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Abstract: The increasing interest in digital twin technology, the digitalization of worn-out social
overhead capital (SOC), and disaster management services has augmented the usage of 3D spatial
models and information to manage infrastructure. In this study, a digital twin of a subterranean
utility tunnel was created, and spatial objects were identified using inbuilt image sensors. The novelty
lies in the development of a unique algorithm that breaks down the structure of the utility tunnel into
points, lines, and planes, identifying objects using a multimodal image sensor that incorporates light
detection and ranging (LiDAR) technology. The three main conclusions of this study are the following:
First, a digital twin of the utility tunnel was constructed using building information modeling
integrated with a geographic information system (BIM-GIS). Second, a method for extracting spatial
objects was defined. Third, image-sensor-based segmentation and a random sample consensus
(RANSAC) were applied. In this process, the supplementary algorithm for extracting and updating
3D spatial objects was analyzed and improved. The developed algorithm was tested using point
cloud data, showing easier object classification with more precise LIDAR data.

Keywords: digital twin; underground utility tunnel; building information modeling; multimodal
image sensor; geospatial feature extraction

1. Introduction

The increasing interest in digital twin technology, along with the digital transformation
of deteriorating social overhead capital (SOC) and disaster response services, has propa-
gated diverse three-dimensional spatial models in the management of facilities grounded
in 3D spatial data [1]. These virtual models are applied in sectors such as urban, disaster,
and facility management, necessitating the establishment and maintenance of both internal
and external spatial data [2]. However, existing spatial information services primarily focus
on external spaces, and data models have been primarily formulated to depict objects,
leading to insufficient property information and restrained spatial analysis capabilities [3].
Therefore, a data model that supports services using 3D interior space data and geographic
information system (GIS) technology is required. Such a model would provide visual
details about interior spaces and enable robust spatial analyses.

Underground utility tunnels are essential for urban infrastructure and housing and
for managing vital systems of a city, such as the power, communication, water supply,
and heating facilities in underground environments [4]. These tunnels help circumvent
recurrent excavations and the indiscriminate use of underground spaces for the upkeep
of these facilities, enhancing the urban landscape, mitigating disasters, maintaining road
structures, and ensuring smooth traffic flow [5]. Nevertheless, because these tunnels
encompass vital services, disasters within them can damage both underground and ground-
level spaces [6].
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Therefore, it is urgent to create digital twins of these underground utility tunnels to
provide disaster and structural safety management services. Recently, studies have begun to
apply machine learning to solve structural problems in underground tunnels [7,8]. Digital
twin technology, thus, digitalizes real-world designs, enabling the intelligent management
of aging underground utility tunnel systems.

2. Literature Review
2.1. Underground Facility Digital Twins and Structure Performance Analysis

Digital twin technology is a cutting-edge technique that creates virtual models of
physical processes, products, or services [9,10]. This model enables a real-time data analysis
and system monitoring, offering the opportunity to optimize efficiency, identify problems
preventively, and test potential solutions [11]. The applications of digital twin technology
in various sectors include the following:

- Manufacturing [12-14]: Digital twins create virtual models of machinery to anticipate
failures, schedule maintenance, and enhance quality control.

- Construction [15-17]: Through digital twins, buildings are virtually replicated to
optimize designs, reduce waste, and enhance safety by predicting hazards.

- Transportation [18-20]: Digital twins mirror real-life transport systems to optimize
traffic flow, reduce congestion, and improve safety by recreating accident scenarios.

- Healthcare [21,22]: Digital twins mimic patients” body parts to formulate personalized
treatment plans and educate healthcare professionals for various scenarios.

In particular, digital twins are extremely useful for underground facilities where
conventional visual inspections might be challenging or unfeasible. They offer the capacity
to track the structural integrity of these structures, monitoring aspects such as the stress
and strain on walls and various other elements. This is possible by setting up sensors
that can identify shifts in the structural activities, such as vibrations or movements. The
information obtained from these sensors is integrated into the digital twin, delivering a
precise depiction of structural dynamics.

Technologies such as imaging sensors and LiDAR are employed to assess the sturdi-
ness of structures such as buildings, bridges, and subterranean utility tunnels [23]. These
sensors are capable of identifying structural deformations and movements that may suggest
instability while also tracking alterations in structures over time to flag possible issues. Dig-
ital twins facilitate the visualization and analysis of the data gathered from these sensors,
enabling the prompt identification and prevention of potential structural collapses.

