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Abstract: Intention detection and slot filling are two major subtasks in building a spoken language
understanding (SLU) system. These two tasks are closely related to each other, and information
from one will influence the other, establishing a bidirectional contributory relationship. Existing
studies have typically modeled the two-way connection between these two tasks simultaneously in
a unified framework. However, these studies have merely contributed to the research direction of
fully using the correlations between feature information of the two tasks, without sufficient focusing
on and utilizing native textual semantics. In this article, we propose a semantic guidance (SG)
framework, enabling enhancing the understanding of textual semantics by dynamically gating the
information from both tasks to acquire semantic features, ultimately leading to higher joint task
accuracy. Experimental results on two widely used public datasets show that our model achieves
state-of-the-art performance.

Keywords: spoken language understanding; natural language understanding; intent detection; slot filling

1. Introduction

Intent detection and slot filling (IDSF) are quintessential components in spoken lan-
guage understanding (SLU) systems and are instrumental in decoding user inquiries [1].
These tasks are pivotal for natural language understanding (NLU) in man-machine con-
versational interfaces. Intent detection is tasked with discerning the user’s objective from
their input, while slot filling involves identifying specific entities that provide detailed
context for the intent. For instance, in command “Aircraft No. 3 takeoff to intercept enemy
aircraft in the southwestern”, the task of intent detection is to identify its intent label of
“interception” from a predefined label set. Concurrently, the task of slot filling is to generate
slot labels for each word in command, such as “B-our attacking unit”, “I-our attacking
unit”, “E-our attacking unit”, “O”, and “S-direction”. Since errors of IDSF will propagate to
downstream tasks such as dialogue state tracking, and ultimately negatively affect the user
experience of SLU systems, it is worth pursuing solutions with higher accuracy for IDSF.

In recent years, due to the significant correlation between intent and slot information,
numerous studies have made efforts to leverage this connection. Some research exploits
intent information as supplementary data to enhance slot filling [2–4], while other works
employ joint models to extract slots and intents simultaneously [5–8]. For instance, in
the former type of methods, Goo et al. [2] achieved superior semantic framing results
by leveraging the relationship between slot-gate learning intentions and slot attention
vectors. Li et al. [3] utilized intention-enhanced embeddings, obtained via a neural network
with a self-attentive mechanism, as an entry point for marking slot labels. Qin et al. [4]
captured intent semantic knowledge by directly employing intent information as input
for slot filling. In the latter approach, for instance, Qin et al. [5] modeled the strong
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correlation between slots and intents by introducing an intent–slot graph interaction layer.
Liu et al. [6] incorporated attention to intent and slot information into alignment-based
recurrent neural network (RNN) models, furnishing additional data for intent classification
and slot label prediction. Xing et al. [7] effectively represented the relationship between
semantic nodes and labeled nodes by initializing the labels of two tasks and constructing
two heterogeneous graph attention networks over them. Qin et al. [8] considered cross-
influence by establishing a two-way connection between the two related tasks, enabling
slots and intents to focus on mutual information. However, the aforementioned studies
have either focused solely on a unidirectional flow of information from intent to slot, or
concentrated on the interplay between these two tasks, thereby overlooking the semantics
of the text.

Inspired by He et al.’s [9] introducing knowledge base as complementary for IDSF, we
argue that the semantics of text should be adequately utilized to achieve better performance.
Specifically, we introduce a semantic guidance (SG) framework for IDSF tasks. To effectively
extract slot and intent information, a feature extractor is employed to distill slot and intent
information from text into word embedding features. Subsequently, a feature fusion
module with a dynamic gating strategy is devised to amalgamate slot information, intent
information, and text information. The slot and intent information are harnessed to guide
the textual representation, enhancing the accuracy of IDSF. To further validate our proposed
method, experiments were conducted on two public datasets. By concurrently investigating
inter-modal and intra-modal relationships, it is concluded that the method of utilizing
slot information and intention information to guide textual representations significantly
augments the performance of the model. The detailed source code of our work is available
at https://github.com/USTBSCCE1028/SG (accessed on 20 October 2023).

