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Abstract: The problem of traffic assignment consists of determining the routes taken by the users of
transportation infrastructure. This problem has been the subject of numerous studies, particularly in
analyzing scenarios for developing road infrastructure and pricing strategies. This paper reviews
the major progress in the field. Accordingly, it shows that the evolution of intelligent transportation
systems and the emergence of connected and autonomous vehicles present new challenges to classical
approaches for solving the traffic assignment problem. It addresses two major perspectives: digital
twins coupled with artificial intelligence to help decision-makers, and rule-based policy to offer users
fair and efficient itineraries while respecting infrastructure capacity.

Keywords: traffic assignment; user equilibrium; intelligent transportation systems; smart cities

1. Introduction

As megalopolises expand and residents increasingly rely on motor vehicles, the chal-
lenges of congestion, energy issues, and pollution become major concerns that must be
addressed in the coming years. The data-driven trend shows that congestion progressively
worsens yearly in most major cities, as demonstrated by navigation system-based statis-
tics (https://www.tomtom.com/traffic-index/ranking/, accessed on 10 November 2023,
Copyright © 2023 TomTom International BV, all rights reserved). Given this mounting
pressure, cities require robust traffic prediction and simulation tools to assist them in
finding solutions.

The modeling of road traffic encompasses various elements, including driver behavior,
road configurations, and the diversity of vehicle flows. The experiences of drivers depend
on the type of network they use. Interest in this complex field of research has been growing
since the early 20th century. Traffic modeling empowers road network authorities to
enhance infrastructure management by investing in new facilities, optimizing vehicle flow,
preventing congestion, and rapidly detecting incidents or accidents for prompt resolution.
Two complementary approaches are essential for modeling traffic within a road network:
flow modeling, which describes the evolution of traffic flows on road segments, and traffic
assignment modeling, which explains how users choose their routes within a network.

Traffic assignment is of particular interest in the field of traffic engineering as it
constitutes a crucial step in the processes of traffic simulation and transportation forecasting.
In general, traffic assignment involves defining the routes of users based on transportation
supply and demand. It anticipates the number of vehicles using each segment of the
transportation network during a given time period. The transportation demand is described
as the number of users wishing to travel from a set of origin nodes to a set of destination
nodes during the studied period. The supply is the transportation network, which refers to
the road network with its characteristics, including connections between roads, flow-speed
curves of roads, number of lanes, intersection regulation, etc.

Traffic assignment has a century of research and over half a century of practical
application. Traffic modeling and simulation software development has significantly
contributed to the use of traffic assignment results in transportation network investment
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projects. The results of traffic assignment enable the assessment of various planning
scenarios, such as the construction of a bridge, the renovation of a railway line, tolling on a
highway, or simply a change in traffic direction. The evaluation of the results assesses the
impact on transportation network users, traffic conditions, and the environment.

Numerous literature reviews on traffic assignment abound in academic literature.
Special emphasis has been placed on traffic assignment from various perspectives, includ-
ing traffic control [1], the convergence of simulation-based assignment [2], and the used
models of traffic flow [3]. More recently, other notable areas include the application of
traffic assignment for sustainable road traffic [4,5], evolutionary game theory applied to traf-
fic [6], and bridging user equilibrium and optimal solutions in static traffic assignment [7],
among others.

In contrast to the aforementioned papers, this review adopts a more generalist ap-
proach. Its primary purpose is to offer a broad introduction to the field of traffic assignment,
catering to readers of all expertise levels. The review highlights significant contributions
that constitute the domain’s foundational pillars of theory and methodology, drawing on
well-established and widely recognized fundamental contributions in the field. Impor-
tantly, this literature review avoids being application-specific. It refrains from delving into
detailed discussions of traffic models, particular frameworks of transportation forecasting,
or specific applications in reality. Instead, it focuses on introducing key contributions in the
field and outlines future directions based on technological advancements in transportation.
More precisely, it revisits the fundamental concepts of traffic assignment and juxtaposes
them with the advancements in intelligent transportation systems in order to address
promising directions.

