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Simple Summary: Boar sperm is highly sensitive to reactive oxygen species (ROS) during the
freezing–thawing process. κ-Carrageenan is a sulfated polysaccharide from seaweed reported to
possess substantial antioxidant activities. However, the influence of κ-Carrageenan on porcine sperm
cryo-survival remains to be clarified. Therefore, different concentrations of 0 (control), 0.2, 0.4,
0.6, and 0.8 mg/mL κ-Carrageenan were added to the freezing diluent. Sperm kinematics were
assessed (CASA software) immediately after thawing (AT) and post-incubation for 120 min. Viability,
acrosome integrity, lipid peroxidation, and intracellular caspase activities were measured AT using
SYBR-14/PI, PSA/FITC, the MDA assay, and a commercial kit, respectively. The results indicated that
the addition of κ-Carrageenan to the extender could enhance the quality of frozen–thawed (FT) boar
sperm through its influence on membrane stability, mitochondrial potential, and reducing oxidative
stress. Furthermore, 0.2 mg/mL κ-Carrageenan was revealed to be the optimal concentration for FT
sperm quality.

Abstract: κ-Carrageenan is a sulfated polysaccharide from red seaweed with substantial antioxidant
activities. This study aimed to investigate the effect of κ-Carrageenan treatment on frozen–thawed
(FT) porcine semen quality. Therefore, the spermatozoa were diluted and cryopreserved in a freezing
extender supplemented with 0 (control), 0.2, 0.4, 0.6, and 0.8 mg/mL κ-Carrageenan. Sperm kine-
matics were assessed immediately after thawing (AT) and post-incubation for 120 min. The viability,
acrosome integrity, lipid peroxidation, mitochondrial membrane potential (MMP), and intracellular
caspase activity were measured AT. The results indicated that 0.2 mg/mL κ-Carrageenan increased
total and progressive motility AT and post-incubation for 120 min (p < 0.05). Moreover, the viable
sperm percentage and MMP after 0.2 mg/mL treatment were higher than those after control and
other κ-Carrageenan concentration treatments. The proportion of acrosome-intact spermatozoa was
significantly higher after 0.2 and 0.4 mg/mL κ-Carrageenan treatment than that after control and
other κ-Carrageenan concentration treatments. The intracellular caspase activity was not signifi-
cantly different among the experimental groups. However, the MDA concentration after 0.2 mg/mL
κ-Carrageenan treatment was lower (p < 0.05) than that after the control treatment. Taken together,
adding κ-Carrageenan to the porcine semen freezing extender improved the FT sperm quality mainly
by influencing membrane stability and protecting against oxidative stress.

Keywords: κ-Carrageenan; boar; cryopreservation; cryoinjury; artificial insemination; polysaccharides

1. Introduction

Sperm cryopreservation is considered the most efficient approach for the long-term
storage of spermatozoa and genetic material preservation in most domestic animals [1,2].
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However, the use of frozen–thawed (FT) semen for commercial swine artificial insemi-
nation (AI) is limited because of its lower fertility outcomes than that of extended fresh
semen. As boar sperm are highly susceptible to cold shock, the viability of the sperm
cells is substantially reduced when exposed to temperatures below 15 ◦C [3,4]. Therefore,
continuous efforts are being made to optimize the FT protocols. The roles of additives, such
as sugars [5,6], proteins [7], cryoprotectants [8,9], and antioxidants [10,11], have also been
studied. Despite all such efforts, this procedure has not yet been as effective in swine as it
has in other species, and only 1% of AI is accompanied by cryopreserved sperm [12,13].

Endogenous antioxidants are insufficient to protect the spermatozoa from oxidative
stress during cryopreservation. The FT protocol reduces seminal plasma enzymatic and
non-enzymatic antioxidant content owing to reconstitution processes before storage [14,15].
Furthermore, the physical and chemical conditions to which spermatozoa are exposed
during cryopreservation trigger reactive oxygen species (ROS) accumulation. Excess ROS
generation during FT is detrimental to sperm motility and fertilization ability [16]. More-
over, the high amount of unsaturated fatty acids in porcine spermatozoa makes them highly
sensitive to lipid peroxidation and fatty acid disruption in the plasma membrane [17,18].
Therefore, antioxidant supplementation is a reasonable strategy for mitigating the negative
effects of cryopreservation and ultimately improving sperm quality and fertility. Indeed,
the inclusion of antioxidants such as a-tocopherol [19], glutathione [20], L-cysteine [21],
and rosmarinic acid [22] during sperm cryopreservation has been shown to benefit boar
sperm after freezing–thawing.

