAC external characteristics’
experimental bench, the input current value of UHSEAC at the above rotation speeds can
be obtained. In the Maxwell 2D model of the UHSEAC, enter the same current input as
in the experiment. The variation of the internal magnetic density cloud diagram of the
UHSPMSM at different speeds is shown in Figure 4. When the speed of the UHSPMSM is
at 70,000 rpm, 80,000 rpm, and 90,000 rpm, the angles turned through a sampling point are
33.6◦, 34.1◦, and 34.6◦, respectively.

The higher the speed in the same sampling point time, the larger the angle it turns.
It can be shown that the base frequency of the stator input current of the UHSPMSM
increases, and the rotating magnetic field speed increases. Ultimately, its output speed
increases. When the speed modulation of the UHSPMSM is 70,000 rpm, 80,000 rpm, and
90,000 rpm, the fundamental frequency of the current input to the stator is 1166.6 Hz,
1333.3 Hz, and 1500 Hz.

The ideal UHSPMSM is driven by sinusoidal current and generates a standard sinu-
soidal back-electromotive force [37]. Therefore, there is no torque ripple during operation.
However, the stator armature winding current is limited by the inverter capacity and
winding inductance, and the back-electromotive force is not a standard sine wave but
fluctuates around an ideal waveform. The variation of the back-electromotive force of the
UHSPMSM at different speeds is shown in Figure 5. When the speed of the UHSPMSM is
70,000 rpm, 80,000 rpm, and 90,000 rpm, the amplitude of the back-electromotive force is
193.6 V, 221.2 V, and 248.9 V.
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Once the structure of the UHSPMSM has been designed, the factor that determines
the change in the back-electromotive force is the rotor speed. As the rotor speed increases,
the back-electromotive force becomes larger. An increase in the back-electromotive force
prevents the input current to the stator armature winding coil, resulting in a lower stator
input current. This causes the output electromagnetic torque value to drop and not stabilize
at the rated torque. Therefore, in order to keep the UHSPMSM always maintained at the
same torque output, it is necessary to increase the amplitude of the stator input current.

The speed control period of the UHSEAC controller is 10 ms. The time-domain
diagram of the electromagnetic torque component changes of the UHSPMSM at different
speeds is shown in Figure 6. When the speed increases from 70,000 rpm to 80,000 rpm, the
amplitude of the 6th order frequency of the ripple torque rises by 0.04 mN·m, the amplitude
of the 6th order frequency of the cogging torque is elevated by 7.3 mN·m, and the amplitude
of the pulsating torque increases by 6.7 mN·m for the 4th order frequency and 4.2 mN·m
for the 6th order frequency. When the speed is increased from 80,000 rpm to 90,000 rpm,
the amplitude of the 6th order frequency of the ripple torque rises by 0.05 mN·m, the
amplitude of the 6th order frequency of the cogging torque increases by 5.7 mN·m, the
amplitude of the 4th order frequency of pulsating torque increases by 10.7 mN·m, and the
amplitude of the 6th order frequency increases by 5.4 mN·m.
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When the speed increases from 70,000 rpm to 80,000 rpm, the amplitude of the elec-
tromagnetic torque components is increased by 6.7 mN·m for the 4th order frequency and
11.6 mN·m for the 6th order frequency. When the speed is increased from 80,000 rpm
to 90,000 rpm, the amplitude of the electromagnetic torque components is elevated by
10.7 mN·m for the 4th order frequency and 11.3 mN·m for the 6th order frequency. The
amplitude of the electromagnetic torque components of the UHSPMSM under rated torque
becomes larger with the increase of speed. The ripple torque is analyzed to obtain a small
amplitude, which accounts for less than 0.2% of electromagnetic torque. The maximum
magnitude of the cogging torque at low-order frequency is about 6.5% of electromagnetic
torque. The maximum magnitude of the pulsating torque at low-order frequency is about
5.9% of electromagnetic torque. The cogging torque and pulsating torque have a large
influence on the torque output stability of the UHSPMSM.