2.2. Geospatial Feature Extraction

Light detection and ranging (LiDAR) is a technology that can measure distances by
shooting light pulses and recording the time they require to bounce back [24]. It is often
used for creating accurate 3D maps or models, commonly in the form of point clouds
(datasets composed of 3D points representing the surfaces of objects). While identifying
changes in spatial entities, this involves comparing different scans or time frames of the
same location to detect changes. These include structural changes in a building, vegetation
growth or reduction, and shifts in land topography.

These 3D LiDAR data often must be processed using specialized software or libraries
to be analyzed. Two libraries commonly used for this purpose are the Point Cloud Library
(PCL) and Open3D.

- PCL (Point Cloud Library): This is a comprehensive, open-source library specifically
designed for the processing of 3D point cloud data [25]. It provides many features and
functions such as point filtering, surface normal or curvature estimation, disparate
point cloud alignment, and shape recognition. It can support a variety of formats,
making it suitable for various applications.

- Open3D: This is another open-source library aimed at processing 3D data. It is
known for its speed, and it provides easy-to-use pipelines for processing point clouds,
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meshes, and depth images [26]. Open3D also includes functions for 3D visualization,
3D reconstruction, and 3D registration (aligning different 3D data sets).

2.3. Finding Changes in 2D and 3D Spatial Objects

For 2D spatial entities, the primary techniques employed are segmentation and classi-
fication. These techniques can be described as follows:

- Segmentation: This process involves dividing an image into regions or segments that
correspond to objects or their parts [27]. In 2D, this is achieved based on x and y pixel
coordinates, disregarding depth (z) information.

- Classification: After segmentation, color information in the form of red, green, and
blue (RGB) values from each segment is used for classification [28]. Pixels or regions
are grouped into categories or classes based on their RGB values. An alternative
approach is using digital elevation model (DEM) data to assign z values to a 2D image,
providing a measure of depth or elevation.

The final step in evaluating changes is conducting a time-series analysis of the seg-
mented or classified data. This analysis involves the comparison of the same spatial entity
over multiple time points, looking for changes in its segmentation or classification.

For 3D spatial entities, the process starts with segmentation but differs in the subse-
quent steps [29]. Rather than classification, the data are partitioned further according to
pre-established rules that might be based on specific characteristics of the spatial entities,
such as size, shape, or relation to other entities. After the rule-based partitioning, the altered
(or current) and pre-existing 3D datasets are compared to identify changes. The use of
“rule-based” methods, as described, signifies that the rules for partitioning or categorizing
the data are not set and can be adapted based on the data or objectives of the analysis. They
can be optimized over time based on the accuracy of their results.

The primary objective of this study was to devise and implement scenarios for detect-
ing changes in spatial objects to forecast potential disasters and the expansion of under-
ground utility tunnels. For this, we used 3D LiDAR sensor data to analyze the spatial object
extraction algorithm. Additionally, software was developed to assess the performance of
the algorithm using simulated environments.

3. Methods
As shown in Figure 1, there were three steps in this study.

Step 1 Step 3

Digial twin application Algorithm Application

Implementing underground utility Classification of Underground Utility Multimodal sensor-based
tunnels as digital twins Tunnel Facilities into 3 Types displacement extraction algorithm

- Linear Object Extraction

- L!DAR Scan image - E‘!:u.ul Db]?ct Exh‘a:hc‘m Process - Plane Object Analysis
- LiDAR + GIS - Linear Object Extraction Process Obiect Displacement Value
- Digital twin model - Planar Object Extraction Process ] P

Derivation

Figure 1. Research methodology.

- Step 1: Underground Utility Tunnel Digital Twin: Create a virtual replica (digital
twin) of the underground utility tunnel to bridge the physical and digital worlds. This
involves using sensor data, 3D modeling, and simulation software to create a detailed
digital model for monitoring, planning, and a predictive analysis.

- Step 2: Classification of Tunnel Database: Classify the data collected about the under-
ground utility tunnels based on attributes like function, materials, location, and size.
Also, categorize the tunnels as point, linear, or planar objects.

Point objects represent specific locations, e.g., junctions or sensors.
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Linear objects have a length but a negligible width and height, e.g., pipelines or cables.
Planar objects have two dimensions (length and width), representing sections or larger
features within the tunnel.