The rest of the paper is organized as follows. Section 2 presents the problem statement,
gives the scope of Section 3, and ends with an illustrative example. This section aims to
introduce the reader to the most important direction of the research in the domain. Section 3
presents the concept of traffic assignment and how the problem could be solved in a decen-
tralized manner. Section 4 focuses on extending the model to handle public transportation
and policies for improving traffic conditions. A discussion on emerging techniques and the
challenge regarding traffic assignments in the upcoming years is presented in Section 5,
which focuses mainly on the impact of the progression of intelligent transportation systems.
Finally, the paper is concluded in Section 6.

2. Preview

The problem of traffic assignment has been a subject of study for a century [8]. It
has yielded a plethora of intricacies and specialized scenarios. To maintain clarity and
coherence and avoid delving into specific cases in the field, this section delineates the
scope of Section 3 of the paper. This preliminary section will first present the problem
statement, the mode of transportation, and the primary user’s criterion under examination
in Section 3 of the paper. It ends with an illustrative example that will be referenced
throughout the article.

2.1. Problem Statement

Traffic assignment deals with transportation traffic. It involves the following
input elements:

• Traffic supply: Road network and/or public transportation services as well as their
corresponding behaviors.

• Traffic demand: A flow matrix indicating the demand volume between each origin–
destination (o–d) pair.

The most extensively researched traffic assignment problem pertains to road traffic,
aiming to estimate traffic demand for individual road segments and movements at inter-
sections, including right and left turn movements. In the case of public transportation
demand, the goal is to determine the number of passengers for each bus or rail line, along
with estimates of boarding, alighting, and connecting passengers at each station. In other
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words, the output of traffic assignment specifies the routes used for each o–d pair, with the
corresponding volume.

This problem was initially formulated for regular vehicles in 1920 by Pigou [8]. The
author distinguishes between two classes of traffic assignment problems. The first is
centralized, involving the optimal allocation of a fleet of vehicles on a transportation
network. The entity responsible for the fleet’s mission optimizes the vehicle assignment
according to its specific objectives. The second class, presented in Section 3 of the docu-
ment, is decentralized. The assignment results from the optimization that each user of the
transportation network performs for their benefit. This second class of problems gained
particular attention in the literature following Wardrop’s contribution [9], who meritori-
ously formulated the problem. In the following, unless stated otherwise, the term “traffic
assignment problem” refers to the second class of problems.

2.2. User Criteria

We commonly refer to a generalized cost that influences user choice. The generalized
cost is defined as follows:

Definition 1 (Generalized cost). The generalized cost is the sum of the monetary and non-
monetary costs incurred by a road user in making a journey:

• The monetary costs, such as the costs of fuel consumption, vehicle’s depreciation and mainte-
nance, toll, and transport fare.

• The non-monetary costs, such as the travel time and user’s perception of comfort and convenience.

While the generalized cost aims to meticulously capture user behavior, the predom-
inant focus in most studies revolves around evaluating the influence of delays on route
selection. Users may also take into account factors such as energy consumption and tolls.
However, when examining travel time, it becomes apparent that it possesses unique char-
acteristics compared to other terms of the generalized costs. Firstly, time is the criterion
that most accurately represents the interplay between different user’s choices. The travel
time of a road segment increases with the growth of the number of vehicles. In contrast,
the toll for a particular section is generally a constant, unaffected by the number of users
of that segment, at least in a short-term horizon. Secondly, extended journey duration is
a result of congestion. This congestion, in turn, increases both energy consumption and
road user discomfort. Finally, monetary costs are often integrated into the decision-making
process to compensate for the travel time. For example, toll considerations are studied to
address environmental pollution [4,10–12]. In these studies, the toll price is computed to
influence the route choices based on travel time.

2.3. Mode of Transport

Road traffic assignment research has garnered significant attention due to its clear
illustration of the relationship between the number of vehicles using the same road and the
resulting travel time. This interdependence emerges as congestion and delays manifest with
an increasing number of vehicles sharing a particular road segment. Similar considerations
apply to public transportation; however, there are some distinct nuances to consider. Firstly,
there is often less flexibility in choosing alternative routes. Secondly, the implications of
route selection become pronounced when the transport system approaches its capacity,
leading passengers to wait for the next available bus, tram, or train. Consequently, as
is also generally assumed for individual vehicles, travel times extend as demand on the
transportation line intensifies. Notably, this increase occurs progressively in increments.
For the sake of clarity, we will focus on road traffic assignment, addressing other modes of
transportation in the second part of the paper.
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2.4. Illustrative Example