The electromagnetic torque components of the UHSPMSM increase with speed, lead-
ing to the torque output being poorly stabilized. This adversely affects the dynamic
response performance of the UHSPMSM. In order to verify the frequency and amplitude
changes of electromagnetic torque components more accurately, the time-domain plots of
ripple torque, cogging torque, and pulsating torque are fast Fourier transformed, as shown
in Table 3. When the speed of the UHSPMSM is 70,000 rpm, the base frequency of the
stator input current is 1166.66 Hz. The 4th order frequency of the electromagnetic torque
components is 4666.66 Hz, and the 6th order frequency is 7000 Hz. When the speed of the
UHSPMSM is 80,000 rpm, the base frequency of the stator input current is 1333.33 Hz. The
4th order frequency of electromagnetic torque components is 5333.33 Hz, and the 6th order
frequency is 8000 Hz. When the speed of the UHSPMSM is 90,000 rpm, the base frequency
of the stator input current is 1500 Hz. The 4th order frequency of the electromagnetic torque
components is 6000 Hz, and the 6th order frequency is 9000 Hz.

When the UHSPMS is under different speeds, the frequency of the ripple torque and
the cogging torque are the 6th-order current fundamental frequency, and the frequency
of the pulsating torque contains the 4th- and 6th-order current fundamental frequency.
Thus, the frequency of the electromagnetic torque components contains 4th- and 6th-
order current fundamental frequencies. As the speed of the UHSPMSM increases, the
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fundamental frequency of the stator input current increases. This leads to an increase
in the frequency of the electromagnetic torque components. The electromagnetic torque
components are small in amplitude at higher order frequencies and account for less than
1% of the actual output torque. Therefore, electromagnetic torque components at 4th- and
6th-order current fundamental frequencies are worth analyzing.

Table 3. Table of electromagnetic torque components’ amplitude and frequency values at
different speeds.

Speed (rpm) Frequency (Hz) Ripple Torque
(mN·m)

Cogging Torque
(mN·m)

Pulsating Torque
(mN·m)

Electromagnetic
Torque Components

(mN·m)

70,000
4666.66 0 0 76.9 76.9

7000 2.1 84.9 54.8 141.8

80,000
5333.33 0 0 83.6 83.6

8000 2.1 92.3 59 153.4

90,000
5333.33 0 0 88.7 88.7

9000 2.2 98.1 64.4 164.6

4.2. Electromagnetic Torque Components’ Characteristics under Different Torques

In the Maxwell 2D model of the UHSPMSM, the basic frequency of the stator input
current of the UHSPMSM is maintained at 1333.33Hz to maintain the speed at the rated
speed of 80,000 rpm. By changing the effective value of the stator input current, the output
electromagnetic torque of the UHSPMSM is modulated to 1.3 N·m, 1.5 N·m, and 1.7 N·m.
An air gap flux density diagram of the UHSPMSM under different torques is shown in
Figure 7. When the output electromagnetic torque of the UHSPMSM is 1.3 N·m, the radial
air gap flux density amplitude is 1.1 T, and the tangential air gap flux density amplitude is
0.4 T. When the output electromagnetic torque is 1.5 N·m, the radial air gap flux density
amplitude is 1.2 T, and the tangential air gap flux density amplitude is 0.5 T. When the
output electromagnetic torque is 1.7 N·m, the radial air gap flux density amplitude is 1.3 T,
and the tangential air gap flux density amplitude is 0.5 T.
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The air gap flux densities at the three different electromagnetic torques are all non-
sinusoidal variations. They include the harmonic component generated by permanent
magnet field harmonics, stator slotting, and current harmonics. When the stator input
current increases, the rotating magnetic field in the UHSPMSM is enhanced. When the
stator input current increases, the rotating magnetic field generated by the stator circular
rotating magnetic potential and the main magnetic field of the rotor permanent magnets
are enhanced. The air gap magnetic field synthesized during synchronous operation is
enhanced. Therefore, the electromagnetic torque produced is increased.