Carrageenan is a natural sulfated polysaccharide extracted from the Rhodophyceae
family of red seaweeds [23,24]. It has been used as a food additive and has several potential
pharmaceutical applications, such as antioxidant, anticancer, and immunomodulatory
activities [23,25,26]. Furthermore, κ-Carrageenan improves dog [27] and rooster [28] sperm
cryo-survival through diminishing intracellular ROS, modulating apoptosis, and upreg-
ulating endogenous antioxidant enzymatic activities. Despite these beneficial effects of
κ-Carrageenan, it has not been used for porcine semen cryopreservation. This study aimed
to explore the effect of different κ-Carrageenan concentrations in the freezing extender on
post-thaw semen quality parameters of porcine spermatozoa.

2. Materials and Methods
2.1. Reagents and Extender Preparation

Equex Paste STM was purchased from Minitube (Munich, Germany). The solutions
were prepared using high-purity water procured from ProGen (Genetrone Biotech, Jeonju,
Korea). All other chemicals used in this study were obtained from Sigma-Aldrich (St. Louis,
MO, USA) unless otherwise indicated.

The freezing extender used in this experiment was BF5 extender [29], which is com-
posed of 12 g/L TES, 2 g/L Trizma Base, 32 g/L D(+) glucose, 0.7% (v/v) OEP (Equex),
0.02 g/L gentamycin sulfate, and 20% (v/v) egg yolk. Extender (2) was composed of
extender 1 and 4% (v/v) glycerol. Beltsville thawing solution (BTS) consists of 37 g/L D(+)
glucose, 1.25 g/L Na-EDTA, 6 g/L sodium citrate dihydrate, 1.25 g/L sodium bicarbonate,
0.75 g/L potassium chloride, 0.6 g/L penicillin, and 1 g/L streptomycin [30].

2.2. Semen Collection

Semen was collected from Duroc boars (N = 8) of proven fertility belonging to a
local livestock AI center (KPG, Gimje, Korea) using the gloved-hand method. Sperm-rich
fractions of ejaculates with more than 75% motility and 80% morphologically normal
spermatozoa were used in this study (N = 24) [20,30]. Eligible samples were diluted
(2.5 × 109 ± 0.5 spermatozoa/90 mL) in BTS. The diluted semen was cooled and maintained
at 17 ◦C for shipment to the laboratory within 1 h.
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2.3. Sperm Cryopreservation Process

Semen samples were cryopreserved using a modified two-step freezing protocol as
described previously [31,32]. Briefly, the diluted semen was transferred to 15 mL centrifuge
tubes and cooled at 17 ◦C for at least 2 h and later centrifuged at 2000 rpm for 7 min at
17 ◦C, whereupon the supernatant was discarded and the sperm pellet was resuspended in BTS.
The sample was then centrifuged at 2000 rpm for 7 min at 17 ◦C. The supernatant was removed,
and the sperm pellet was resuspended with extender 1 to a concentration of 2 × 108 sperm/mL.
The extended semen was cooled at 4 ◦C for 60 min and mixed with extender 2 (1:1 v/v). Samples
were then loaded into 0.5 mL straws (imv Technologies, Laigle, France), sealed, and incubated
at 4 ◦C for 25 min. The straws were placed horizontally in a polystyrene box 4 cm above liquid
nitrogen vapor for 20 min and then plunged in liquid nitrogen for storage.

2.4. Evaluation of FT Sperm Kinematics

FT sperm kinematics was assessed immediately after thawing (AT) and post-incubation
for 120 min using Sperm Class Analyzer (SCA) software (Version 5.1; Microptic, Barcelona,
Spain). Briefly, the samples were thawed at 38 ◦C for 25 s and then diluted in BTS (1:4
v/v). Then, 2 µL of diluted semen were loaded into a pre-warmed counting chamber (Leja,
Nieuw Vennep, The Netherlands). Samples were kept at 24 ◦C for 2 h before being analyzed
again. For each analysis, at least 1500 spermatozoa were tested using standard settings
(38 ◦C, 60 frames/s). The percentages of total motile spermatozoa (TM, %), progressive
motile spermatozoa (PM, %), and mucus penetration (MP, %) were determined. The kine-
matic parameters measured for each sperm included curvilinear velocity (VCL, µm/s),
straight-line velocity (VSL, µm/s), average path velocity (VAP, µm/s), and amplitude of
lateral head displacement (ALH, µm). This experiment was repeated six times.