2. Related Work

In natural language understanding tasks of IDSF, modeling the closely correlated rela-
tionship between the two tasks has been a key focus in many state-of-the-art joint models.

These joint modeling approaches can be broadly classified into two categories. The
first category involves the unidirectional utilization of intent labels as supplementary infor-
mation to enhance the effectiveness of slot filling tasks. For instance, Liu and Lane [6] em-
ployed an intent-augmented gate mechanism for the slot filling task. Zhang and Wang [10]
pioneered the application of RNN in the task of intent detection. Goo et al. [2] employed
intent labels to guide the slot gate. Li et al. [3] leveraged intent semantic representations
as gate markers for slot labels, resulting in improved performance with the ATIS dataset.
Qin et al. [4] employed the stack propagation joint model, which allows for the utilization
of intent labels as input for the slot filling task. Zhao et al. [11] employed joint models in
the domain of named entity recognition within the medical field. Zhang et al. [12] utilized
a unidirectional joint model in downstream tasks of coreference resolution. Ni et al. [13] in-
vestigated how to combine specialized models built independently for each task to achieve
a complete joint task. They compared the effectiveness of hybrid-based and recurrent
convolutional neural network (RCNN) models.

The second category involves using both intent and slot labels bidirectionally to en-
hance the model’s performance on these two correlated tasks. For example, E et al. [14]
designed an iterative mechanism for joint tasks in their proposed network. Liu et al. [15]
used stacked blocks to achieve a joint global representation of slot and intent information
and released a Chinese dataset. Wu et al. [16] introduced a non-autoregressive model to
enhance inference speed. Zhang et al. [17] proposed a graph neural network-based model
to realize semantic interaction between entities, sentences, and documents. Qin et al. [18]
proposed a non-autoregressive model with graph interaction layers. Qin et al. [8] proposed
a co-interactive transformer that considers the cross-impact between the two tasks. Xing
and Tsang [7] proposed a two-stage network, in the first stage of which initial estimation
labels for two tasks are generated, and in the second stage, they are used to mutually
guide each other. Ma et al. [19] decomposed slot filling into two stages of slot proposal
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and slot classification to address the significant differences in slot positions for the same
intent in different utterances. Xing and Tsang [20] constructed a heterogeneous label graph
containing two topologies and used the proposed ReLa-Net model to capture label cor-
relations. Song et al. [21] fully utilized the statistical co-occurrence frequency between
intent and slots as prior knowledge to enhance the joint task. Abro et al. [22] encoded
domain knowledge using regular expression rules to enhance the model’s performance
when transferring to a new domain with limited training data. Hao et al. [23] introduced
an intent embedding matrix to guide slot filling tasks with intent information and applied
it to their released agricultural dataset AGIS. He et al. [9] integrated the WordNet knowl-
edge base with a BiLSTM model through an attention mechanism, providing additional
semantic information to enhance text comprehension. Dao et al. [24] studied the impact
of disfluency detection on downstream tasks of IDSF. Tavares et al. [25] further integrated
intent inference and slot filling tasks with dialogue state tracking tasks to obtain more
accurate dialogue state inference results. Castellucci et al. [26] introduced a multilingual
recurrence-less model for joint tasks. Stoica et al. [27] introduced a capsule network struc-
ture for Romanian joint tasks. Dao et al. [24] presented the first public IDSF dataset for
Vietnamese. Akbari et al. [28] established a Persian benchmark for joint IDSF based on
the ATIS dataset. Firdaus et al. [29] proposed a multilingual multitask model that shares
sentence encoders among three languages.

While the above studies have focused on modeling the inter-dependencies between
intent and slot tasks, they place relatively less emphasis on fully exploiting the textual
semantics. Our proposed framework strengthens the role of semantic features by using
intent and slot information to dynamically guide the text representations. The focus is on
integrating this semantic guidance into the joint modeling.

3. Methodology

This section presents the details of the SG framework designed for IDSF, as illustrated
in Figure 1. The framework incorporates various components and strategies, including a
feature extractor, a label attention extractor, feature fusion, dynamic gates, and two separate
classifiers for IDSF.
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Figure 1. Overview of the proposed semantic guidance framework.

