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Abstract: In recent years, the number of foodborne infections with non-O1 and non-O139 Vibrio
cholerae (NOVC) has increased worldwide. These have ranged from sporadic infection cases to
localized outbreaks. The majority of case reports describe self-limiting gastroenteritis. However,
severe gastroenteritis and even cholera-like symptoms have also been described. All reported
diarrheal cases can be traced back to the consumption of contaminated seafood. As climate change
alters the habitats and distribution patterns of aquatic bacteria, there is a possibility that the number
of infections and outbreaks caused by Vibrio spp. will further increase, especially in countries where
raw or undercooked seafood is consumed or clean drinking water is lacking. Against this background,
this review article focuses on a possible infection pathway and how NOVC can survive in the human
host after oral ingestion, colonize intestinal epithelial cells, express virulence factors causing diarrhea,
and is excreted by the human host to return to the environment.

Keywords: non-O1/non-O139 Vibrio cholerae; diarrheal disease; infection pathway; virulence genes;
regulatory systems

1. Introduction

Vibrio (V.) cholerae is mainly known as the causative agent of the endemic and epidemic
diarrheal disease cholera. However, V. cholerae is a globally distributed aquatic commensal
that has been classified into more than 200 serogroups. Only two serogroups, O1 and O139,
have the ability to cause pandemic cholera outbreaks. Since 1961, the V. cholerae serotype
O1 biotype El Tor has been the predominant strain in the seventh pandemic, and since 1992,
the V. cholerae serotype O139 has been the predominant strain in the eighth pandemic. Both
pandemics are still ongoing today [1,2]. The World Health Organization (WHO) reported
outbreaks of cholera in 30 countries in Asia, Africa, and America between 1 January and
15 December 2023, with over 667,000 cases and 4000 deaths [3].

Non-O1 and non-O139 V. cholerae (NOVC) serogroups are less in the focus of public
health interest compared to O1 and O139 V. cholerae as they cause single-case disease
or even localized outbreaks with milder and often self-limiting symptoms. In fact, one
or both of the main virulence factors, cholera toxin (CT) and toxin-coregulated pilus
(TCP), are missing in their genomes. Nevertheless, NOVCs are playing an increasingly
important role in public health worldwide. Several studies have shown that the number
of infections and outbreaks caused by NOVC has increased over time, being positively
correlated with the progressive rise in seawater temperatures [4–7]. This is promoted by the
anthropization of coastal regions, the increasing global trade of seafood, the trend towards
the consumption of raw seafood (e.g., oysters and sushi), and the increasing number
of immunocompromised people, especially older people with pre-existing diseases [7,8].
Particularly people with a compromised immune system can suffer from severe diarrhea
with cholera-like symptoms. Bacteremia can also be caused by an orally acquired infection
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via the infiltration of NOVC in the bloodstream through the portal vein and intestinal
lymphatic system [8–10]. Individual infection cases that could be clearly attributed to
the consumption of contaminated seafood have been described in Spain [11], Italy [12],
Portugal [13], India [14], Australia [15], the USA [16], and Iran [17]. Localized NOVC
outbreaks have been reported in India and Thailand in the past [18–23]. Meanwhile, NOVC
outbreaks have also been described in the USA [24,25], China [26,27], and Chile [28] which
have also been linked to seafood consumption.

Octavia et al., 2013, pointed out that a combination of virulence factors in the genome
of clinical NOVC is a prerequisite for a successful infection process [29]. The combined
virulence factors identified in the genomes of NOVC isolated from the above-mentioned
infection cases and local outbreaks are the Vibrio pathogenicity islands VSP-2 and VPI-
2, genomic islands (GI) encoding type III (T3SS) and type VI secretion systems (T6SS),
enterotoxins (RtxA and Stn), and the hemolysin HlyA. We were able to show that genes
encoding these virulence factors are also present in NOVC isolated from seafood and
the environment in previous studies [30,31]. Further investigations showed that other
virulence genes are also present in the NOVC genomes which could also play a role in the
infection process, such as hapA for hemagglutinin protease; mshA for mannose sensitive
hemagglutinin; and frhA, gbpA, and mam7 for non-specific adhesins [30].