- Step 3: Object Segmentation Algorithm: Apply object segmentation algorithms to the
digital twin of the underground utility tunnel to identify and distinguish different
elements within the model. This involves dividing the digital image into meaning-
ful segments for an easier analysis, enabling tasks such as identifying utility lines,
structural components, and sections of the tunnel to support decision making and
predictive maintenance.

3.1. Constructions of the Digital Twin of an Underground Utility Tunnel Based on BIM-GIS

Building information modeling (BIM) and geographic information systems (GIS)
are two powerful technologies that have been applied separately in many engineering
and construction projects. BIM creates detailed 3D models of a facility, including all its
components and their characteristics, while GIS is designed to capture, manipulate, analyze,
and present geographical data. Combining these two systems for underground facilities
can provide numerous advantages, including better planning and design, more efficient
construction and maintenance, improved safety, and cost savings. In this process, we first
needed to collect relevant geographical and facility-specific data. These data were then
integrated into the BIM and GIS systems, creating a 3D model of the facility and mapping it
in its geographical context. This combined system can be used in the design and planning
stages, offering insight into spatial relationships and potential issues. During construction,
the system guides the process and is later used for maintenance tracking, predicting repairs
and replacements. Finally, BIM and GIS can be used for simulating various scenarios to
improve the facility’s design and safety features, aiding in risk management decisions.

The Ochang utility tunnel spans three segments with a cumulative length of 5586 m,
of which the demonstration segment measures 1210 m. Some portions of the tunnel were
selected as demonstration service segments owing to their challenging conditions. These
segments include a 750 m stretch of the power section prone to fire incidents, a 60 m intense
condensation area, and a 400 m part of the communications/water supply section. Figure 2
denotes these segments. To aid the research, 3D building information modeling (BIM) was
implemented for the entire section, using the as-built drawings available at the time of its
completion. However, for the demonstration segment, only level of development (LOD)
4-based 3D modeling was carried out through laser scanning.

3.2. Composition of Digital-Twin-Based Spatial Object Extraction Algorithm

In computer vision, image segmentation is the process of dividing a digital image into
multiple segments (sets of pixels), often referred to as superpixels. This process is aimed to
simplify and/or change the representation of an image into something more meaningful
and easier to analyze. This process is commonly used to identify objects and boundaries
(such as lines and curves) in an image. In the context of digital twins, image segmentation
is significant for understanding and replicating the physical attributes and details of an
object or environment.

To derive spatial objects from point cloud data, relationships among each data point,
which are typically three-dimensional, must be established using location coordinates
(X, Y, and Z) and color values (R, G, and B) via segmentation. Segmentation resembles
assembling pixels in 2D images into a singular entity. For 3D data, segmentation entails
collecting proximate points and segregating them into a single-point cloud. PCL offers
various segmentation methods. This study employed the region growing (RG) segmenta-
tion algorithm, which is recognized as the most effective means to segment points, lines,
and planes.
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Figure 2. (a) Ochang underground utility tunnel and (b) floor plan of the target underground
utility tunnel [4].

When dealing with a large number of outliers, segmentation may fail to extract the
desired object accurately. In such cases, outliers may be removed using two methods: the
preprocessor method and random sample consensus (RANSAC). The preprocessor method
removes nearby data to segment the region that the user wants to extract from all the
points. Preprocessors can be set up based on both relative and absolute coordinates. In
this study, the preprocessor function was initially based on relative coordinates because
absolute coordinates were not yet set. However, even with preprocessing, outliers may
remain. For example, if a user wants to extract fire extinguishers, which are point objects,
the preprocessed 3D data may still contain line and plane data. In such cases, the RANSAC
algorithm is used to remove elements such as planes, floors, ceilings, and walls. It can
also be used to extract only plane data. PCL provides the self-supervised augmentation
consistency algorithm for implementing RANSAC.

The objective of this study was to achieve spatial object extraction in (near) real-time.
Therefore, Open3D was deemed less suitable than PCL, which was the primary point
cloud library selected to manage the final data. The core algorithms of PCL, including
segmentation and RANSAC (to be discussed later), offer multiple configuration options
and make it highly user-friendly. In addition, it is open-source and provides thoroughly
validated reliability and efficiency.
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The algorithm for identifying changes in the final spatial objects, which compares
the final classified 3D point cloud data with the original data, used an octree. Octrees are
frequently employed to condense large volumes of 3D data. In this context, they were used
to ascertain whether objects have changed. The algorithm determines this with the absence
of data in the octree, which signals that the data have been displaced when contrasted with
the existing data. Because 3D data change across the x, y, and z coordinates, unlike 2D data,
the algorithm of this study had to consider the extent of data variation. Therefore, an octree
was incorporated into it.