A time-domain plot of the electromagnetic torque components of the UHSPMSM
with an electromagnetic torque component output of 2 electrical cycles was created. In
order to study the electromagnetic torque component variations more accurately, the time-
domain map of the electromagnetic torque components is obtained as a frequency-domain
map by fast Fourier variation. An electromagnetic torque components’ diagram of the
UHSPMSM under different torques is shown in Figure 8. The speed of the UHSPMSM
is fixed at 80,000 rpm, and the stator input current fundamental frequency is 1333.33 Hz.
When the electromagnetic torque is increased from 1.3 N·m to 1.5 N·m, the 6th-order
frequency amplitudes of ripple torque and cogging torque are elevated by 0.1 mN·m and
13.8 mN·m, the amplitude of the 4th-order frequency of the ripple torque is elevated by
11.5 mN·m, and the amplitude of the 6th-order frequency is elevated by 6.5 mN·m. The
amplitude of the 4th-order frequency of the electromagnetic torque components increases
by 11.5 mN·m, and the amplitude of the 6th-order frequency increases by 19.3 mN·m when
the electromagnetic torque is increased from 1.3 N·m to 1.5 N·m. When the electromag-
netic torque is elevated from 1.5 N·m to 1.7 N·m, the amplitude of 6th-order frequency
of the ripple torque and cogging torque is elevated by 0.1 mN·m and 12.0 mN·m, the
amplitude of the 4th-order frequency of the ripple torque increases by 10.7 mN·m, and
the amplitude of the 6th-order frequency increases by 9.4 mN·m. When the electromag-
netic torque is increased from 1.5 N·m to 1.7 N·m, the amplitude of the 4th- and 6th-order
frequencies of the electromagnetic torque components are increased by 10.7 mN·m and
21.7 mN·m, respectively.
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Ripple torque and cogging torque are at 6th-order current fundamental frequency, and
pulsating torque is at 4th- and 6th-order current fundamental frequency. Therefore, the
frequency of the electromagnetic torque components contain 4th- and 6th-order current fun-
damental frequencies. When the speed is 80,000 rpm, the 4th-order frequency is 5333.33 Hz
and the 6th-order frequency is 8000 Hz. Electromagnetic torque components are smaller
in amplitude at higher-order frequencies and account for a smaller percentage of the elec-
tromagnetic torque. It is sufficient to analyze only the ripple torque, cogging torque, and
pulsating torque, which have larger amplitudes at lower-order frequencies. It is obtained
from the analysis that the ripple torque accounts for less than 0.2% of the electromagnetic
torque, the amplitude of the cogging torque is about 6.0% of the electromagnetic torque at
the lower-order frequency, the amplitude of the pulsating torque at the 4th-order frequency
accounts for about 5.5% of the electromagnetic torque, and the amplitude at the 6th-order
frequency accounts for about 4.0% of the electromagnetic torque.

5. Conclusions

There are a simulation comparison and a theoretical description of different sources
of pulsation factors. This paper extracts the electromagnetic excitation of UHSPMSM and
analyzes the characteristic changes of the electromagnetic excitation of the UHSPMSM
under different operating states. Several conclusions can be summarized as follows:

(1) At rated electromagnetic torque, the speed of the UHSPMSM increases, requiring an
increase in the input current fundamental frequency. However, an increase in the
current fundamental frequency increases the rate of change of the air gap magnetic
field, leading to an increase in the electromagnetic excitation frequency. As the
speed increases, the back-electromotive force increases. It is necessary to increase
the input current amplitude to maintain it at the rated electromagnetic torque. This
results in an increase in the amplitude of the electromagnetic excitation. When
the speed increases from 70,000 rpm to 90,000 rpm, the 4th-order frequency of the
electromagnetic excitation increases by 1333.33 Hz and the amplitude increases by
11.8 mN·m, and the 6th-order frequency increases by 2000 Hz and the amplitude
increases by 22.8 mN·m.

(2) At the rated speed, the electromagnetic torque of the UHSPMSM rises, requiring an
increase in the input current amplitude. The increase in current amplitude increases
the air gap magnetic field strength. This leads to a consequent increase in the electro-
magnetic excitation amplitude. The speed is constant, the input current fundamental
frequency is constant, and the electromagnetic excitation frequency is constant. When
the electromagnetic torque increases from 1.3 N·m to 1.7 N·m, the electromagnetic
excitation 4th-order frequency remains unchanged at 5333.33 Hz and the amplitude
increases by 22.2 mN·m, and the 6th-order frequency remains unchanged at 8000 Hz
and the amplitude increases by 41.1 mN·m.

This paper constructs the observation object of the high-frequency state observer
and conducts the preliminaries for the design of the UHSEAC controller. The amplitude–
frequency characteristic law of electromagnetic excitation can provide reference opinions
for the structural design optimization of UHSPMSM. It can also provide theoretical support
for the control method and analysis of the stability of UHSEAC.
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