In addition to the presence of virulence factors, genes involved in host adaption and
colonization are also required in the pathogenicity process. Before a successful infection,
pathogens need to survive the host defense system such as acidic pH values in the stomach,
anti-microbial peptides, reactive oxygen species (ROS), and an already predominant gut
microbiota [32]. Mucosal penetration and epithelial cell attachment in the small intestine
are also necessary for the final infection and proliferation of the bacteria [33]. V. cholerae has
evolved a complex regulation system to ensure proper arrangement of various effective
factors throughout the infection inside a human host, such as the quorum sensing system,
two-component system, histone-like nucleoid structuring protein (Hns), small molecule sig-
nals (c-di-GMP), biofilm promotor and motility repressor modulation, and wide spectrum
regulator (cAMP-CRP) [34].

Thus far, there are several comprehensive overviews about the virulence-associated
genes in both O1/O139 V. cholerae and NOVCs [35,36]. Nevertheless, it should be noted
that the relationship between virulence factors and a resulting infection is complex, and
an interaction network rather than individual virulence factors must be considered at
this point. The previous findings on virulence-associated genes and their interaction with
other genetic features involved in the infection process will be discussed in this review
article. Furthermore, a genetic model of a theoretical infection caused by NOVC inspired
by the Kyoto Encyclopedia of Genes and Genomes (KEGG) mapping tool [32,37–39] was
developed (see Figure 1). The whole infection workflow was divided into five stages as
follows. Stage 1: survival in host gastrointestinal tract; stage 2: localization and penetration
of the mucus layer in the small intestine; stage 3: intestinal epithelial cell colonization;
stage 4: virulence gene expression; stage 5: detachment from the epithelial cells to return in
the environment.



Microorganisms 2024, 12, 818 3 of 16Microorganisms 2024, 12, x FOR PEER REVIEW 3 of 16 
 

 

 
Figure 1. The map of virulence-associated genes and regulatory systems in NOVC: positive rela-
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whole infection procedure is separated into five stages. Stage 1: survival in host gastrointestinal tract 
(in orange); stage 2: localization and penetration of the mucus layer in the small intestine (in purple); 
stage 3: intestinal epithelial cell colonization (in green); stage 4: virulence gene expression (in red); 
stage 5: detachment from the epithelial cells to return in the environment (in blue). The detailed 
information is shown in Table S1 in the Supplementary Files. 

2. Stage 1: Survival in the Gastrointestinal Tract 
After oral ingestion, pathogenic bacteria will encounter a set of host-derived defense 

systems, including chemical and biological barriers, when entering the stomach and ar-
riving at the small intestine. Therefore, various genes involved in adaptation processes as 
a response to these conditions can be found in NOVCs to ensure that they reach the small 
intestine to interact with epithelial cells [40,41]. The stage 1 section therefore describes the 
adaptation to low pH values in the stomach [41,42]; the adaptation to reactive nitrogen 
and oxygen species in the stomach [43,44]; changes in porin channel size to prevent the 
diffusion of harmful molecules into the bacterial cell such as bile salts from the gallbladder 
in the duodenum [45]; efflux pumps to displace harmful molecules such as bile in the 

Figure 1. The map of virulence-associated genes and regulatory systems in NOVC: positive relation-
ships are labeled with red arrows and negative relationships are labeled with blue arrows. The whole
infection procedure is separated into five stages. Stage 1: survival in host gastrointestinal tract (in
orange); stage 2: localization and penetration of the mucus layer in the small intestine (in purple);
stage 3: intestinal epithelial cell colonization (in green); stage 4: virulence gene expression (in red);
stage 5: detachment from the epithelial cells to return in the environment (in blue). The detailed
information is shown in Table S1 in the Supplementary Files.

2. Stage 1: Survival in the Gastrointestinal Tract

After oral ingestion, pathogenic bacteria will encounter a set of host-derived defense
systems, including chemical and biological barriers, when entering the stomach and arriv-
ing at the small intestine. Therefore, various genes involved in adaptation processes as a
response to these conditions can be found in NOVCs to ensure that they reach the small
intestine to interact with epithelial cells [40,41]. The stage 1 section therefore describes the
adaptation to low pH values in the stomach [41,42]; the adaptation to reactive nitrogen and
oxygen species in the stomach [43,44]; changes in porin channel size to prevent the diffusion
of harmful molecules into the bacterial cell such as bile salts from the gallbladder in the
duodenum [45]; efflux pumps to displace harmful molecules such as bile in the duodenum
and antimicrobial peptides in the small intestine [46]; the formation of protective biofilms
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to protect bacteria against antimicrobial substances from the stomach, duodenum, and the
small intestine; and the T6SS to compete with the predominant gut microbiome [47]. All
mechanisms and genes involved in stage 1 are shown in orange in Figure 1.