4. Results and Discussion
4.1. Underground Implementation of a Digital-Twin-Based Spatial Object Extraction Algorithm
4.1.1. Linear Spatial Object Extraction Process

To extract 3D objects, point cloud data were gathered from the sensors and subjected
to preprocessing, and feature points (descriptions) were computed. These data were then
compared with the information stored in the object database to extract details such as
location and direction. The algorithm clustered the point cloud data and extracted feature
points, then compared them to obtain information such as location and direction. This
process is depicted in Figure 3.

Analytics
X Preprocessing and
Outlier Validation
. Rol (Noise) Background Segmentati
plos Filtering > Removal Filter ™ on
Filter
3D
Key Point A : Correspond Absolute ICP Hypothesis
Extraction Description > S Matcrizg iy > ence > Orientation * Refinement ~ Verification

Grouping

Figure 3. Linear spatial object extraction process.

The first phase of the process is sampling, which involves choosing sample points
for object extraction within the point cloud. Second, region of interest (Rol) filtering is
undertaken to isolate areas of interest, minimizing resource usage and time consumption.
Third, outlier (noise) removal filtering is conducted to eliminate points that do not exist in
the point cloud. These are points from sensor errors that were initially purged from the
internal process of the sensor but still lingered.

The fourth phase is background filtering, which omits fixed structures such as walls,
slabs, and floors when line objects are extracted. Points belonging to fixed regions are
removed for being part of the background. In the fifth step, the algorithm executes seg-
mentation to categorize objects, finding correlations among points based on their K-nearest
neighbors, minimum cluster, and maximum cluster values.

At the sixth stage, the preprocessing ends, and objects are generated by identifying
feature points through the key point extraction process, which isolates actual objects. Based
on this, the description process employs descriptors to compare feature points. In the
seventh step, the algorithm matches linear objects by comparing the points with existing
data, and correspondence grouping is executed to form object clusters.

Finally, the iterative closest point refinement process makes refinements through re-
peated points, and an administrator undertakes the hypothesis verification step to validate
the hypothesis.
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4.1.2. Point Spatial Object Extraction Process

The method of extracting point objects was improved using the 3D correspondence
grouping algorithm. It facilitates grouping related points in preprocessed point cloud data
to geometrically derive objects after key point extraction. This grouping provides geometric
consistency by continually comparing the grouped reference data with the comparison
data, adding them to a model subset when a geometric match is found. The method adds
the benefit of circumventing pose estimation because it also calculates transformations
(rotations and transformations) for all subsets, which are expected to align with the model
instance. However, it consumes more computational resources and time, owing to the
increase in the number of computations.

The technique for identifying point objects entails preprocessing and executing cor-
respondence grouping. This technique clusters the point correspondence set, which is
acquired after description matching, into a model instance within the current scene. The
algorithm identifies the feature points of both reference and comparison data and compares
feature descriptors to carry out geometric matching. Figure 4 provides a representation of
this point object extraction process.

S Feature
Point Cloud % 3D Key Point » ;
D Descriptor
ata
4 3D
]\;[;;\Cfslg)g —» Corresponden
ce Grouping
Target
PointCloud » 3DKeyPoint + L cature
Data Descriptor

Figure 4. Point spatial object extraction process.

4.1.3. Planar Spatial Object Extraction Process

RANSAC was used for extracting planar objects. This approximates the parameters of
the model by ascertaining a consensus: whether the sample from the point cloud aligns
with the predefined model. Using RANSAC for segmentation has benefits such as the
capacity to separate the ground from objects using a planar model and isolate each object
by eliminating the ground and walls. This study incorporated an algorithm that carried
out segmentation to draw out wall objects.

The procedure for extracting planar objects with RANSAC entails the following: The
model is initialized to align with the virtual inliers, implying that all of the free parameters
of the models are set to match those of the inliers. If sufficient points are categorized as
virtual inliers, the model is considered as accurately estimated. Subsequently, the error of
the inliers concerning the model is calculated to assess the quality of the model, and then
the planar objects are extracted.

