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Abstract: As underground engineering extends into the western and deeper regions of China, more
and more Luohe Formation sandstone layers will be encountered, which have weak cementation and
high water content. It is a significant challenge to apply the open TBM, and the support system is
crucial in determining whether TBM can excavate quickly and safely. Therefore, in order to optimize
the support scheme, this paper analyzes the pore structure and porosity through CT scanning, the
results indicate that the volume percentage of pores ≥34 µm is 2.3% and 1.5%, respectively, the large
pore apertures are predominant, the surrounding rock has strong permeability, and there is a high
risk of rock burst and roof collapse accidents, hence requiring reinforced support measures. On this
basis, numerical simulations were conducted to evaluate the support effectiveness. The results show
that replacing the “bolt + mesh” with a “bolt + cable + mesh + steel belt”, and replacing the top three
bolts with 7.3 m anchor cables, can better control the deformation and provide sufficient thrust force
for the TBM, ensuring excavation speed. After the implementation of this scheme at the Kekegai coal
mine in Shaanxi, China, the TBM excavation speed increased by 70%, from the previous 10 m/day to
17 m/d, significantly reducing the project duration and construction costs.

Keywords: CT scan; Luohe Formation sandstone; microscopic characteristics; numerical simulation;
support optimization; open TBM

1. Introduction

The Luohe Formation sandstone is a widely distributed sedimentary rock in the
northwest region of China, with a burial depth of approximately 200 m and a thickness
ranging from 48.6 to 221.4 m. Due to its late diagenesis, low cementation degree, and high
water content, it exhibits relatively poor physical and mechanical properties, characterized
by low strength, susceptibility to disintegration, and a tendency to undergo cementation
upon contact with water. During excavation processes, issues such as roof collapse and
sidewall collapse frequently occur, impacting construction safety and progress [1].

The open TBM (Tunnel Boring Machine) is a full-section rock boring machine that
uses booting boots to tighten the tunnel wall, which is suitable for rock tunnels where
the rock should not collapse and the formation is relatively stable. The open TBM is
widely used in underground construction projects such as water diversion projects, and
transportation tunnels due to its fast excavation speed, low labor intensity, and high safety
factor. However, these projects often primarily involve hard rock formations, and open
TBM applications in soft rock formations are less common.

With the increase in infrastructure construction and energy development in western
China, underground engineering construction will inevitably face weakly consolidated
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sandstone formation, Conventional anchor mesh support is unable to adapt to the ge-
ological conditions of this stratum, making it ineffective in maintaining the stability of
the surrounding rock. Meanwhile, traditional construction methods such as freezing and
drilling and blasting are not suitable for achieving rapid construction. To expedite the early
production of Kekegei coal mine in Yulin, China, an open TBM will be used for inclined
shaft construction, marking the first global application of this technology. However, during
the excavation process, the TBM will encounter the Luohe Formation, characterized by
weak rock cementation and a high water content. Water inflow will start to increase as
the construction progresses, reaching a peak of 308 m3/h at a distance of 2030 m from
the tunnel entrance. The formation contains numerous soft interlayers and experiences
severe interbedding of mudstone, leading to significant roof collapses and sidewall insta-
bility, as illustrated in Figure 1. To ensure smooth construction, it is essential to conduct a
study of the microstructural characteristics of the rock and propose targeted optimization
measures [2].
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Figure 1. The open TBM traverses the Luohe Formation. (a) Schematic diagram of the open TBM
crossing the Luohe Formation. (b) Roof collapse. (c) Sidewall instability.

Some scholars have conducted research on the failure characteristics of the Luohe
Formation sandstone, primarily focusing on rock mechanics properties such as uniaxial
compression, triaxial compression, and water-induced softening [3,4]. This research has
provided some insights into the analysis of the surrounding rock failure mechanisms. How-
ever, there has been limited investigation into its microscopic properties, especially pore
structure. Further research is needed, particularly in the context of support optimization.

X-ray diffraction, polarizing microscopy and scanning electron microscopy are impor-
tant means for detailed analysis of the diagenetic process and microstructure of rocks [5,6].
On this basis, some scholars [7,8] have carried out analysis from the perspectives of water
absorption characteristics, water softening characteristics and mechanical properties.