2.1. Acid Tolerance Response

A common feature of diarrheal pathogens is the acid tolerance response (ATR), nec-
essary to survive the acidic pH environment in the stomach, which is a prerequisite for
subsequent successful intestinal colonization [42]. In V. cholerae, the cadABC operon first
described in Escherichia (E.) coli is important for protecting the bacteria from acid hydroly-
sis [40]. The genetic presence of the cadABC operon was identified in 90% of NOVC isolated
from seafood and the environment in our previous studies, with genetic identities over
90% compared to the V. cholerae O1 El Tor biotype, suggesting a fully functional cadABC
operon [30,31]. In particular, the cadA gene encodes a lysine decarboxylase that binds
protons through the production of cadaverine and carbon dioxide. Finally, this antiporter
system transfers protons out of the bacterial cell and neutralizes the pH value [40]. Ko-
vacikova et al., 2010, mentioned that cadC, the regulator of the cadABC operon, can be
directly activated by aphB encoding a cytoplasmic DNA-binding protein which will be
upregulated during acid stress [48]. Additionally, the expression of clcA, a hydrochloric
acid transporter, regulated by aphB, plays a role in neutralizing the pH value in the bacterial
cell [49].

2.2. Adaptation to Reactive Nitrogen and Oxygen Species

In the stomach, nitrite from food and saliva that is exposed to the acidic milieu
results in acidified nitrite, which can be reduced by reactive nitrogen species (RNS) to
antimicrobially active nitric oxide. By the detoxification of RNS, the expression of the genes
nnrS and hmpA plays an important role in V. cholerae, and these genes were also identified
in NOVCs from seafood and the environment [30,31]. Both genes encode enzymes that are
capable of destroying nitric oxide. It is assumed that the regulator for both genes is norR,
although this regulator is not stimulated by nitric oxide [43].

In diarrheal diseases, the level of reactive oxygen species (ROS) in the host gastroin-
testinal tract increases, resulting in damage to the bacterial cell structure as an immune
defense. In V. cholerae, genes with ROS resistance activity have been identified as part
of ROS removal. Superoxide dismutases such as manganese-binding SodA, for example,
convert superoxide into hydrogen peroxide and oxygen. Catalases such as KatB and KatG
later detoxify peroxides into water and oxygen [50,51]. The organic hydroperoxidase OhrA
and preoxiredoxins such as PrxA and AphC cleave organic (alkyl) hydroperoxides [52,53].
Two homologs of ohrR, the gene for hydrogen peroxide resistance in E. coli, were found as
well in V. cholerae, namely oxyR1 and oxyR2, which have a modulating function on prxA
and aphC, respectively [52].

2.3. Resistance Nodulation Division (RND) Efflux Pump

After passing through the stomach, pathogenic bacteria in the small intestine must
resist against host-derived bile salts, organic acids, and antimicrobial peptides. The main
systems which help the bacteria to pump numerous poisonous compounds out of the cell
are efflux pumps [54]. The RND efflux pump is a multi-functional unit in both O1/O139 V.
cholerae and NOVC [55], encoded by a vex gene cluster (vexAB, vexCD, vexEF, vexGH, vexIJK,
and vexLM) and a shared outer membrane porin encoded by tolC. Using an infant mouse
model, small intestine colonization deficiency was found in different RND mutants [46,56].

2.4. Outer Membrane Protein (OMP)

Another response to toxic components such as bile salts is the alteration of porins in
the bacterial cell membrane. In V. cholerae, expression and upregulation of ompU take place
when bile salts are present. OmpU is widely present in NOVC [9,57,58] and should have
the same response to the presence of bile. Due to its smaller channel size which prevents
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the influx of bile salts into the bacterial cell, the porin OmpU will be replaced instead of a
larger channel porin such as OmpT [45,59].