4.1.4. Supplementing the Algorithm via Octree Creation

To extract object changes using an octree, several steps must be undertaken. First,
the point cloud for the bounding box is computed and the root node (the initial node) is
established. Subsequently, the octree is segmented, dividing the nodes into eight smaller
nodes. Each node is characterized by its geometry and address, and its form is determined
with the coordinates of the node center. Each node within the octree structure has a unique
address, reflecting the connections between neighbor nodes and the pathway from the
present node to its ancestor node. Defining appropriate terminal criteria for octrees is
essential. In this study, the minimum node size and minimum point count were established
as the terminal criteria. Moreover, the spatial division was assumed to cease if the node
met the minimum point threshold, even if the minimum node size criterion was yet unmet.



Appl. Sci. 2023, 13,9137

8of 17

The entire iterative procedure formed the octree, and a list of points was stored in each
occupied leaf.

4.2. Plan for Constructing and Renewing Digital Twin with Spatial Object Type
4.2.1. Linear Spatial Object Extraction Process

Spatial objects encountered in underground utility tunnels can be primarily classified
into three categories. The first type includes point objects, depicted in Figure 5, which
encompass small objects such as fire extinguishers, CCTV systems, and lighting fixtures.
The second type comprises line objects, represented in Figure 6, including items such as
power cables, water conduits, gas pipes, and telecommunication lines. The third type
consists of plane objects, illustrated in Figure 7, which include items like walls, floors,
and staircases.

P <% ?Hs

Powder Fire
Extinguisher

\ s

Ry

143622

Sesen

Ceiling Lights Dial Gauge | Cable Hanger

B
CJ 140xS 41
Moter Control ~ De-watering
Butterfly Valves = Check Valves Valves Valves Pipe Support
Gate Valves e
Distribution Panel Blowers Pipe Flange Pipe Clamp
Figure 5. BIM library of underground utility tunnel point objects.
AWBREEREERSN
v

Cable Tray
. Power Pipe Telecommunication
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Figure 6. BIM library of underground utility tunnel line objects.
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Figure 7. BIM library of underground tunnel plane objects.

In Table 1, objects in the underground utility tunnel were classified into points, lines,
and planes, and detailed categories were set accordingly. Representative point-type objects
include fire extinguishers, lights, and sensors, while representative linear objects include
electric wires and drain pipes. Representative planar objects include walls, roofs, and
floors. Accordingly, updates are set to be triggered by the movement of point-shaped
3D objects, with no updates for the remaining linear and planar shapes. In addition,
updates to property information preservation are set to proceed, with some exceptions for
point-type objects.

Table 1. Classification and update information with object type.

Major Category Minor Category Library 3%}%‘;’;“ Property Information Update
Fire extinguisher O Yes Yes
Light O Yes Yes
Sensor O Yes Yes
Sprinkler head O Yes Yes
Gate valve (@] Yes Yes
Air valve O Yes Yes
Notice sign O Yes Yes
Point Wire splitter O Yes Yes
Facilities Emergency exit sign (@] Yes Yes
Automatic fire extinguishing equipment O Yes Yes
Point Automatic fire detection equipment O Yes Yes
CCTV O Yes Yes
Flange O No Yes
Distribution panel O No Yes
Plumbing equipment O No Yes
Bracket O No Yes
. Support @] No Yes
Point Brgﬁch (@] No No
Structures Pipe protection O No No
Power line O No Yes
. Line Water pipe O No Yes
Line Facilities Communications line @) No Yes
Wall O No Yes
Slab O No Yes
Floor O No Yes
Plane Plane Ventilation opening O No Yes
Structures Stairs o} No Yes
Entrance/Exit O No Yes
Other Other Random objects X Yes No
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4.2.2. Spatial Object Update Plan

To ensure the precision of spatial information for each object in the underground
utility tunnel, a method must be devised for updating the information and specifying
update times. Given the characteristics of the underground tunnel, objects such as fire
extinguishers are usually situated at specific points, and their locations must be updated
if they are relocated or if they disappear. The decision on whether an update is required
depends on the update interval. Too small intervals result in excessive event data because
even momentarily used objects prompt updates. Similarly, displacement information for
individuals patrolling the tunnel can produce errors if updated too frequently. Therefore,
an appropriate interval is crucial, and the update periods were broadly classified into
long-term and short-term. The short-term period was presumed to be (nearly) real-time, as
underground utility tunnels undergo minimal changes owing to their unique characteristics,
which encompass underground space, security facilities, and other facilities. Consequently,
spatial information should be updated from a long-term viewpoint to maintain accuracy.