2.5. Evaluation of Sperm Viability

The viability of FT sperm was evaluated using the LIVE/DEAD® Sperm Viability Kit
(ThermoFisher, Waltham, MA, USA) according to the previously described method [33].
In short, 5 µL SYBR-14 was added to 50 µL sperm suspension and incubated for 5 min
in the dark. Then, 5 µL PI was added, and the mixture was incubated again for 5 min.
Smears from each group were observed under a fluorescence microscope (Axio, Carl Zeiss,
Oberkochen, Baden-Württemberg, Germany) and classified as live (green fluorescent) or
dead (red fluorescent) spermatozoa. This experiment was repeated six times.

2.6. Assessment of Acrosome Status

Sperm acrosome integrity was evaluated using a previously described fluorescence
staining method [33]. Briefly, thin smears were prepared from the FT semen of each
group and air-dried. The samples were fixed with methanol and stained with fluorescein
isothiocyanate (FITC)-labeled Pisum sativum agglutinin (PSA). The stained smears were
covered with Parafilm, incubated for 20 min, rinsed with distilled water, and dried. At least
200 sperm per sample were assessed under a fluorescence microscope (Axio, Carl Zeiss) to
determine the percentage of sperm with intact and reacted acrosomes. This experiment
was repeated six times.

2.7. Evaluation of Sperm Mitochondrial Activity

Rhodamine 123 (Rh123) and PI staining were used to measure FT sperm mitochondrial
activity, as described previously [34]. Briefly, 5 µL R123 solution (0.01 mg/mL) and 5 µL
PI were mixed with 250 µL diluted sample and incubated in the dark at 37 ◦C for 15 min.
Then, sperm smears were prepared and examined under a fluorescence microscope (Axio, Carl
Zeiss). PI-negative and Rh123-positive sperm were identified as live sperm with high MMP.

2.8. Measurement of Intracellular Caspase Activities

The Casp-GLOW Red Active Caspase Staining Kit (Bio Vision, Milpitas, CA, USA)
was used to assess the intracellular caspase (caspase-1, -3, -4, -5, -7, -8, and -9) activity in
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FT sperm as described previously [35] with some modifications. Briefly, FT semen was
diluted (1:4) in phosphate-buffered saline. Then, 300 µL sperm suspension containing
1 µL Red–VAD–FMK solution was incubated at 38 ◦C for 40 min. Sperm were washed by
centrifugation at 1500 rpm for 3 min in 500 µL assay–wash buffer. The sperm sediment was
resuspended to a final concentration of 2 × 107 sperm/mL in an assay–wash buffer before
being assessed under a fluorescence microscope. Sperm with bright red fluorescence in the
midpiece and tail were considered positive for caspase activity. Approximately 150 sperm
were analyzed per trial in each experimental group.

2.9. Measurement of Lipid Peroxidation

The degree of lipid peroxidation in FT samples was evaluated using the Lipid Per-
oxidation (MDA) Colorimetric/Fluorometric Assay Kit (BioVision, Mountain View, CA,
USA) following the kit’s instructions. Briefly, FT semen was centrifuged at 1500 rpm for
3 min, and the supernatant was discarded. The number of sperm cells was adjusted to
2 × 107/mL. The sperm pellets were dissolved in 300 µL MDA Lysis Buffer, centrifuged
(13,000× g, 10 min), and 200 µL supernatant was incubated with 600 µL TBA reagent for
60 min at 95 ◦C. Next, the tubes were cooled to room temperature for 10 min in an ice bath,
and the absorbance was measured at 532 nm using a spectrophotometric microplate reader.
This experiment was repeated six times, and the resultant MDA concentration is given as
nmol/2 × 107 sperm.

2.10. Statistical Analysis

Each experiment was repeated four times, unless otherwise mentioned in the above
sections, and the results were averaged. Data were analyzed using the SAS software,
version 8.4 (SAS Institute Inc., Cary, NC, USA). The averaged data were compared using a
one-way analysis of variance, followed by Duncan’s multiple range test. The results are
shown as mean ± standard error, and p < 0.05 was considered significant.

3. Results
3.1. Effects of κ-Carrageenan on Post-Thawing Kinematic Parameters

The percentage of total and progressive motile sperm was significantly higher in the
0.2 mg/mL κ-Carrageenan-treated group than those in the control and 0.6 and
0.8 mg/mL κ-Carrageenan-treated groups (p < 0.05) at thawing (AT) and post-incubation
for 120 min. Further, 0.2 and 0.4 mg/mL κ-Carrageenan treatment increased the percentage
of motile spermatozoa after thawing for 120 min. However, the 0.8 mg/mL κ-Carrageenan-
treated group exhibited significantly lower kinematic patterns than the control and other
κ-Carrageenan-treated groups (Figure 1, Table 1).