3.1. Compatibility Settings

To ensure the compatibility of each stage in the SG framework, the vector matrices of
the different stages are dimensionally transformed. Initially, in the feature extraction stage,
the input data are first extracted into a 300-dimensional feature matrix, whose dimension
is restricted by the GloVe pre-training model, and later subsequently transformed into
a 768-dimensional feature matrix by BiLSTM, thus preparing for the subsequent label
attention extraction with the matched shape. The feature matrix is then fed into the label
attention extractor, which contains two paralleled label attention blocks with identical
input and output shape to the 768, respectively, and specifically for intent and slot label
extraction. Subsequently, the two feature matrices are spliced into a 1536-dimensional
vector and fed into 12 dynamic gates parallelly. In order to enable the features to be fused as
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semantic guides for the textual information in BERT, the vector is transformed into two 768-
dimensional feature matrices. Finally, in the feature fusion stage, the two 768-dimensional
semantic guide vectors, separately acting as key and value, are deeply fused with the same
shaped text information as used in BERT.

3.2. Feature Extractor

The 300d GloVe pre-training model [30] is used to extract the initialization vectors
of the text, which is a popular word embedding learning method that combines global
statistical information and local contextual information to learn word vectors. Subsequently,
initialization vectors are fed into BiLSTM to obtain rich contextual information. BiLSTM
reads the input sequence forwards and backwards to obtain context-sensitive hidden
states at each time step. Specifically, for the input sequence {x1, x2, x3, . . . , xn} where n
is the number of words in the sequence, BiLSTM will generate a series of hidden states
H = {h1, h2, h3, . . . , hn}.

3.3. Label Attention Extractor

Building upon the achievements of Cui [31] and Qin [8] et al. in capturing labeled
word vector features, we introduce an attention mechanism to create a labeled attention
extractor. This extractor enhances the focus on both intention and slot representations.
Specifically, the two fully connected layer weight matrices are initialized as weight matrices
for intentional and slot filling representations, respectively, as follows:

Ws ∈ Md×nS
(1)

WI ∈ Md×nI
(2)

where Ws denotes the weight matrix of the slot filling representation, WI denotes the weight
matrix of the intent representation, M denotes matrix, nI denotes the number of labels
for the intent, nS denotes the number of labels for the slots, and d denotes the hidden
layer dimension.

First, the output vectors of the extractor are initialized through matrix multiplication
and then activated via the Leaky ReLU activation function to obtain the label importance
distributions of the intent and slot representations, the formulas of which are as follows:

IntentScore = f (WI ·vI) (3)

SlotScore = f (WS·vS) (4)

where vI denotes the intent vector features, vS denotes the slot vector features, · denotes
matrix multiplication, and f (·) denotes the activation function of Leaky ReLU, which aims
to alleviate the neuron death problem of zero-value gradient by introducing a small positive
slope that allows a non-zero output for negative input values. IntentScore and SlotScore
denote the labeled importance distribution of intents and slots, respectively.

Finally, the label importance distributions are weighted with the corresponding orig-
inal fully connected weight matrices to obtain the final intent representation and slot
representation, the formulas of which are as follows:

FI = IntentScore + WI (5)

FS = SlotScore + WS (6)

where FI denotes the intent representation and FS denotes the slot representation.
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3.4. Dynamic Gates and Feature Fusion

Dynamic gates and feature fusion are designed to integrate intent information, slot
information, and text information. The main idea is to utilize intent and slot information
to guide textual representation. The specific network structure is shown in Figure 2. The
intent representation is fused with the slot representation and eventually represented as
keys and values, which are used together with the text semantics to compute the attention
weights. Specifically, 12 dynamic gates are specifically designed for fusing intent and
slot features. It is worth noting that each of these 12 dynamic gates corresponds one of
12 encoders in the BERT [32] model, which helps to integrate the intent and slot features
into the serialized textual representation while dynamically adjusting the importance of the
intent and slot features. This complex fusion mechanism is able to efficiently integrate and
reconcile text, intent, and slot information throughout the model architecture. Specifically,
intent and slot features are spliced into a vector, and then fed into the 12 dynamic gates.
The expression for the corresponding feature set vector is as follows:

F = C(FI , FS) (7)

where F denotes the feature after intent and slot fusion and C(·) denotes the concatenation
operation that stitches two 768-dimensional vectors into one 1536-dimensional vector.
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By resetting the weight of the input feature vector, we apply the dynamic gates
mechanism to obtain the normalized vector Gi as follows:

Vi = F·wi + b (8)
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where Vi ∈ [0, 1], i ∈[1, 12] denotes the intent and slot fused features of the output of
the i-th dynamic gate, wi ∈ [0, 1], i ∈ [1, 12] denotes the weight of the i-th dynamic gate
corresponding to the i-th layer encoder of BERT, and b denotes bias.

Subsequently, the feature is split into key and value after passing through the activation
function, the formulas of which are as follows:

Keyi, Valuei = S( f (Vi)) (9)

where f (·) denotes the activation function of Leaky ReLU and S(·) denotes the splitting
operation, dividing the 1536-dimensional vector output of the dynamic gates unit into two
768-dimensional vectors, which are the input of the BERT framework. Keyi and Valuei
denote the key and value of the i-th visual feature corresponding to the i-th encoder of
BERT, respectively.

Finally, the contextual query (Q) provided by the textual modality meets the value (V)
and key (K) based on the visual modality. Both of them are injected simultaneously into
the BERT framework to compute the attention parameters between different modalities.

3.5. Classifiers

The slot filling classifier is specifically designed to accurately predict the class of slots
in a given sentence. This task is achieved through a dual approach: the conditional random
fields (CRFs) layer and the fully connected (FC) layer. Together, they play a crucial role in
identifying diverse slot filling types. The CRFs model is a well-suited choice for sequence
annotation tasks, as it aims to assign labels to individual units within a sequence. In our
research, the global word vectors generated by BERT are fed into the FC layer to construct
a labeled sequence y = {y1, y2, . . . , yn}. Then, the CRFs layer calculates the observed
conditional probability of a given labeled sequence y based on the hidden vector HL of
BERT. Following maximum likelihood estimation, the prediction result LCRF is shown in
the following equation:

p(y|HL) =
∏n

i=1 T(yi−1, yi, HL)

∑y′∈Y ∏n
i=1 T

(
y′i−1, y′i, HL

) (10)

LCRF = −∑M
i=1 log(p(y(i)|HL)) (11)

where T(·) denotes the transition function. Given an input sequence HL and a pair of con-
secutive labels, for instance, yi−1 and yi, this function computes the percentage probability
of the chosen label sequence relative to the entire set of possibilities. Here, Y signifies the
predefined set of labels, formulated according to the BIO labeling scheme.

An intent detection classifier is designed to predict the intent type expressed in a
sentence. In this paper, the [CLS] vector outputted by BERT is used as sentence vector. It is
an approach that has shown significant performance in several natural language processing
tasks owing to the richness of semantic information of the vectors [33]. Subsequently, the
sentence vector is fed into the FC layer for sentence intent prediction.

4. Experiments

In this section, the experimental results of comparative experiments are shown to
demonstrate the effectiveness of the SG framework. In addition, an ablation study is
performed for each of our newly proposed architectures.

4.1. Dataset and Settings

In the experimental setup, two benchmark datasets are utilized to evaluate the per-
formance of IDSF tasks, which are ATIS [2] and SNIPS [34]. The ATIS dataset contains
recordings of booking flights, whose training set contains 4478 utterances, development set
contains 500 utterances, and test set contains 893 utterances. SNIPS was collected from the
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Snips personal voice assistant, whose training set contains 13,084 utterances, development
set contains 700 utterances, and test set contains 700 utterances.

Some hyperparameters are set initially as follows: the Adam optimizer with a learning
rate of 1 × 10−5, batch size of 32, training epochs of 30, and a cap on sentence length at
32 tokens. Moreover, to convert vector values to probabilities effectively and enhance
computational speed, the ReLU activation function is integrated.