Descriptions of various update types are provided below, and Figure 8 illustrates these
based on the period, event type, and update method.

Event Types Update Geometry Update Properties
n,

Object informatio
Displacement, on, Time

Displacement, Position, Time
1.

Long 1-1-3. Delete Displacement, Position, Time

-term

1-2-1. Update

(time series) operations (Ex. Power lines)
1-3-1. Update

5 Displacement size of 10cm or more
(time series) Uiz I kitoryy (Ex. Box)

1-1. Move 1-1-1. Move

Recognize library objects (Ex. Fire
extinguishers)
Unrecognized objects without

libraries (Ex. Box)

Periodic renewal of management

1-2. Sag Update History

Object information,
Displacement, Position, Time

2-1-2. New Displacement, Position, Time
libraries (Ex. Box)
2-1-3. Delete Displacement, Position, Time

2-1-1. Move
Recognize library objects (Ex. Fire
extinguishers)
Unrecognized objects without

Object informatio
515) o)
22HL NG el Displacement, Position, Time

.Sa
2-3. Crack 2-3-1. No Renewal Update History

Periodic renewal of management
operations (Ex. Power lines)
Displacement size of 10cm or more
(Ex. Box)

Figure 8. Method for updating a spatial object in a digital twin.

e  Underground Tunnel Update: This pertains to the update of spatial information
for disaster/facilities management. Shapes and properties are updated using data
gathered with sensors, which are distinct from a precise update.

e Shape Update: This relates to long-term changes to an object/displacement size of
10 cm or more. Objects that have been moved, such as fire extinguishers, would
be exceptions.

e  Property Update: This involves updates that generate property information of objects,
including information about the object itself, displacement, location value, and time.

e Event Range: This includes movements (point), deflections (line), and cracks (plane).

4.3. Image-Sensor-Based Spatial Object Extraction

To examine the effectiveness of the image-sensor-based spatial object extraction, an
indoor setting replicating an underground utility tunnel was established. Leveraging
this environment, LIDAR sample data were gathered to imitate an underground utility
tunnel scenario. The initial step involved comparing the obtained LiDAR data to identify
displaced objects and implement the required updates. Moreover, a data collection test was
conducted to identify target objects at their installation height, considering the height of
the power lines.
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4.3.1. Utility Tunnel Data Linear Object Extraction

To extract line objects from the utility tunnel data, the algorithm was customized by
adjusting variables to match the data, and the corresponding results were ascertained.
These results are shown in Figures 9 and 10. Although line recognition was based on
modifications to the K-nearest neighbor value and minimum cluster size, each line was
identified as a distinct object (Figure 9). For higher K-nearest neighbor values, the line
objects were recognized as unified entities (Figure 10). Finally, by fine-tuning the algorithm
variables through the parametric adjustment of specific values, the final object derivation
results were obtained (Figure 10).

Figure 9. Although lines are recognized, each is recognized as a separate object.

Figure 10. Cont.
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Figure 10. Final object results obtained by adjusting algorithm variables for (a) 700, (b) 800, and
(c) 900 K-nearest neighbors, respectively.

4.3.2. Utility Tunnel Data Plane Object Analysis

To identify line objects from the tunnel data, the variables of the algorithm were
fine-tuned to align with the data, generating the corresponding results. Figures 11-13
illustrate the outcomes of each variable adjustment. Figure 11 illustrates the result when
the minimum value for plane recognition was defined. In this instance, planes within the
data were recognized, but each plane was treated as a separate object. This suggests that
the algorithm identified different planar elements within the tunnel system, but it may
not have correctly grouped or classified these elements together where appropriate. In
Figure 12, the K-nearest neighbor value was set to 100. The K-nearest neighbor algorithm
is a type of instance-based learning where the function is approximated locally, and all
computation is deferred until classification. By setting this value to 100, planes were again
recognized as individual objects. This might indicate that the algorithm was able to classify
or group similar planar elements together more accurately. Figure 13 shows the final results
of recognizing plane objects in the tunnel data after the algorithm variables were further
adjusted. The specifics of these adjustments are not detailed here, but the implication is
that the algorithm was able to accurately identify and classify the planar objects within
the digital twin of the tunnel system, potentially leading to a more precise and insightful
analysis of the tunnel data. These figures demonstrate how adjusting variables within
an algorithm can influence the results obtained, particularly in complex tasks such as
identifying and classifying different elements within a large, detailed dataset like a digital
twin of an underground utility tunnel.