Zheng Da et al. [9] conducted thin slice sampling of two different phyllite fracture
samples, analyzed the microscopic morphology characteristics of thin slices, and proved
the relationship between the microscopic fracture mode, fracture mechanism and mineral
composition of rocks.
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The results show that the physical and mechanical properties, mineral composition and
microstructure of rock have important effects on the deformation and failure characteristics
of surrounding rock after tunnel excavation [10–12].

Liang Bing et al. [13] studied the disintegration characteristics of argillaceous rocks
in solutions with different pH values. Tan Luorong [14] conducted a large number of
indoor disintegration tests to analyze and discuss the relationship between the argillation,
water absorption disintegration of common clay rocks and mudstones in underground
engineering and the physical and mechanical parameters of rock mass.

Computed tomography (CT) is the most widely used non-destructive 3D imaging
technology, and its biggest advantage is that it can reflect the internal spatial structure of
the sample in situ without introducing human defects [15].

Louis et al. [16] used X-ray CT to study the failure mode of sandstone with layered
structure. Kwang Yeom Kim et al. [17] established a discrete element model conforming to
the anisotropy characteristics of the Berea sandstone in northern Ohio through CT scanning.
Jasmin Ambrose [18] conducted CT scanning of the damaged Bossier shale and obtained
the distribution rules of failure surfaces of rock samples under different confining pressures
and different angles under triaxial compression. Liu Hui et al. [19] conducted in situ CT
real-time scanning tests on the damage process of sandstone under the combined action of
freeze–thaw and load.

Research shows that petro-mechanical properties of sandstones varies as function
of the mineralogy and diagenesis; therefore, the new microscopic characteristic analysis
method is of great significance to guide the engineering construction [20,21].

To sum up, although some scholars have studied the microscopic characteristics of
Luohe Formation sandstone, there are few studies on the use of CT to analyze its pore struc-
ture, and there is also a lack of studies on the application of open TBM support optimization
measures in this formation. Therefore, in order to realize the rapid excavation of the open
TBM, this paper analyzes the pore structure of Luohe Formation sandstone through CT
scanning, and study the support optimization scheme by means of numerical simulation.

2. CT Scan
2.1. Sample Preparation

At a depth of 250 m in the inclined shaft of the Kekegai coal mine, hand-held drilling
equipment was used to obtain samples from the Luohe Formation stratum at the construc-
tion site; drill sleeve diameter 80 mm and length 30 cm. In this core-taking, a total of 2 holes
were drilled, one on each side of the left and right side, the deep samples were selected
and processed into 3 standard rock samples of 5 cm × 10 cm, marked and wrapped for CT
scanning, and 2 scan results were selected for analysis, as shown in Figure 2.Appl. Sci. 2023, 13, x FOR PEER REVIEW 4 of 18 
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2.2. Scanning Principle

High-resolution CT uses the cone-beam X-ray emitted by the micro-focus ray source
to penetrate the sample and project it onto the detector. At the same time, the sample,
the ray source and the detector are rotated 360◦ relative to each other, and thousands of
frame Angle data are collected, and then 3D reconstruction is carried out by the computed
tomography imaging reconstruction method to obtain high-resolution 3D data and images
of the internal and external structures of the sample.

The features of high-resolution CT are as follows:

1. Non-destructive, fluoroscopic, high-resolution, three-dimensional imaging, which
can display and analyze small features through a large amount of image data without
loss.

2. CT images reflect the degree of energy attenuation in the process of X-ray penetrating
the object, and its attenuation process conforms to the attenuation Formula (1). The
macro research scale, the relative density of the internal structure of the sample is
positively correlated with the gray level of CT images.

I = I0e−∑i µixi (1)

where I is the intensity after attenuation; I0 is the original strength; µi is the attenuation
coefficient of the i component to the ray; xi is the length of the ray passing through
component i.

At present, the imaging principle of CT technology is to calculate the ray absorption
coefficient of each element in the sample (mainly affected by density), and then use this
as the basis for distinguishing different components. The schematic diagram is shown in
Figure 3.
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Figure 3. Scanning principle.

A nanoVoxel4000 micro-nano high-resolution CT scanner produced by Tianjin Sanying
Precision Instrument Co., Ltd. (Tianjin, China) was used in this test. The photo is shown in
Figure 4 and the instrument parameters are shown in Table 1. The resolution selected for
this scan is 34 µm.
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Table 1. Basic performance parameters of the instrument.