4.2. Comparative Experiments

To scientifically evaluate the performance, several baseline models were selected
for comparative experiments and compared with our model. The baseline models are
listed below.

Slot-Gated [2] focuses on learning the relationship between intents and slots through
slot gates, leading to better IDSF task performance in global optimization.

SF-ID Network [14] guarantees a bi-directional correlation between intents and slots
through the SF sub-network and ID sub-network. By using an innovative iterative mech-
anism, the model mutually promotes these two tasks during training, leading to better
global optimization.

CM-Net [15] utilizes a novel collaborative memory network that first obtains slot-
specific and intent-specific features from memory collaboratively and then uses these
features for modeling. By leveraging the co-occurrence relationship between slots and
intents, it achieves better global optimization when training end-to-end models.

Stack-Propagation Framework [4] proposes a framework that incorporates token-level
intent detection to capture intent semantic knowledge by directly using the intent as input
for slot filling. This approach better integrates intent information through a joint model of
stack propagation and effectively reduces error propagation, thus improving overall model
performance.

Co-Interactive Transformer [8] introduces a Co-Interactive module that establishes a
two-way connection between IDSF. Through a specific mutual attention mechanism, intents
and slots can pay attention to each other’s information, thus enabling deep interaction
between intents and slots and improving overall task performance.

The results of the comparison experiments are shown in Table 1.

Table 1. Performance of comparative experiments running on our same local machine.

Model
ATIS SNIPS

Slot (F1) Intent (Acc) Overall (Acc) Slot (F1) Intent (Acc) Overall (Acc)

Slot-Gated * [2] 88.72 95.22 74.80 94.20 93.66 82.90
SF-ID Network * [14] 90.55 96.15 78.84 94.72 96.58 86.24

CM-Net * [15] 93.40 96.75 84.53 95.14 96.24 85.47
Stack-Propagation * [4] 94.25 97.05 86.95 95.44 97.15 86.65

Co-Interactive Transformer * [8] 95.65 96.81 86.45 95.20 98.11 88.92
SG framework * 96.55 97.54 88.20 95.60 98.43 89.30

All asterisks (*) denote results run on the local machine.

Overall, the SG framework model significantly outperforms the benchmark model. On
the ATIS dataset, the SG framework improves the F1 score on the slot filling task by about
1% compared to the other models. Similarly, it improves the correctness of intent detection
by about 1%, and improves the overall correctness by about 2%. On the SNIPS dataset, the
SG framework improves the F1 score on the slot filling task by about 1.5% compared to
the other models. Similarly, the correctness of intent detection improves by about 1%, and
the overall correctness impressively improves by about 1%. The results show that the SG
framework achieves better results on both the IDSF tasks. Most importantly, the design
of the 12 dynamic gates ensures that the intent and slot features can effectively interact
with each encoder layer of BERT to capture richer contextual information. In this way, our
framework not only takes advantage of the powerful representational capabilities of BERT,
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but also ensures that these representational capabilities are fully utilized throughout the
model. Dynamic gates can automatically adjust the weights based on the input features,
thus realizing adaptive feature fusion. Compared to simple feature splicing or weighted
averaging, the dynamic gate mechanism can explore the interactions between different
features in greater depth, which not only enhances the expressiveness of the model, but
also ensures that critical information is kept in the fusion process.

4.3. Ablation Study

This section presents a series of ablation experiments conducted to evaluate the
individual contributions of each component for the overall performance of our proposed
model. Specifically, these experiments aim to validate the effectiveness of various modules
in the following configurations:

Model 1: Intent label attention is used only as a guide for text semantics. With this
configuration, it is possible to compare it with a version that employs both intent label
attention and slot label attention strategies.

Model 2: Slot label attention is used only as a guide for text semantics. With this
configuration, it is possible to compare it with a version that employs both intent label
attention and slot label attention strategies.

Model 3: Dynamic gates are replaced with 12 MLP layers, corresponding to the 12 encoder
layers. This configuration can be compared to the version with the dynamic gates strategy.