Table 1. Effects of κ-Carrageenan on post-thawing sperm kinematics.

Group (mg/mL) MP (%) VCL (µm/s) VAP (µm/s) VSL (µm/s) ALH (µm)

Control–AT 12.77 ± 1.90 ab 50.43 ± 2.98 ab 38.67 ± 1.38 a 31.13 ± 1.51 ab 1.82 ± 0.15 ab

Post 120 min 6.92 ± 1.91 a 38.73 ± 4.73 a 31.51 ± 4.68 a 25.73 ± 5.15 a 1.42 ± 0.15 a

0.2–AT 18.69 ± 2.01 a 56.03 ± 1.66 a 43.67 ± 1.59 a 34.41 ± 2.14 a 1.96 ± 0.10 a

Post 120 min 9.58 ± 3.55 a 40.72 ± 5.88 a 32.76 ± 5.63 a 26.83 ± 5.94 a 1.49 ± 0.16 a

0.4–AT 15.37 ± 1.86 ab 50.87 ± 1.51 ab 40.26 ± 1.43 a 32.46 ± 1.50 ab 1.78 ± 0.07 ab

Post 120 min 9.70 ± 1.60 a 45.73 ± 6.75 a 34.33 ± 3.63 a 27.93 ± 4.39 a 1.51 ± 0.06 a

0.6–AT 11.56 ± 2.10 bc 48.85 ± 1.56 b 39.42 ± 1.91 a 31.69 ± 2.40 ab 1.65 ± 0.08 b

Post 120 min 3.31 ± 0.94 a 37.49 ± 4.93 a 28.48 ± 3.89 a 22.14 ± 3.96 a 1.47 ± 0.18 a

0.8–AT 6.42 ± 1.96 c 43.03 ± 1.86 c 33.39 ± 2.20 b 26.25 ± 2.54 b 1.58 ± 0.07 b

Post 120 min 2.95 ± 1.11 a 37.56 ± 4.06 a 29.71 ± 3.65 a 23.78 ± 4.34 a 1.41 ± 0.09 a

AT: at thawing. MP, mucus penetration; VCL, curvilinear velocity; VAP, average path velocity; VSL, straight-line
velocity; ALH, amplitude of lateral head displacement. Values indicate the mean ± standard error of the mean
(SEM). Different superscripts within the same column indicate significant differences (p < 0.05).
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3.2. Effects of κ-Carrageenan on FT Sperm Viability

The proportion of viable spermatozoa was significantly higher in 0.2 mg/mL κ-
Carrageenan-treated sperm than that in control and other κ-Carrageenan-treated sperm
(p < 0.05, Figure 2). However, there were no significant differences between the con-
trol, 0.4, and 0.6 mg/mL κ-Carrageenan-treated groups. Further, the 0.8 mg/mL κ-
Carrageenan-treated group had a lower proportion of viable spermatozoa than the other
groups (p < 0.05).
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3.3. Effects of κ-Carrageenan on Post-Thawing Acrosome Integrity

The percentage of acrosome-intact spermatozoa was significantly higher in the 0.2 and
0.4 mg/mL κ-Carrageenan-treated groups than that in other groups (Figure 3). Moreover,
the 0.2 mg/mL κ-Carrageenan-treated group had a higher percentage of acrosome-intact
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spermatozoa than the 0.4 mg/mL κ-Carrageenan-treated group (p < 0.05). Interestingly,
there was no difference in the percentage of acrosome-intact spermatozoa between the
0.6 mg/mL κ-Carrageenan-treated group and the control. However, it was significantly
lower in the 0.8 mg/mL κ-Carrageenan-treated group than in the other groups.
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boar spermatozoa. Different alphabets above the bar indicate statistical differences (p < 0.05)
among treatments.