To illustrate the previously communicated scope of the studied traffic assignment
problems, a concrete example is presented in the following. Let us consider the road
network presented in Figure 1. This network represents the traffic supply. It has one origin
and one destination, named o and d, respectively. There are two itineraries to link d to o.
Each itinerary, ki, is a road segment, ai, with a given capacity, Qi

max, and a function relating
the travel time, ci(ri), to the flow, ri. We have for each road segment ri, the following
characteristics:

• In road segment a1, the capacity, Q1
max = 1800 vph, and the travel time behave

as follows:

c1(r1) = 10
(

1 + 2
( r1

1800

)2
)

. (1)

• In road segment a2, the capacity, Q2
max = 3600 vph, and the travel time behave

as follows:

c2(r2) = 20
(

1 + 2
( r2

3600

)2
)

. (2)

The time in Equations (1) and (2) is given in minutes. The presented time functions for
both roads are based on BPR [13] curves, which are widely used to model traffic behavior.
One can notice from Equations (1) and (2) that when both roads are empty, the users spend
10 min and 20 min for traveling a1 and a2, respectively. Naturally, a1 is more attractive
without considering the demand.

Figure 1. Example of a network of two alternative roads.

Let us examine a scenario involving 3000 vehicles destined to travel from origin
o to destination d within a one-hour time interval. We denote this demand as qod, and
consequently, qod = 3000 vph. Figure 2 illustrates all possible scenarios of traffic assignment.
This figure gives c1 and c2, according to r1 and r2. Note that, from the problem statement,
we have r1 + r2 = qod. From this figure, three assignments can be distinguished:

• Shortest path (All-or-nothing): Without considering Equations (1) and (2) as though
both roads are devoid of traffic, all vehicles follow road a1 because it is the shortest path.
However, since travel time increases with traffic flow, an all-or-nothing assignment
cannot be adopted to predict road use. In this figure, the solution of the all-or-nothing
assignment is presented by a green circle. According to Equation (1), the users spend
more than an hour to go from o to d.

• Optimal assignment (Centralized): If we consider that energy consumption is propor-
tional to travel time, the manager of a fleet of the 3000 vehicles has a strong incentive
to minimize the average travel time. The red curve in Figure 2 presents the average
travel time. The optimal solution is represented by the red circles. One can note that,
with this solution, the vehicles taking road a1 spend less travel time than the ones
using road a2.

• Fair assignment (Decentralized): In this configuration, each vehicle optimizes its
itinerary, so that there is no better solution. The fair assignment is represented by the
yellow circle.
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Figure 2. Illustration of three approaches of traffic assignment: All-or-nothing (Green point:
r1 = 3000 vph, r2 = 0 vph, caverage = c1 = 66 min, c2 = 20 min), Optimal (Red points: r1 = 1368 vph,
r2 = 1632 vph, caverage = 25 min, c1 = 21 min, c2 = 28 min), and Fair (Yellow point: r1 = 1609 vph,
r2 = 1391 vph, caverage = c1 = c2 = 26 min).

This example clearly illustrates the difference between centralized and decentralized
assignments. Assuming a cost proportional to travel time, the discrepancy in the sums of
travel times between decentralized and centralized assignments is generally referred to as
the cost of anarchy [14].

3. Traffic Assignment: Theoretical Background

Research on traffic assignment can be classified in various ways, such as being based
on problem formulation, expected objectives, methodologies, models used, and assump-
tions about demand, etc. In the following, we consider the classification commonly used
in the literature, which distinguishes approaches based on the consideration of traffic
dynamics over time. Thus, we first present a static traffic assignment, introducing concepts,
definitions, and problem formulations. We then move on to dynamic assignment, where
the concepts and algorithms used will be discussed.

3.1. Static Traffic Assignment (STA)

The assignment is categorized as static when the assumption is made that users sharing
the same road segment have the same experience during the designated time interval under
study. This is exactly the assumption taken in the curves presented in Figure 2 used in the
illustrative example (see Section 2.4), where the vehicles using the same road are assumed
to experience the same travel time. This type of assignment aligns well with a macroscopic
traffic model. In this context, flow-speed curves do not account for variations in speeds
between the first and last vehicles traversing the segment during the specified time period.
The same can be said for the BPR curves. This assumption shapes how the traffic supply is
modeled. All that remains is to define the behavior of the decentralized demand, formulate
the problem analytically, and solve it numerically. In the following, we present the two
major assumptions about the demand behavior and the resolution methods. Within the
context of STA, both static and stochastic user equilibrium assumptions are the most used
in the literature [15].