2.5. Biofilm Formation

Biofilms provide a continuous protective cover around bacterial cells against multiple
harmful components and play an important role in environmental adaptation and survival
in the host [39]. In V. cholerae, Vibrio polysaccharides encoded by vpsA to vpsK and other
biofilm-forming proteins encoded by the genes rbmA, rbmC, and bap1 are the main structure
components that build a stable biofilm [60,61], while vpsR and vpsT serve as transcriptional
activators [62,63]. Another small molecule signal, c-di-GMP, also has a positive effect
on biofilm formation through the upregulation of vpsR and vpsT [64]. The intracellular
concentration of c-di-GMP can be increased in the presence of bile [65]. The presence of vpsR
in NOVC was confirmed by Dua et al. (2018) [66], and variations in VpsR between O1/O139
V. cholerae and NOVC were identified in our previous studies, including point mutation
and gene fragment deletions [30]. However, 99% of NOVCs could form stable biofilms in
our previous studies, and all the biofilm-relevant genes were present in NOVCs [30,31].

2.6. Type IV Secretion System (T6SS)

Entering the small intestine, the T6SS plays an important role in competition between
microorganisms, so that the distribution of commensals in the intestine is altered [47,67].
Therefore, it might act in stage 1 as well as in stage 4. In our previous studies, all NOVCs
contained the T6SS [30,31]. In the V. cholerae strain O1 C6706, the T6SS is repressed at low
cell density by quorum sensing (QS) molecules [68]. In contrast, N-acetyl glucosamine
(GlcNac) can be sensed by the O1 V. cholerae serotype, which leads to tfoX (a major regulator
of T6SS) expression followed by T6SS activation [69]. The regulation network of NOVCs
is complex and not fully explored, but these regulators might have similar effects in
NOVCs [70]. Three regulatory genes, hapR, tfoX, and cytR, achieve their T6SS regulation
through the QS- and TfoX-dependent regulator (QstR) [34].

3. Stage 2: Localization and Penetration of the Mucus Layer in the Small Intestine

To cause diarrhea, V. cholerae need to reach the small intestinal epithelial cells to pene-
trate them. However, the intestinal epithelium is covered by a mucus layer (approximately
150 µm thick), making the ability to penetrate mucus important [32]. Motility is therefore
necessary and responsible for a targeted direction [71], while the contribution of chemo-
taxis remains controversial [72,73]. In contrast to O1/O139 V. cholerae serotypes, whose
fitness is supported by genetic features on Vibrio seventh pathogenicity islands 1 and 2
(VSP-1 and VSP-2), the movement of NOVC through the mucosa could be supported by the
hemagglutinin protease and neuraminidase, which act as mucinases and are encoded on
Vibrio pathogenicity island 2 (VPI-2) [1,74,75]. In addition, environmental NOVCs isolated
from food and water sources carry not only the pathogenicity island VPI-2 but also the
pathogenicity island VSP-2 in their genome [30,31]. All mechanisms and genes involved in
stage 2 are shown in purple in Figure 1.

3.1. Motility via Flagella

The motility-related genes in NOVC were detected through Gene Oncology analysis
and the KEGG pathway, which indicate the similar function of motility between NOVC and
O1/O139 V. cholerae as these databases are mainly built based on research on O1/O139 V.
cholerae [76]. All the motility-associated genes were identified to 100% in NOVC according
to our previous studies [30,31]. As a highly motile bacterium, the driving force of V. cholerae
is provided by a single polar flagellum. Motility is also functional in host environment adap-
tation, including nutrient acquisition and toxic component avoidance [77]. The flagellar
motility of V. cholerae is important to move the bacteria through the mucus layer [78]. The
structure of the flagellum and its four-hierarchy regulatory system was already described
by Syed et al. (2009) [79]. The whole flagella system is regulated by sigma factor 54 FlrA, the
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downstream activator FlrC, and the alternative sigma 28 factor FliA [79]. The motility of V.
cholerae also declined due to c-di-GMP. Furthermore, several genes with motility regulation
activity were reported. The multifunctional regulation gene csrA could upregulate flrC [80].
Besides, under a high-speed microscope, arcA/cytR and the O-antigen synthesis gene cmd
were found to promote motility with an unclear mechanism [81].