Project Parameter

sample size 0.5 mm–400 mm
voltage 20–300 kV
power 80 W

resolution 0.5 µm–100 µm

3. Result Analysis

Based on computer high-resolution tomography (micro-CT), the samples were
scanned and 3D reconstructed digitally, and the structural characteristics of the samples
were analyzed.

According to the scanning results, two groups were selected for analysis.

3.1. Two-Dimensional Slice Display

The two-dimensional section diagram in the XY, XZ and YZ directions can be used to
better observe the internal structure of the sample and identify the low-density pores and
high-density mineral particles, and the distribution characteristics of the pores can be well
understood, as shown in Figure 5.
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3.2. Three-Dimensional Display

As shown in Figures 6 and 7, the three-dimensional effects of cracks and samples fully
demonstrate the distribution characteristics of cracks and minerals in three-dimensional space.
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Through 3D image display, it is found that the distribution of pore groups is relatively
uniform, and the connectivity of strata can be effectively increased if reasonable engineering
transformation is carried out in the future.

3.3. Pore Analysis

In order to understand the pore content and size of rocks, pores need to be extracted
for analysis, as shown in Figure 8.
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For the sample scanning data, the pores were extracted through threshold segmen-
tation (as shown in Figures 9 and 10), and the volume percentage of pores ≥34 µm in the
total volume of the scanned samples was calculated under the current resolution (34 µm),
that is, the porosity was 2.3% and 1.5%, respectively.
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Count the number of pores in different equivalent diameter ranges, before and after
“/” are sample 1 and sample 2, respectively, as shown in Table 2, and pie charts are drawn
for a more intuitive comparison of the proportion of each diameter range, as shown in
Figure 12.

Table 2. Pore equivalent diameter statistics.

Range of EqD EqD ≤ 50 um 50 ≤ EqD < 100 um 100 um ≤ EqD < 150 um 150 um ≤ EqD < 200 um 200 um < EqD

Quantity 798,519/387,918 1,441,575/1,159,424 618,214/658,976 265,479/297,246 162,830/1,125,884
Percentage of total

pore volume 0.7%/0.6% 7.1%/9.8% 14.3%/24.4% 16.5%/29.3% 61.4%/36.0%
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With the increase in the equivalent diameter of the pore, the pore number showed a
rapid decline, and the equivalent diameter of 50–100 µm was the greatest. From the pie
chart of pore volume fraction, it can be seen that pores with equivalent diameter >200 µm
occupy the largest volume ratio (61.4% and 36.0%).

In response to the high porosity and high volume of large-aperture pores in the
Luohe Formation sandstone, which leads to on-site issues such as easy rock fragmentation,
excessive water inflow, significant deformation, and challenging support, improvement
measures have been proposed. It is recommended to replace the top anchor rod with
anchor cables by extending the anchoring section into the deep surrounding rock to control
roof collapses. Additionally, reinforcing the mesh panels with steel straps can enhance the
synergy between anchor.

4. Support Scheme Optimization
4.1. Scheme Comparison

The arrangement of components and on-site installation for each support scheme is
shown in Figure 13. The original support scheme is shown in Figure 13a, which is “bolt +
mesh” support. The improved scheme is shown in Figure 13b, which is “bolt + cable + mesh
+ steel belt” support scheme. The top three bolts of the anchor cable section are replaced
with 7.3 m anchor cables, and the spacing between them is 1.8 × 2.7 m, a comparison of the
components required for each section in the two schemes is presented in Table 3.
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Table 3. Comparison of materials required by two support schemes.

Components Bolt (Roots) Cable (Roots) Mesh (Sheets) Steel Belt (Items)

Original scheme 17 0 4 0
Optimization

scheme 14 3 4 1

4.2. Numerical Simulation

To validate the rationality of the support scheme, we conducted a simulation analy-
sis of the support effectiveness of the two schemes using the UDEC (Universal Distinct
Element Code) numerical simulation software. UDEC has a distinct advantage in simu-
lating rock fragmentation and large deformations. Table 4 shows the Rrock physical and
mechanical parameters.

Table 4. Rrock physical and mechanical parameters.