3.1.1. User Equilibrium (UE): Definition and Formulation of the Problem

In the illustrative example, it is evident that the fair assignment (depicted by the
yellow circle in Figure 2) aligns with the preferences of rational road users, each striving to
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minimize their travel time. Indeed, we are dealing with independent users, where each
user seeks their own interest. The first Wardrop principle describes the behavior of users
within this assignment. This principle is given by the following definition:

Definition 2 (First Wardrop Equilibrium Principle). An assignment is said to be at equilibrium
according to the first Wardrop principle if the following two conditions are satisfied:

• For each origin–destination pair, o–d , the generalized costs of each utilized route are less than
or equal to those of alternative (unused) routes.

• If multiple routes are used for an o–d pair, their generalized costs are equal.

According to the definition of the Wardrop principle, it is clear that no user has an
interest in changing their route alone. Indeed, if they modify their route, they increases the
cost of their journey. This principle is also known as a UE.

Several mathematical formulations of Wardrop’s first principle can be found in the
literature. In the following, we present the one given in [16]. Let there be a network of
vertices that includes demand origins and destinations, denoted, respectively, as o ∈ O
and d ∈ D. Let a constant demand, qod, be assigned to a set of routes, Kod. Noting the flow
assigned to route kinKod by rod

k , we have

∑
k∈Kod

rod
k = qod. (3)

Equation (3) reflects the fact that all demand from o to d is affected. The Wardrop’s
first principle of UE is written as follows:

c(k′) = mink∈Kod(c(k)) ⇒ r′od
k ≥ 0

c(k′) > mink∈Kod(c(k)) ⇒ r′od
k = 0,

(4)

where c(k) is the generalized cost of route k.
Let us note from Equation (4) that the first principle is not written in the classical form

of an optimization problem, i.e., an objective function under constraints. Although the
formulation given in Equation (4) is common, the contribution of Beckmann et al. [17]
has enabled us to reformulate the problem by distinguishing between each segment of the
road network.

Let us consider the road network represented as a graph, G = (S, A), where S denotes
the set of vertices, s ∈ S, and A represents the set of directed arcs, a ∈ A. The vertices stand
for points of interest and intersections. We have O ⊂ S and D ⊂ S. Each road segment is
modeled by a directed arc, a, connecting two vertices, si and sj, where i ̸= j. Each route,
kod, consists of a set of successive arcs, a ∈ Iod

k . Therefore, we have

c(kod) = ∑
a∈Iod

k

c(a), (5)

where c(a) denotes the generalized cost of arc a (route segment). This Equation (5) states
that the generalized cost of a route is the sum of the costs of its constituent arcs. This is true
in the case where the generalized cost is the travel time; see Section 2.2. For all o–d and all
kod routes, the calculation of rod

k defines the flow through each arc, a, of the graph, G. Let us
denote ra, the flow assigned to arc a. Thus, we have

ra = ∑
Iod
k ∋a

rod
k . (6)

In other words, the flow assigned to arc a is equal to the sum of the flows of all routes
that pass through this arc.

The static traffic assignment at equilibrium involves solving the following optimiza-
tion problem:
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min
ka

∑
a∈A

∫ ra

0
ca(z)dz

s.t. (3), (5), (6)

rod
k ≥ 0, ra ≥ 0

(7)

The problem (7) is a convex optimization problem as it involves minimizing an integral
of an increasing function over a compact domain. Note that, from (7), it is possible to
abstract away the routes simply by adding flow conservation constraints. In other words,
constraints (3), (5), and (6) can be replaced by the following constraints for each vertex s:

∑
a∈A+

s

ra = ∑
a′∈A−

s

ra′

∑
a∈A+

o

ra = ∑
d∈D

qod

∑
a∈A−

d

ra = ∑
o∈O

qod

, (8)

With A+
s and A−

s denoting, respectively, the sets of outgoing and incoming arcs of
vertex s, and with constraint (8), it is evident that the solution obtained from the problem
no longer provides the users’ routes. It substitutes them with the number of users per
road segment. Thus, for a static traffic assignment problem, the UE problem aims to find
the optimal flow rates on road segments. The solution allows for multiple possible route
configurations [18].