3.2. Chemotaxis

The chemotaxis system can recognize chemical signals and regulate the motility and
swimming behavior of V. cholerae. At first, a common chemotaxis model of E. coli was
identified and subsequently applied in a chemotaxis study of V. cholerae [82] including
methyl-accepting chemotaxis proteins (MCPs) encoded by cheW, cheA, cheY, cheR, and cheB.
As the chemotaxis system in NOVC has not been explored and the chemotaxis-related genes
in O1/O139 V. cholerae were identified in several NOVCs, we suspected that the chemotaxis
system in NOVCs might play a similar role. In our previous study, we confirmed the
presence of the genes cheA, cheY, and cheR in all analyzed NOVCs, while cheW and cheR
were present in 32% of the strains [30]. Transmitted signals can be caught by the cytoplasmic
linker protein cheW and transmitted to the two-component system cheA/cheY. Phosphate-
activated cheY binds to the flagella motor and causes a reverse rotation direction, from left
to right [72]. The genes cheR and cheB play a role in the transfer of methyl groups, which
contributes to adaptation to a stable background level of attractants [82]. On the other
hand, V. cholerae (both O1/O139 and NOVC) have a far more complex chemotaxis system
than E. coli, with 68 related ORFs categorized into three clusters. Among those, cluster II
seems to play a similar role in E. coli [83]. Later research reported that cluster I components
are assembled into the supramolecular signaling complex in response to reduced cellular
energy states, raising the possibility that the cluster I complex plays a role in sensing and
signaling under microaerobic environments, such as in the host intestine [84]. The general
stress regulator RpoS and autoinducer 1 in quorum sensing could regulate the expression
of cluster III [85].

3.3. Vibrio Pathogenicity Island 2 (VPI-2)

VPI-2 (located between vc1758 and vc1809) was identified in O1/O139 V. cholerae and
NOVCs. However, Jermyn and Boyd (2005), Haley et al. (2014), and Takahashi et al. (2021)
studied the genetic variation of VPI-2 in NOVCs and showed that NOVCs could harbor an
incomplete VPI-2 compared to O1/O139 [74,86,87]. This variation might result from the
horizontal gene transfer of VPI-2 from the ancestors V. mimicus and O1/O139 V. cholerae [74].
VPI-2 contains the neuraminidase-encoding gene nanH [88] which plays a role in altering
mucus structure by cleaving sialic acid groups (GM1 gangliosides) on the epithelial cell
surface. Further studies on VPI-2 revealed that nanA, nanE, nanK, and nagA1, which are
also localized on VPI-2, can catalyze the metabolism of N-acetylneuraminic acid, which is a
component of mucin [6]. All of these functional genes in VPI-2 were identified in 33% of
NOVCs isolated from seafood and the environment [30,31].

Vertebrate hosts could limit the zinc level for bacteria as a defense strategy. Zinc
deficiency activates Vibrio energy taxis system A (VerA), which is also encoded on the
pathogenicity island VSP-2. In addition, VerA could trigger the expression of aerB transcrib-
ing a methyl-accepting chemotaxis protein, which could bind cheW and affect the flagellum
rotation and motility [89,90].

3.4. Hemagglutinin Protease HapA

The hemagglutinin protease HapA, encoded by hapA, is suggested to be responsible
for altering the mucus layer and playing a role in mucus layer penetration during initial
infection for both O1/O139 V. cholerae and NOVC [91,92].
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4. Stage 3: Intestinal Epithelial Cell Colonization

After the localization of intestinal epithelial cells, V. cholerae must attach to their surface,
whereby the type IV pili and the T3SS play a crucial role [93,94]. Subsequently, non-specific
adhesins can be secreted via these systems [32]. In contrast to O1 and O139 V. cholerae, the
T3SS plays an important role for NOVC in attachment and colonization when TCP is not
present in the genome [94]. All mechanisms and genes involved in stage 3 are shown in
green in Figure 1.