3.4. Effects of κ-Carrageenan on FT Sperm Mitochondrial Activity

The proportion of FT sperm with active mitochondria was significantly higher in 0.2
and 0.4 mg/mL κ-Carrageenan-treated sperm than in the control (p < 0.05). However, it
was not significantly different between the control and 0.6 mg/mL κ-Carrageenan-treated
groups. Furthermore, the 0.8 mg/mL κ-Carrageenan-treated group had a lower proportion
(p < 0.05) of active mitochondria than the other groups (Figure 4).
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3.5. Effects of κ-Carrageenan on Intracellular Caspase Activities

In contrast to the improved FT sperm quality parameters after κ-Carrageenan treat-
ment, the intracellular caspase activities in the presence or absence of κ-Carrageenan did
not differ statistically (p > 0.05; Figure 5).
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3.6. Effects of κ-Carrageenan on Lipid Peroxidation

As shown in Figure 6, MDA concentrations were lower (p < 0.05) in the 0.2 mg/mL
κ-Carrageenan-treated group than those in the control group.
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4. Discussion

Freezing–thawing results in a deterioration of sperm motility and fertility due to ROS
accumulation and oxidative damage. The consequences of cryoinjury include impaired
passage and poor survival of spermatozoa in the female reproductive tract [16,36]. Thus,
strategies for ameliorating stress by including antioxidants in extenders for sperm cryop-
reservation have been investigated. In this study, we evaluated the effects of κ-Carrageenan
supplementation in freezing extenders on post-thaw sperm quality. The results indicated
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that adding κ-Carrageenan to the semen extender improves post-thaw semen quality
by enhancing motion parameters, maintaining membranous integrity and mitochondrial
functionality, and reducing oxidative stress in boar spermatozoa.

κ-Carrageenan, a sulfated polysaccharide from seaweed, possesses antioxidant ac-
tivities [23,37]. The mechanism through which κ-Carrageenan protects against oxidative
stress is related to its chemical structure. The sulfate content of this algal polysaccharide
is responsible for neutralizing free radicals, a process that has been thoroughly reviewed
previously [37,38]. However, to the best of our knowledge, no previous study has re-
ported the effects of κ-Carrageenan on cryopreserved boar sperm. κ-Carrageenan at
concentrations of 0.2 mg/mL and 0.4 mg/mL seems to provide the best effect on sperm
functionality after freezing–thawing. In the present study, spermatozoa treated with
0.2 mg/mL κ-Carrageenan showed improved kinematic parameters and maintained mem-
branous integrity as well as mitochondrial potential. The importance of different sperm
kinematic parameters and their correlation with fertilization capacity has been empha-
sized in previous studies [39,40]. Nevertheless, functional membranes and mitochondria
are crucial for sperm motility, acrosome reactions, capacitation, and fertilization [41,42].
Freeze–thaw stress compromises the functional integrity of the plasma membrane due to
ROS-mediated peroxidative damage. In addition, cryopreservation causes mitochondrial
damage and consequently causes loss of sperm motility due to ATP depletion. MMP
reflects mitochondrial activity and energy status and is correlated with sperm motility
and viability in several species [43,44]. In this study, adding κ-Carrageenan to the ex-
tender improved the membrane integrity of FT boar spermatozoa. These findings are
consistent with those of previous studies using canine [27] and rooster [28] semen samples.
Such plant polysaccharide-promoted cryo-survival has been reported in boar [45] and
human [46] spermatozoa.

Polyunsaturated fatty acids (PUFAs) play a fundamental role in membrane structure
and function. However, a high content of PUFA makes the sperm membrane suscepti-
ble to lipid peroxidation in the presence of ROS [47,48]. Sperm cryopreservation is also
associated with ROS accumulation, as ROS attacks and destroys vital macromolecules
such as proteins, lipid membranes, and DNA, thus impairing sperm function [49,50]. Fur-
thermore, dead and damaged sperm can trigger lipid peroxidation [36]. In this study,
lipid peroxidation in sperm was significantly reduced in the 0.2 mg/mL κ-Carrageenan
treated group than in the control. This finding concurs with the report of [28], which
demonstrated the MDA-lowering effect following the treatment of rooster sperm freezing
extender with κ-Carrageenan. Furthermore, the in vitro and in vivo antioxidant capaci-
ties of sulfated polysaccharides derived from seaweeds in different cell lines have been
emphasized [38,51–53]. Taken together, adding κ-Carrageenan suppressed lipid peroxida-
tion, protecting the plasma membrane, acrosome, and MMP during the FT process.