Stratum Rock Types Density/(kg·m−3) Bulk
Modulus/MPa

Shear
Modulus/MPa

Adhesive
Strength/MPa

Angle of Internal
Friction/(◦)

Luohe
Formation

sandstone 2510 1530 1080 0.5 32
mudstone 2480 1300 920 0.6 30

fractured rock
stratum 2510 920 650 0.3 28

Anding
Formation

sandstone 2530 2170 1490 1.5 28
mudstone 2480 1750 1320 1.2 30

Zhiluo
Formation

sandstone 2710 7900 4800 2 26
mudstone 2680 6500 3600 2 30

fractured rock
stratum 2710 1000 900 1.7 25

Based on the excavation and support plan for TBM excavation in soft sandstone at
the Kekegai coal mine, a typical section at a depth of 200 m was selected. The UDEC 7.0
discrete element software was used to create a numerical model to simulate the disturbance
of the surrounding rock and the stress on the support structures under different support
schemes [22]. According to Saint-Venant’s principle, if a force acting on a small surface
of an elastomer is replaced by a statically equivalent system of forces acting on the same
surface, this substitution produces a significant change in stress on only the local surface,
and the effect is negligible further than the linear dimensions of the stress-changing surface,
it was determined that the disturbance outside the area 3 to 5 fold the tunnel diameter from
the excavation zone is negligible and can be disregarded. Therefore, the model dimensions
were set at 80 m by 80 m, containing a total of 14,294 blocks. The circular TBM excavation
tunnel was located at the center of the model with a diameter of 7.13 m, as shown in
Figure 14.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 13 of 18 
 

Zhiluo 
Formation 

sandstone 2710 7900 4800 2 26 
mudstone 2680 6500 3600 2 30 

fractured rock 
stratum 

2710 1000 900 1.7 25 

 
Figure 14. Computational model and joint configuration. 

In the model, normal displacement constraints were applied to the left and right sides 
as well as the bottom surface. Additionally, maximum horizontal stresses were imposed 
on the computational elements, with a magnitude of 14.12 MPa (x-direction), a minimum 
horizontal stress of 9.95 MPa (out-of-plane direction), and a vertical stress of 7.68 MPa (y-
direction). 

4.3. Simulation Results Analysis 
From the aspects of deformation and stress, a comparative analysis of the simulation 

results of the two support schemes is conducted. 

4.3.1. Deformation Analysis 
Figure 15 shows the contour maps of horizontal displacement, vertical displacement, 

and total displacement of the surrounding rock after the construction of the two support 
schemes. It can be observed that the horizontal deformation on the left and right sides is 
symmetrically distributed. The vertical displacement of the roof is slightly greater than 
the uplift displacement of the floor. From the total displacement contour map, it is evident 
that the maximum displacement deformation occurs at the tunnel roof position. 

  
(a) (b) 

Figure 14. Computational model and joint configuration.



Appl. Sci. 2023, 13, 11812 11 of 16

In the model, normal displacement constraints were applied to the left and right sides
as well as the bottom surface. Additionally, maximum horizontal stresses were imposed
on the computational elements, with a magnitude of 14.12 MPa (x-direction), a minimum
horizontal stress of 9.95 MPa (out-of-plane direction), and a vertical stress of 7.68 MPa
(y-direction).

4.3. Simulation Results Analysis

From the aspects of deformation and stress, a comparative analysis of the simulation
results of the two support schemes is conducted.

4.3.1. Deformation Analysis

Figure 15 shows the contour maps of horizontal displacement, vertical displacement,
and total displacement of the surrounding rock after the construction of the two support
schemes. It can be observed that the horizontal deformation on the left and right sides is
symmetrically distributed. The vertical displacement of the roof is slightly greater than the
uplift displacement of the floor. From the total displacement contour map, it is evident that
the maximum displacement deformation occurs at the tunnel roof position.
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In the roof, monitoring points were set every 1 m in the radial direction to record
the displacement changes in the surrounding rock at different depths throughout the
excavation process. Figure 16 shows the deep surrounding rock displacement curves for
six monitoring points on the roof for the two support schemes.
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For the original support scheme, the deformation curves at different positions exhibit
varying patterns. The deformation of the surrounding rock significantly decreases at depths
greater than 3 m, with a risk of block fall near the tunnel surface.