4.1. Type IV Pili

Type IV pili, encoded by mshA, play a role in the braking and anchoring function of
V. cholerae during the landing process on the epithelial cell surface [95]. In addition, MshA
pili cause an irreversible attachment and microcolony formation [93]. The presence of mshA
in 27% of NOVCs was confirmed in our previous studies [30,31]. At the beginning stage
after landing on the epithelial cell surface, several transient non-specific adhesins were
secreted to bind the component of small intestine epithelial cells, including multivalent ad-
hesion molecule 7 (mam7, binding with fibronectin and phosphatidic acid), GlcNAc binding
protein A (encoded by gbpA), and flagellum-regulated hemagglutinin A (encoded by frhA,
binding calcium) [79,96,97]. The presence rates of mam7, gbpA, and frhA in NOVCs were
detected as 100%, 94%, and 22%, respectively, in our previous studies [30,31]. Sperandio
et al., 1995, stated that a potential adherence factor to epithelial cells could be the outer
membrane protein U (OmpU) [98]. This finding is supported by Potapova et al., 2024, who
also mentioned that OmpU could also regulate the biofilm matrix assembly [99].

4.2. Type III Secretion System (T3SS)

The T3SS is suggested to have an important role in the colonization of intestinal
epithelial cells by NOVCs when TCP is absent. Dziejman et al., 2005, showed using a
rabbit and mouse model that the TCP-negative NOVC strain AM-19226 could colonize the
intestinal epithelial cell surface through the T3SS [94]. The whole island contains 47 ORFs
from A33_1660 to A33_1706. However, an exact mechanism of the T3SS in colonization
has not yet been fully identified, although possible functions of several effectors have been
addressed: VopF (A33_1696) and VopM (A33_1684) are two effectors in the core region
with actin alteration activities, which could disrupt the cell structure and contribute to
colonization [100]. VopM can bind F-actin and also plays an important role in colonization
by remodeling the intestinal brush border, which facilitates bacterial adhesion [101]. The
colonization activity of VopX (A33_1663) in AM-19226 was also stated by Alam et al. [102],
and a contradictive result was reported by Chaand et al. [103]. Meanwhile, the T3SS is
important for toxicity and toxin transfer; therefore, this part is explained further in stage 4.

5. Stage 4: Virulence Factor Expression

In contrast to the V. cholerae serovars O1 and O139, which express cholera toxin (CTX)
and its accessory toxins within the CTX phage, various toxins can be produced by NOVCs
after colonization of the small intestine. Currently, four secreted proteins with direct toxic
effects shown on cell lines and in animal models have been identified: the hemolysin HlyA,
repeats-in-toxin (RTX), heat-stable enterotoxin (ST), and cholix toxin (ChxA) [104–107]. The
expression of these toxins leads to an alteration in the morphology of epithelial cells, cell
damage, and subsequently to the death of the cells [35]. Similar to V. cholerae serotypes
O1 and O139, whose virulence is supported by genetic features on VPI-1 and VPI-2 [1],
VPI-2 was also identified in NOVC environmental isolates from food and water [30,31]. In
addition to the toxin genes, the T3SS also plays an important role for NOVC toxicity by
secreting virulence factors from the bacteria to the host cells when TCP is missing in the
genome [94]. All mechanisms and genes involved in stage 4 are shown in red in Figure 1.
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5.1. Toxin Expression

The hemolysin HlyA (also called V. cholerae cytolysin, VCC) could both lyse erythro-
cytes and form beta barrel pores on epithelial cells [104], followed by cytoskeleton damage,
cell lysis, and diarrhea. The iron extracted from the cells in this way serves as a nutrient
supplier for NOVCs [108,109]. The transcription of hlyA in V. cholerae is regulated by QS
molecules, which regulate hlyU, resulting in the highest transcription of hlyA in the early
mid-logarithmic growth phase [110].

Repeats-in-toxin (RTX) is a large protein (around 3500 to 5300 amino acids) widely
present in many bacteria which could cause tight junction loss in lung and intestinal ep-
ithelial cells [111]. The in vivo toxicity of RTX in hlyA-harboring V. cholerae tends to present
as innate immune evasion rather than diarrhea [105,112]. Three major functional units of
RTX were found in V. cholerae O1 El Tor N16961. The actin cross-linking domain (ACD)
is responsible for cytoskeleton disruption, the Rho GTPase-inactivation domain (RID) for
cell rounding, and the alpha/beta hydrolase domain (ABH) for autophagic/endosomal
trafficking inhibition. An additional cysteine protease domain is responsible for effectors’
autoprocessing and distribution. The combination of RID and ABH could reduce the in-
flammatory response caused by ACD [113]. Compared to the El Tor O1 serogroup, NOVCs
have more variations in their RTX domain [114]. A nucleotide cluster with five ORFs is
responsible for the coding of RTX: the encoding toxin gene rtxA, the activator gene rtxC,
and the associated ABC transportation gene cluster rtxBDE [113]. The whole RTX complex
was identified in 61% of NOVCs in our previous studies [30,31].