The presence of caspases in spermatozoa is one of the best cellular apoptosis mark-
ers, and their activation substantially influences the apoptotic pathway [54,55]. Sperm
cryopreservation induces changes related to apoptosis, such as phosphatidylserine exter-
nalization as well as DNA fragmentation generation and exacerbation [56]. Indeed, DNA
fragmentation is correlated with apoptotic cell death, decreased semen quality, and im-
paired fertilization potential [50,57]. In this study, κ-Carrageenan treatment during sperm
cryopreservation did not inhibit caspase activity. These findings are in line with those
of Zribi et al. (2012) and Thomson et al. (2009) [58,59], who suggested that the increase
in sperm DNA damage during freeze–thaw cycles is mainly mediated through oxidative
stress rather than the activation of caspases and apoptosis. However, oxidative stress can
induce mitochondrial DNA damage and, in a loop manner, generate secondary ROS that
activate stress response genes, eventually leading to apoptosis [57]. Furthermore, other
mechanisms responsible for cryopreservation damage, including chemical and physical
alterations to which spermatozoa are exposed during FT, could also disrupt the sperm
structure [60,61]. Taken together, the results of this study point to the possibility of a
caspase-independent apoptosis pathway; however, further studies on the appropriate
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apoptosis-inducing factors at different steps of the sperm freeze–thaw process would be
helpful for clearly understanding and ultimately improving FT sperm quality.

5. Conclusions

In conclusion, supplementation of the extender with κ-Carrageenan improved the
freezability of porcine spermatozoa. Adding 0.2 mg/mL κ-Carrageenan to the extender
protects post-thaw sperm kinematics, membrane integrity, and lipid peroxidation. There-
fore, 0.2 mg/mL κ-Carrageenan may be recommended for supplementation in a semen
extender for boar semen cryopreservation.
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13. Jovičić, M.; Chmelíková, E.; Sedmíková, M. Cryopreservation of boar semen. Czech J. Anim. Sci. 2020, 65, 115–123. [CrossRef]
14. Walczak-Jedrzejowska, R.; Wolski, J.K.; Slowikowska-Hilczer, J. The role of oxidative stress and antioxidants in male fertility.

Cent. Eur. J. Urol. 2013, 66, 60–67. [CrossRef] [PubMed]
15. Agarwal, A.; Virk, G.; Ong, C.; du Plessis, S.S. Effect of Oxidative Stress on Male Reproduction. World J. Men’s Health 2014, 32,

1–17. [CrossRef] [PubMed]
16. Alahmar, A.T. Role of Oxidative Stress in Male Infertility: An Updated Review. J. Hum. Reprod. Sci. 2019, 12, 4–18. [CrossRef]

[PubMed]
17. Mandal, R.; Badyakar, D.; Chakrabarty, J. Role of Membrane Lipid Fatty Acids in Sperm Cryopreservation. Adv. Androl. 2014,

2014, 190542. [CrossRef]
18. Yeste, M. Recent Advances in Boar Sperm Cryopreservation: State of the Art and Current Perspectives. Reprod. Domest. Anim.

2015, 50 (Suppl. S2), 71–79. [CrossRef] [PubMed]
19. Jeong, Y.J.; Kim, M.K.; Song, H.J.; Kang, E.J.; Ock, S.A.; Kumar, B.M.; Balasubramanian, S.; Rho, G.J. Effect of alpha-tocopherol

supplementation during boar semen cryopreservation on sperm characteristics and expression of apoptosis related genes.
Cryobiology 2009, 58, 181–189. [CrossRef]

20. Estrada, E.; Rodríguez-Gil, J.E.; Rocha, L.G.; Balasch, S.; Bonet, S.; Yeste, M. Supplementing cryopreservation media with reduced
glutathione increases fertility and prolificacy of sows inseminated with frozen-thawed boar semen. Andrology 2014, 2, 88–99.
[CrossRef]

21. Kaeoket, K.; Chanapiwat, P.; Tummaruk, P.; Techakumphu, M. Supplemental effect of varying L-cysteine concentrations on the
quality of cryopreserved boar semen. Asian J. Androl. 2010, 12, 760–765. [CrossRef] [PubMed]

22. Luno, V.; Gil, L.; Olaciregui, M.; Gonzalez, N.; Jerez, R.A.; de Blas, I. Rosmarinic acid improves function and in vitro fertilising
ability of boar sperm after cryopreservation. Cryobiology 2014, 69, 157–162. [CrossRef] [PubMed]

23. Rocha de Souza, M.C.; Marques, C.T.; Guerra Dore, C.M.; Ferreira da Silva, F.R.; Oliveira Rocha, H.A.; Leite, E.L. Antioxidant
activities of sulfated polysaccharides from brown and red seaweeds. J. Appl. Phycol. 2007, 19, 153–160. [CrossRef] [PubMed]

24. Necas, J.; Bartosikova, L. Carrageenan: A review. Veterinární Medicína 2013, 58, 187–205. [CrossRef]
25. Ullah, S.; Khalil, A.A.; Shaukat, F.; Song, Y. Sources, Extraction and Biomedical Properties of Polysaccharides. Foods 2019, 8, 304.