To show the approach, let us consider the illustrative example given in Section 2.4
Figure 2. The UE problem given in Equations (3) and (4) consists of finding r1 and r2 such
that q1 + q2 = qod and t1 = t2. The alternative problem formulation is

min
∫ r1

0

(
10
(

1 + 2
( z1

1800

)2
))

dz +
∫ r2

0

(
20
(

1 + 2
( z2

3600

)2
))

dz

s.t. r1 + r2 = 3000 vph

r1 ≥ 0, r2 ≥ 0

(9)

With only these two roads (r2 = 3000 − r1), it is possible to obtain the analytical
solution to problem (9) by searching where the derivative of the function equals zero:

10
(

1 + 2
( r1

1800

)2
)
− 20

(
1 + 2

(
3000 − r1

3600

)2
)

= 0

r1 = 600
(√

59 − 5
)

r1 = 1609 vph

. (10)

We draw the reader’s attention to the first line of Equation (10). This expression is
obtained by taking the derivative of the function to be minimized. It is worth mentioning
that setting the derivative function to zero is equivalent to expressing c1 − c2 = 0. If
there are only two available roads, solving the problem analytically is straightforward.
However, numerical approaches, such as gradient descent-based methods, are needed to
find a solution when dealing with multiple road segments.

3.1.2. Stochastic User Equilibrium (SUE)

The Stochastic assignment was introduced to address issues arising from the UE
assumption [19] within the framework of the static assignment. For various reasons, users
might have imperfections and variations in their perceived generalized costs of travel. One
reason is that users may have different experiences in the same segment during the study
period. Another reason for this is that users do not have perfect knowledge of the costs
associated with different options. Hence, a route is chosen based on a probability relative
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to its travel time. More precisely, the stochastic assignment is based on the following
principles [20,21]:

• All reasonable options can be chosen, even if their probability of selection is very low
(In [20], the author describes the concept)

• If two options have the same cost, the probability of selection is the same.
• The probability of choosing options depends on their costs: a route with a higher cost

has a lower probability of being chosen.
• The user of the SUE model must have some control over the probability of divert-

ing routes.

The principles of SUE incorporate a term of random error in the generalized cost
of the route. Generally, this term is assumed to follow Gumbel, normal, and Weibull
distributions, which correspond, respectively, to choice models based on logit, probit, and
weibit models [22–24]. The logit-based model is the most commonly used in the literature
on traffic assignment ([24,25]). According to the logit model, the probability of choosing
route k is as follows:

Pk =
exp (−θ · c(k))

∑i∈Kod exp (−θ · c(i))
, (11)

where θ is the diversion factor. This is the controlling variable for variations in users’
perceptions of travel costs. When θ = 0, all routes will have an equal probability of being
selected. As θ → ∞, the least costly route will be chosen. With this probability expression,
Fisk [23] extended the formulation of the UE problem (7) to encompass the multinomial
logit model of SUE. The problem is formulated as follows:

min
ka

∑
a∈A

∫ ra

0
ca(z)dz +

1
θ ∑

o∈O
∑

d∈D
∑

k∈Kod

rod
k ln

(
rod

k

)
s.t. (8)

rod
k ≥ 0, ra ≥ 0

. (12)

Other works have extended the objective function [26–29] of the problem posed in (12).
This extension aims to consider the overlap between routes by introducing a conditional
probability of route choice.

3.1.3. Approaches to Solving Static Assignment

To solve problems (7) and (12), several studies have relied on the Generalized Non-
linear Optimization Algorithm by Frank and Wolfe (FW) (1956) [30]. The minimization
problem of a convex function under linear constraints is approximated from a feasible
solution through manageable linear optimization problems using the simplex algorithm.
The main drawback of Frank and Wolfe’s algorithm is its slow convergence rate [31]. To
improve algorithm convergence in the context of traffic assignment, related methods have
been proposed in [32–35]. In addition, Refs. [36,37] have proposed methods based on re-
stricted simplicial decomposition (DSR) to handle large networks by decomposing the
assignment problem into sub-problems. Other iterative approaches are suggested in the
literature. Some are based on routes [38–40]. This approach begins with an assignment
solution where all used routes and their associated flows are known. Iteratively, flows
may shift from high-cost routes to low-cost routes to reach equilibrium. In [38], for each
o–d pair considered sequentially in a cyclic order, flows are shifted from the highest-cost
route to the lowest-cost route until both routes have the same cost. When the cost deriva-
tives at the links between the routes are known, they have been used to estimate flow
movements toward the minimum-cost route for each o–d pair [37,41]. Other approaches
are origin-based [17,40,42] or destination-based [43,44]. These approaches pose a challenge
when circuits exist. The authors in [18] propose an origin-based search approach, limiting
solutions to acyclic ones. The quasi-Newton method is employed to effectively shift flows
at each iteration and eliminate residual flows. Additionally, the authors in [45] proposed