Heat-stable enterotoxin (ST, encoded by stn) is a known toxin in E. coli and was also
identified in the genome of NOVC [106,115]. The in vivo toxicity was attributed to fluid
accumulation in mouse intestine [106]. The toxin consists of two domains, STa and STb. STa
leads to anion secretion and calcium absorption, while STb could decrease the expression
of the tight junction proteins ZO-1 and occludin [116].

The cholix toxin ChxA interacts with prohibitin and could therefore cause mitochon-
drial dysfunction and cytoskeletal remodeling. It is able to bind the lipoprotein receptors
of the intestinal epithelial cells and inhibit protein synthesis by ADP-ribosylation. The
in vivo toxicity presented as liver damage and final death through mouse assay [107,117].
Tangestani et al., 2020, also confirmed the presence of cholix toxin in NOVC [17].

5.2. Type III Secretion System (T3SS)

The T3SS plays an important role in NOVC after the colonization of intestinal epithelial
cells in toxicity. Dziejman et al., 2005, suggested using a mouse model that the T3SS-
positive NOVC strain AM-19226 causes mouse death in contrast to a T3SS-negative mutant
strain [94]. The protein VopF contains three WASP homology 2 (WH2) actin-binding
domains, which could remodel the actin cytoskeleton in eukaryotic host cells. The actin
polymerization disorder triggered by VopF is essential for T3SS-mediated intestinal cell
damage in AM-19226 [118]. The mechanism might be that VopF could induce cortical actin
depolymerization and aberrant localization of the tight junction protein ZO-1, resulting in
loosening of the tight junction between intestinal epithelial cells and causing diarrhea [119].
However, Miller et al., 2016, observed that cell death and disruption of the tight junction
are independent of VopF [120]. It has been suggested that VopE (A33_1662) impairs
mitochondrial dynamics and stimulates the innate immune pathway [121]. Furthermore,
the in vivo toxicity of VopE was verified in an infant rabbit and mouse model [122]. The
regulators VttRA and VttRB, which show homology with ToxR, can control T3SS activity
both during colonization and pathogenesis [123].

Bacteremia Caused by NOVCs

When NOVCs enter and colonize the small intestine (as described in stages 1 to 3),
they could enter the bloodstream through the portal vein and the intestinal lymphatic
system [8,9]. The immune system, macrophages, and specific antibodies are involved in
the blood defense system, indicating that genes for immune modulation are important for
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NOVCs to cause blood infections [124,125]. Hemolytic properties, such as the presence of
HlyA, suggest their ability to enter the bloodstream and lyse erythrocytes [104]. RTX could
protect NOVCs from neutrophil-dependent clearance [105]. Biofilms could protect NOVCs
from leukocytes of the human immune system. Additionally, NOVCs can form biofilms
on the eukaryotic cell surface, causing a concentration of MshA and HapA, which could
increase the local hemolysin level lysing immune cells [126].

6. Stage 5: Detachment from the Epithelial Cells

At the end of the infection cycle, NOVCs return to the environment through watery
to bloody diarrhea. The symptoms of infection can be closely similar to those of the
cholera caused by the serotypes O1 and O139. The starvation/stationary phase alternative
sigma factor RpoS positively controls the expression of HapR, a gene involved in flagella
assembly and chemotaxis. This enables the detachment and migration of NOVCs from
the epithelial cells into the lumen of the intestine [127]. After the activation by RpoS,
the hemagglutinin protease HapA encoded by hapA is responsible for detachment from
intestinal epithelial cells [75]. Apart from the mucinase activity, HapA could degrade
GbpA, the non-specific adhesin in colonization [128]. Furthermore, a set of potential biofilm
degradation genes were also identified by Bridges et al., 2020 [129]. These genes include
ribosome-associated GTPase encoded by bipA; c-di-GMP phosphodiesterases encoded by
cdgG, cdgI, rocS, and mbaA; a polyamine transporter encoded by potD1; a peptidase encoded
by lapG; a polysaccharide lyase encoded by rbmB; and a chemotaxis regulator encoded by
cheY3. All genes were controlled by the two-component system dbfS/dbfR [129]. All the
mentioned mechanisms and genes involved in stage 5 are shown in blue in Figure 1.