[CrossRef] [PubMed]
26. Jiao, G.; Yu, G.; Zhang, J.; Ewart, H.S. Chemical Structures and Bioactivities of Sulfated Polysaccharides from Marine Algae. Mar.

Drugs 2011, 9, 196–223. [CrossRef] [PubMed]
27. Kim, E.; Almubarak, A.; Talha, N.; Yu, I.-J.; Jeon, Y. The Use of &kappa;-Carrageenan in Egg Yolk Free Extender Improves the

Efficiency of Canine Semen Cryopreservation. Animals 2022, 12, 88.
28. Li, W.; Appiah, M.O.; Zhao, J.; Liu, H.; Wang, J.; Lu, W. Effects of k-carrageenan supplementation or in combination with

cholesterol-loaded cyclodextrin following freezing-thawing process of rooster spermatozoa. Cryobiology 2020, 95, 36–43. [CrossRef]
[PubMed]

29. Pettitt, M.J.; Buhr, M.M. Extender Components and Surfactants Affect Boar Sperm Function and Membrane Behavior During
Cryopreservation. J. Androl. 1998, 19, 736–746. [CrossRef]

30. Park, S.-H.; Yu, I.-J. Effect of Antioxidant Supplementation in Freezing Extender on Porcine Sperm Viability, Motility and Reactive
Oxygen Species. J. Emb. Trans. 2017, 32, 9–15. [CrossRef]

31. Córdova, A.; Ducolomb, Y.; Jiménez, I.; Casas, E.; Bonilla, E.; Betancourt, M. In vitro fertilizing capacity of frozen-thawed boar
semen. Theriogenology 1997, 47, 1309–1317. [CrossRef] [PubMed]

32. Almubarak, A.M.; Kim, W.; Abdelbagi, N.H.; Balla, S.E.; Yu, I.-J.; Jeon, Y. Washing solution and centrifugation affect kinematics of
cryopreserved boar semen. J. Anim. Reprod. Biotechnol. 2021, 36, 65–75. [CrossRef]

33. Yu, I.; Leibo, S.P. Recovery of motile, membrane-intact spermatozoa from canine epididymides stored for 8 days at 4 ◦C.
Theriogenology 2002, 57, 1179–1190. [CrossRef] [PubMed]

34. Najafi, A.; Taheri, R.A.; Mehdipour, M.; Farnoosh, G.; Martínez-Pastor, F. Lycopene-loaded nanoliposomes improve the perfor-
mance of a modified Beltsville extender broiler breeder roosters. Anim. Reprod. Sci. 2018, 195, 168–175. [CrossRef] [PubMed]

35. Tatemoto, H.; Osokoshi, N.; Hirai, M.; Masuda, Y.; Konno, T.; Yamanaka, K. Addition of l-carnitine to the freezing extender
improves post-thaw sperm quality of Okinawan native Agu pig. Theriogenology 2021, 188, 170–176. [CrossRef] [PubMed]

36. Bansal, A.K.; Bilaspuri, G.S. Impacts of oxidative stress and antioxidants on semen functions. Vet. Med. Int. 2010, 2010, 686137.
[CrossRef] [PubMed]

37. Zhong, H.; Gao, X.; Cheng, C.; Liu, C.; Wang, Q.; Han, X. The Structural Characteristics of Seaweed Polysaccharides and Their
Application in Gel Drug Delivery Systems. Mar. Drugs 2020, 18, 658. [CrossRef] [PubMed]

38. Hentati, F.; Tounsi, L.; Djomdi, D.; Pierre, G.; Delattre, C.; Ursu, A.V.; Fendri, I.; Abdelkafi, S.; Michaud, P. Bioactive Polysaccha-
rides from Seaweeds. Molecules 2020, 25, 3152. [CrossRef] [PubMed]

39. Tesfay, H.H.; Sun, Y.; Li, Y.; Shi, L.; Fan, J.; Wang, P.; Zong, Y.; Ni, A.; Ma, H.; Mani, A.I.; et al. Comparative studies of semen
quality traits and sperm kinematic parameters in relation to fertility rate between 2 genetic groups of breed lines. Poult. Sci. 2020,
99, 6139–6146. [CrossRef]