According to the results in Table 2, for both the ATIS and SNIPS datasets, we can draw
the following conclusions:

Table 2. Ablation experiments for the proposed model.

Model
ATIS SNIPS

Slot (F1) Intent (Acc) Overall (Acc) Slot (F1) Intent (Acc) Overall (Acc)

Model 1 96.14 96.88 87.25 95.33 97.95 88.75
Model 2 95.87 96.35 87.03 95.12 97.50 88.62
Model 3 94.85 95.56 86.32 94.35 97.02 88.21

SG framework 96.55 97.54 88.20 95.60 98.43 89.30

To begin with, using only intent label attention as textual semantic guidance reduces
the slot filling F1 scores by about 0.4% and 0.3%, respectively, the correct rates of intent
detection by about 0.7% and 0.5%, respectively, and the overall correct rates by about
1% and 0.5%, respectively. Subsequently, using only slot label attention as text semantic
guidance reduces the slot filling F1 scores by about 0.8% and 0.5%, respectively, the correct
rate of intent detection by about 1.2% and 1%, respectively, and the overall correct rate
by about 1.2% and 0.7%, respectively. It can be seen that the intent label plays a more
crucial role in semantic guidance. The intent label provides a more macroscopic semantic
framework for the model, which provides context for specific information in the text, thus
helping the model to better interpret this information, whereas the slot label, although
useful in some contexts, may rely more on the overall intent information to provide it with
semantic context. Notably, the model works best when intent label attention and slot label
attention are used jointly. This suggests that while intent labeling alone may be more critical
than slot labeling, when the two are combined, they complement each other in capturing
the details and overall semantics of the text for optimal performance. Finally, replacing
the dynamic gate model with the MLP layer results in a severe performance degradation.
Specifically, the F1 score for slot filling drops by about 1.7% and 1.25%, respectively, the
correctness of intent detection drops by about 2% and 1.4%, respectively, and the overall
correctness drops by about 2% and 1%, respectively. The experiments demonstrate that this
substitution leads to the most significant performance drop among all ablation experiments.
This highlights the pivotal function of dynamic gates in influencing model performance.
Dynamic gates possess the capability to automatically fine-tune feature weights based
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on inputs, facilitating adaptive feature fusion, while the MLP layer in isolation lacks this
adaptive capability.

4.4. Discussion

The SG framework demonstrates exceptional performance on the ATIS and SNIPS
datasets, highlighting its pivotal role in advancing SLU systems. It surpasses traditional
models in terms of accuracy for both IDSF tasks, thanks to its dynamic semantic process-
ing capabilities.

With the ATIS dataset, tailored for travel-related inquiries, the SG framework distin-
guishes between different user intents with finesse. For example, it adeptly discerns a
general flight query from an explicit booking request, streamlining responses for users
seeking flight information or making travel arrangements. This is crucial for enhancing the
efficacy of online booking services.

When applied to the SNIPS dataset, the framework’s versatility becomes evident
as it accurately processes a wide array of voice commands. For instance, a user’s com-
mand to play music, like “Play the latest album by Coldplay on Spotify”, is interpreted
with precision, catering to specific requests and enhancing user interaction within smart
home environments.

The adaptability of the SG framework in these scenarios underscores its practical
application and potential for integration into various forms of SLU technology. Recognizing
the significance of context and dialect variations, future developments will focus on further
refining the model’s ability to handle the intricacies of natural language. This paves the
way for SLU systems that are more intuitive and efficient in terms of user communication
across diverse settings.

5. Conclusions

Our proposed SG framework effectively combines intent labeling attention and slot
labeling attention to better capture the overall semantics and details of text. Additionally,
the dynamic gate strategy is designed to adaptively adjust the weights according to the
input features, which in turn enables adaptive feature fusion. Experimental results show
that the SG framework significantly outperforms existing state-of-the-art models, achieving
about 1% and 1.5% improvements in F1 scores, respectively. These results demonstrate the
effectiveness of our approach and prove the feasibility of enhancing the input semantic
information by using intents and slot labels. In future work, we plan to evaluate the
performance of the SG framework in different domains and optimize the training speed of
the model.
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