7. Multifunctional Regulation System

NOVCs have evolved several regulators to ensure the expression of genes that lead to
successful colonization of the intestinal tract. In addition, NOVCs have evolved a number
of adaptive mechanisms to adapt to both the environment and the human host as well as
to the transition between host and environment [34]. One such multifunctional regulation
system is quorum sensing. By cell-to-cell communication, NOVC is able to adjust the cell
density. Three QS pathways through different chemical signals have evolved: cholera
autoinducer 1 (CAI-1), autoinducer 2 (AI-2), and 3,5-dimethylpyrazin-2-ol (DPO) [130–132].
The downstream genes of CAI-1 and AI-2 are cqsS and luxPQ, respectively, followed by
luxO, aphA, and hapR (Figure 1) [133]. DPO is the third QS signal mechanism, which can be
sensed by vqmA [134], followed by the release of the small molecule vqmR to downregulate
rtxA and vpsR [135,136].

Two-component systems are another set of regulators with a wide range of functions.
Within the two-component system varS/varA, a receptor for QS and environmental sig-
nals represents, together with its downstream gene csrA, a multifunctional regulator in
biofilm regulation, iron metabolism, virulence gene expression, and motility [80,137,138].
Another two-component system is vprA/vprB, which is involved in polymyxin and bile
resistance [139], which also demonstrated a mutant strain showing colonization failure in
host intestine in a mouse model. The gene set vxrA/vxrB could upregulate T6SS expression
and biofilm formation [140,141]. The expression of phoR/phoB is activated by phosphate lim-
itation, followed by repression of biofilm-related genes and upregulation of motility [142].
The qseB/qseC gene set is a receptor of the hormones epinephrine and norepinephrine and
could affect bacteria motility through triggering pomB expression [143,144]. To adapt to
oxygen-poor conditions, acrB/acrA could upregulate toxT and enhance biofilm formation
and ROS resistance [145]. chiS is both the monitor and regulator of (ClcNac)2, which is
important for intestinal epithelial cell adherence and gut fluid accumulation [146,147].

Two global regulators are histone-like nucleoid structuring protein (HNS) and cyclic
AMP-activated global transcriptional regulator (cAMP-CRP). HNS acts as a mediator at the
late stage of infection with a repressive effect on a large number of virulence-associated
genes such as hemolysin hlyA [148], repeat-in-toxin rtxA [149], Vibrio polysaccharide
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vps [51], and the T6SS [150], while it could also promote motility and the detachment-
dependent protein HapA [151]. The global regulator CRP is the receptor of cAMP, the
secondary messenger, and acts as a key regulator of many genes in response to lifestyle
changes, including the genes rtxBDE and hlyA [152]. Moreover, CRP represses biofilm
formation by repressing the genes vpsR, vpsT, and vpsL and, at the same time, activating
the high cell density regulator HapR [153].

8. Schematic Infection Pathway of NOVC

Based on the research mentioned above, a schematic map of virulence-associated
genes in NOVC was established and is summarized in Figure 1.

9. Conclusions

As this review article shows, the oral infection of human hosts by pathogenic NOVC
is a complex process that depends on the infectivity of the bacterial cells and their ability to
survive the harsh conditions in the host until they return to the environment.

It is known that the virulence profile of NOVCs varies, but among them, there are
strains expressing all or most of the virulence genes and regulatory systems described in
this review article, possibly leading to a pathogenesis ranging from self-limiting diarrheal
diseases to cholera-like symptoms and/or bacteremia. Thus, this review article provides an
overview of a variety of virulence-associated genes and regulatory systems supporting the
understanding of how and why foodborne NOVCs can cause infections.

Supplementary Materials: The following supporting information can be downloaded at: https:
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