40. Vizcarra, J.A.; Ford, J.J. Validation of the sperm mobility assay in boars and stallions. Theriogenology 2006, 66, 1091–1097. [CrossRef]

https://doi.org/10.4061/2011/396181
https://www.ncbi.nlm.nih.gov/pubmed/20871820
https://doi.org/10.17221/47/2020-cjas
https://doi.org/10.5173/ceju.2013.01.art19
https://www.ncbi.nlm.nih.gov/pubmed/24578993
https://doi.org/10.5534/wjmh.2014.32.1.1
https://www.ncbi.nlm.nih.gov/pubmed/24872947
https://doi.org/10.4103/jhrs.JHRS_150_18
https://www.ncbi.nlm.nih.gov/pubmed/31007461
https://doi.org/10.1155/2014/190542
https://doi.org/10.1111/rda.12569
https://www.ncbi.nlm.nih.gov/pubmed/26174922
https://doi.org/10.1016/j.cryobiol.2008.12.004
https://doi.org/10.1111/j.2047-2927.2013.00144.x
https://doi.org/10.1038/aja.2010.48
https://www.ncbi.nlm.nih.gov/pubmed/20601963
https://doi.org/10.1016/j.cryobiol.2014.07.002
https://www.ncbi.nlm.nih.gov/pubmed/25019219
https://doi.org/10.1007/s10811-006-9121-z
https://www.ncbi.nlm.nih.gov/pubmed/19396353
https://doi.org/10.17221/6758-VETMED
https://doi.org/10.3390/foods8080304
https://www.ncbi.nlm.nih.gov/pubmed/31374889
https://doi.org/10.3390/md9020196
https://www.ncbi.nlm.nih.gov/pubmed/21566795
https://doi.org/10.1016/j.cryobiol.2020.06.009
https://www.ncbi.nlm.nih.gov/pubmed/32598945
https://doi.org/10.1002/j.1939-4640.1998.tb02083.x
https://doi.org/10.12750/JET.2017.32.1.9
https://doi.org/10.1016/S0093-691X(97)00123-4
https://www.ncbi.nlm.nih.gov/pubmed/16728078
https://doi.org/10.12750/JARB.36.2.69
https://doi.org/10.1016/S0093-691X(01)00711-7
https://www.ncbi.nlm.nih.gov/pubmed/12041910
https://doi.org/10.1016/j.anireprosci.2018.05.021
https://www.ncbi.nlm.nih.gov/pubmed/29880233
https://doi.org/10.1016/j.theriogenology.2021.12.030
https://www.ncbi.nlm.nih.gov/pubmed/35031142
https://doi.org/10.4061/2011/686137
https://www.ncbi.nlm.nih.gov/pubmed/20871827
https://doi.org/10.3390/md18120658
https://www.ncbi.nlm.nih.gov/pubmed/33371266
https://doi.org/10.3390/molecules25143152
https://www.ncbi.nlm.nih.gov/pubmed/32660153
https://doi.org/10.1016/j.psj.2020.06.088
https://doi.org/10.1016/j.theriogenology.2006.02.048


Animals 2024, 14, 1387 11 of 11

41. Ritagliati, C.; Baro Graf, C.; Stival, C.; Krapf, D. Regulation mechanisms and implications of sperm membrane hyperpolarization.
Mech. Dev. 2018, 154, 33–43. [CrossRef] [PubMed]

42. Boguenet, M.; Bouet, P.-E.; Spiers, A.; Reynier, P.; May-Panloup, P. Mitochondria: Their role in spermatozoa and in male infertility.
Hum. Reprod. Update 2021, 27, 697–719. [CrossRef] [PubMed]

43. Amaral, A.; Lourenço, B.; Marques, M.; Ramalho-Santos, J. Mitochondria functionality and sperm quality. Reproduction 2013, 146,
R163–R174. [CrossRef] [PubMed]

44. Park, Y.-J.; Pang, M.-G. Mitochondrial Functionality in Male Fertility: From Spermatogenesis to Fertilization. Antioxidants 2021,
10, 98. [CrossRef] [PubMed]

45. Hu, J.-H.; Li, Q.-W.; Zhang, T.; Jiang, Z.-L. Effect of Gynostemma Pentaphyllum Polysaccharide on boar spermatozoa quality
following freezing–thawing. Cryobiology 2009, 59, 244–249. [CrossRef] [PubMed]

46. Yan, B.; Zhang, X.; Wang, J.; Jia, S.; Zhou, Y.; Tian, J.; Wang, H.; Tang, Y. Inhibitory effect of Lycium barbarum polysaccharide on
sperm damage during cryopreservation. Exp. Ther. Med. 2020, 20, 3051–3063. [CrossRef] [PubMed]
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