Appl. Sci. 2024, 14, 683 9 of 25

a Barzilai–Borwein-based approach to expedite convergence, moving flows from costlier
to less costly routes [46]. Apart from the differences in the techniques for allocating flows
to the least-cost routes and the stopping criteria, the resolution of static traffic assignment
works according to an iterative approach, as presented in the Algorithm 1.

Algorithm 1 Static Traffic Assignment

• Initialization: Calculate initial routes (e.g., all-or-nothing assignment).
• Iterations with a stopping criterion:

– Road network loading: Load demand onto the road network along the routes
and obtain generalized costs (travel time: congestion).

– Generation of choice set: Compute new routes based on the network’s updated
generalized costs (travel time).

– Choice: Allocate demand among the routes based on the updated generalized
route costs (The allocation strategy varies depending on the optimization ap-
proach used, e.g., quasi-Newton method). This involves transferring a portion of
the flow to the least costly routes.

3.2. Dynamic Traffic Assignment (DTA)

Dynamic traffic assignment (DTA) considers changes in the perception of travel costs
based on demand dynamics, choices, traffic conditions, and network characteristics. Unlike
static traffic assignment, the vehicle’s departure time significantly influences the perceived
cost and, consequently, route choice. It is commonly accepted that a dynamic assignment
model should include the following elements:

• A traffic model in which congestion (travel time) varies over time.
• A time-varying demand.
• An equilibrium that is based on experienced travel cost, not instantaneous travel cost.

DTA has been studied for over forty years, and numerous research projects have
been carried out [47–55]. The first approaches were based on the formulation of the
dynamic assignment problem in the form of mathematical programming ([56–59]) or
optimal control ([60–62]). More recently, models with greater resolution in terms of time
steps, vehicle batches, and traffic interaction [3] are being used.

Macroscopic traffic models can be used for estimating the generalized costs experi-
enced by users [13,63–69]. However, mesoscopic [70] and microscopic [71–74] models are
more suitable. The main advantage of using these models lies in their ability to accurately
represent more detailed traffic phenomena, such as shock waves, expansion waves, and
queue spillback, thereby enhancing the realism of the assignment [4]. However, we draw
the reader’s attention to the fact that the microscopic simulation-based traffic assignment
raises many difficulties, such as convergence issues [2] and deadlock, that impede simu-
lated vehicles from reaching their destination (see Figure 3A). Over the last decade, DTA
has garnered significant attention due to the increased accuracy of the models used to
assess traffic performance within the framework of environmental considerations, such
as estimates of CO2 emissions and noise pollution. The use of DTA is not limited to
traffic prediction; it can also be leveraged for traffic optimization by comparing various
infrastructures or traffic regulation scenarios.
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Figure 3. Examples of microscopic phenomena: (A) Deadlock situation; (B) Comparison of scenarios
(B1,B2): Increased travel time due to the extension of green light time.

3.2.1. Time-Dependent User Equilibrium

In the context of DTA, the definition of the first principle of Wardrop’s equilibrium
(see Definition 2) is adapted to consider users’ departure schedules along with the travel
times they experience. In this context, we refer to it as dynamic user equilibrium, defined
as follows:

Definition 3 (Dynamic User Equilibrium (DUE)). The DUE refers to a situation in a trans-
portation network consisting of multiple origin–destination (o–d) pairs over a specific time period,
where the following conditions are satisfied:

• For each o–d pair and for each departure time interval, the routes taken by users exhibit a
generalized cost (experienced travel time) that is both equal and minimized to the extent possible.

• No user can unilaterally reduce their experienced generalized cost (travel time).