4.3.3. Utility Tunnel Object Displacement Value Derivation

The primary aim of this procedure was to conduct data object classification and obtain
displacement values based on the discrepancies between the reference and comparison data.
In this study, differences were identified using an octree-based displacement detection
technique, as depicted in Figure 14. For linear objects, both the displacement values
and corresponding displacement information are presented. Displacement information
was obtained by comparing data from linear objects. According to the results of Change
Detection, displacement due to an intended change of about 10 cm was detected on
the left side, as well as on the right side where incorrect and inaccurate results were
produced. In this scenario, it is deemed that these issues can be rectified through precise
parameter adjustment.
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Figure 11. Although planes are recognized, each is recognized as a separate object.

Figure 12. Plane recognition maximum value analysis.

Figure 13. Cont.
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(b)

(c)

Figure 13. Final plane object results obtained by adjusting algorithm variables for (a) 80, (b) 90, and
(c) 100 K-nearest neighbors, respectively.

Section Where Displacement Occurs Due
to the Movement of the Spatial Object (Pipe)

M The inaccurate result value necessitates

parameter adjustment

Figure 14. Results of displacement detection based on octree methodology.
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5. Conclusions

In this study, we created a digital twin of an underground utility tunnel and iden-
tified spatial objects using a unique algorithm that utilized a multimodal image sensor,
incorporating light detection and ranging (LiDAR) technology. The research consisted of
three stages: constructing the digital twin using building information modeling integrated
with a geographic information system (BIM-GIS), defining a method for extracting spatial
objects, and applying image-sensor-based segmentation and a random sample consensus
(RANSAC). This method allows for the creation of digital twins for underground areas and
extraction of spatial objects using inbuilt image sensors, enabling the detection of structural
shifts and management of future structural irregularities. The following conclusions were
drawn regarding the extraction of 3D spatial objects and the implemented algorithm:

e  The rationale behind executing real-time updates of 3D spatial information was dis-
cussed. This clarification distinguishes automatic updates from real-time updates that
directly mirror object movements, preventing potential confusion.

e  We described the categories of (near) real-time 3D spatial information updates, the
information being updated in them, the update process, and how updates vary based
on object types.

e  We re-evaluated existing algorithms to enhance (near) real-time spatial information
update algorithms for each 3D object type. In doing so, we also redefined the scenario
process, data flow, and other essential algorithms to support the existing ones.

e  The supplementary algorithm for extracting and updating 3D spatial objects was
scrutinized and analyzed. Specifically, the algorithm for extracting point cloud data
spatial objects was enhanced, and the algorithms for extracting feature points, spatial
objects, and displacement information were examined and analyzed to propose a new
integrated algorithm.

o  We tested the developed algorithm using point cloud sample data. For this, an envi-
ronment resembling a utility tunnel was set up, and LiDAR data were collected. The
more precise the LIDAR data, the simpler the data analysis. Our results showed that
object classification became significantly easier. Lastly, when deriving displacement
data, we did not obtain accurate data because relative coordinate data were employed.
However, precise data could be obtained through data processing.

In this study, data accuracy was compromised owing to axial transformations and
asynchronous data visualizations, which arise from the general motion of unfixed line data
and shifts in LiDAR installation positions. To address these issues in future studies, we
propose two main solutions:

- Collecting sufficient data from fixed multimodal sensors: By securing and using
multiple sensors that operate in different modalities (for instance, combining LiDAR
with photogrammetric or radar sensors), you can gather richer, more comprehensive
data. If these sensors are also fixed in position, it could help mitigate issues arising
from shifts in sensor installation positions.

- Performing repeated testing in diverse environments: This approach would help
validate the effectiveness of the extraction algorithms across various conditions, en-
hancing their robustness and reliability. By repeatedly testing the system under
different scenarios, you can refine the displacement detection information extraction
process, making it more efficient and accurate.

In sum, these strategies could significantly enhance the quality of displacement infor-
mation extracted in future studies, contributing to more reliable and effective outcomes in
the field of spatial data analyses and 3D modelling.
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