In contrast, the new support scheme shows consistent deformation patterns at different
positions. The deformation gradually increases with stress release in the surrounding rock.
The difference in deformation between the tunnel surface and a depth of 5 m is 32 mm.
The maximum displacement values for the original support scheme and the new support
scheme are 94.70 mm and 70 mm, respectively. This indicates that changing the support
scheme has significantly improved the control of the surrounding rock.

4.3.2. Stress Analysis

The surrounding rock stress contour maps are shown in Figure 17.
Figure 17a,c represent the maximum and minimum principal stress contour maps of

the original support scheme, respectively, and Figure 17b,d represent the maximum and
minimum principal stress contour map of the new support scheme, respectively.

It can be observed that after adopting the new support scheme, stress concentration
occurs on the surfaces of the roof and floor. In contrast, the stress concentration region for
the original support scheme is deeper within the surrounding rock, and the surrounding
rock closer to the excavation face exhibits tensile stress, indicating tensile fracturing and
failure in the surrounding rock.

The evolution of deep surrounding rock stress under the two support conditions is
shown in Figure 18. Figure 18a,b represent the radial stresses at six monitoring points on
the roof for both the original support scheme and the new support scheme.

As the tunnel excavation progresses, the radial stress values gradually decrease in a
step-like manner for both support schemes. Additionally, the closer the monitoring points
are to the surface of the tunnel surrounding rock, the greater the magnitude of stress change.
In Figure 18a, at the tunnel wall, the final radial stress value tends to zero, indicating tensile
stress at the tunnel wall for the original support scheme, leading to the phenomena of roof
collapse and wall spalling.
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5. Field Applications

To validate the superiority of the support optimization scheme, a field application was
conducted at the Kekegai coal mine subsidiary inclined shaft in Yulin, China. The testing
location was 2600 m from the entrance, with a depth of 258 m and a testing length of 20 m.
The displacement within two months after support was monitored with a roof separation
gauge, as shown in Figure 19.
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It can be observed that the optimization measures have effectively controlled the
fragmentation and collapse of the surrounding rock in the stope. Extending the length
of the anchor cable has anchored it to stable bedrock and also helped in controlling the
development of internal fractures. The reinforcement measures for the fractured tunnel
walls have rapidly and effectively stabilized the surrounding rock. The maximum defor-
mation has been reduced from 50.3 cm to 28.5 cm, achieving a 43.3% improvement. The
water inflow has decreased from 308 m3/d to 98 m3/d, with a reduction of 68.2%. The
excavation speed has increased from 10 m/d to 17 m/d, representing a 70% improvement.
These improvements provide sufficient support for the TBM’s cutting shoes and resistance
for excavation, facilitating rapid progress.

6. Conclusions

In order to ensure that open-type TBM can achieve rapid excavation in the water-rich
and poorly cemented sandstone strata, this paper utilized CT scanning to analyze the micro
characteristics of the sandstone in the Luohe Formation. Based on these analysis results, this
paper conducted numerical simulations to compare the effectiveness of different support
schemes in controlling the surrounding rock, and the following conclusions are reached:

(1) The CT scan results indicate that in the two sets of samples from the Luohe Formation
sandstone, the volume percentages of pores with a diameter of ≥34 µm are 2.3% and
1.5%, respectively, and the volume percentages of pores with an equivalent diameter
greater than 200 µm are the largest, at 61.4% and 36.0%, respectively. This means that
there is a relatively high porosity, and the pores are predominantly larger in size. This
is macroscopically manifested as strong permeability in the surrounding rock, making
it susceptible to softening and fragmentation.

(2) The numerical simulation results show that replacing the original “bolt + mesh”
support scheme with a “bolt + cable + mesh + steel belt” support scheme can effective
control surrounding rock deformation, and the top maximum displacement from
94.7 mm reduced to 70 mm, and the radial stress at the boundary of the surrounding
rock increased from 0 to 3 MPa, providing significant restraint to the surrounding rock.
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(3) Field applications have shown that after adopting the new support scheme, the
maximum deformation of the surrounding rock has decreased from 50.3 cm to 28.5 cm,
a reduction of 43.3%. The water inflow rate has decreased from 308 m3/d to 98 m3/d,
a reduction of 68.2%. The TBM excavation speed has increased from 10 m/d to
17 m/d, an improvement of 70%. This significantly enhances construction efficiency
and provides assurance for early production commencement.
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