Definition (3) outlines the concept of DUE in a transportation network, considering
departure time intervals and the minimization of experienced travel times for users across
various o–d pairs.

Like Wardrop’s equilibrium defined for static assignment, DUE implies that different
routes or paths available to connect o–d zones are used so that the perceived travel time for
users is balanced and minimized. Moreover, dynamic equilibrium requires that no user can
unilaterally reduce their experienced travel time. This means that users cannot individually
choose to change their route to reduce their personal travel time without considering other
users and the consequences on the overall system equilibrium. However, this equilibrium
applies to each departure time interval, where no route should be significantly faster or
slower than others for a given o–d pair. Indeed, it is difficult to measure the travel time of all
alternative roads at a given instant (at the departure time of a given vehicle). The problem
of estimating travel time makes the search for DUE mathematically intractable [75,76]. To
overcome this problem, other definitions of the equilibrium, such as Boston traffic equi-
librium [60] and integral equilibrium [77] of the trajectory, have been proposed. However,
these approaches require verifying the generally accepted assumption of monotonic increas-
ing delay as a flow function. Even if this assumption is widely admitted in macroscopic and
mesoscopic traffic models, experience and microscopic models can sometimes invalidate
this assumption, mainly because intersection management is not accurately considered in
models with low resolution. Let us take the example of adaptive traffic lights that manage
the intersection of two alternative paths. Reducing the number of vehicles on one path will
increase the travel time of the remaining vehicles (see Figure 3B1,B2).

The relative gap measure is commonly employed for each o–d pair at a given departure
time interval (o–d, T) to assess solution quality. This gap quantifies the difference between
the total cost of paths used by vehicles and the total cost of the shortest path used by
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all vehicles [78]. The relative gap can be defined and expressed as follows to gauge the
proximity of an equilibrium solution [79]:

Rgap =
∑T ∑(o,d)∈δ ∑k∈Kod(T) rod

k (T)
(

c(kod, T)− µod(T)
)

∑t ∑od qod(T)µod(T)
, (13)

where µod(T) represents the generalized cost of the shortest path connecting origin–destination
(o–d) pair for time interval, T. Note that, in Equation (13), the expression

(
c(kod, T)− µod(T)

)
quantifies the difference between the cost experienced by the rod

k (T) vehicles following
path kod and the minimal cost, µod(T). If the conditions of dynamic equilibrium were met
at each time interval T, this difference would be null. Conversely, the greater the variation
in costs experienced by vehicles connecting the same o–d pair, the higher the value of Rgap
becomes. In practice, achieving identical travel times for a given o–d pair, especially when
measuring travel times based on a microscopic model, is challenging. Hence, the solution
of DTA is deemed valid when the relative gap is below an accepted threshold. At that
point, it is considered that the network in question has reached an equilibrium state.

In addition to the relative gap, other criteria can be taken into account, particularly
when travel demand is high. Microscopic simulation can reveal situations of waiting for
access to the network or of deadlock where no vehicle can move [80–82], as shown in
Figure 3A. The percentage of vehicles served is also an interesting indicator.

3.2.2. Resolving Approaches

The algorithmic procedures for static assignment and dynamic assignment share
comparable structures. The structure is outlined in Algorithm 1. The differences primarily
lie in the following elements:

• Initialization: In the majority of studies, the network is initialized using the all-or-
nothing assignment based on the computation of the shortest path. In the context
of STA, the shortest path is computed with an empty network. Consequently, the
all-or-nothing assignment associates a route with each origin–destination (o–d) pair
throughout the entire temporal horizon of the study. In the case of dynamic assign-
ment, the travel time (generalized cost) for a given route, kod, varies based on the
departure time intervals of vehicles. Indeed, with each new time interval, it is neces-
sary to update the generalized costs induced by vehicles already assigned in previous
time intervals. Thus, the search for the shortest path occurs progressively as the
network fills up.

• Iteration: Recall that, at each iteration, a flow of vehicles is shifted from a costly route
to a less costly one until a convergence criterion is met. In the context of DTA, this flow
shift occurs for all time intervals, T, within the study interval at each iteration. Several
approaches exist in the literature for determining the direction and quantity of the
traffic shift. The most classical approach is based on the Frank–Wolfe algorithm [30,83].
Other more efficient algorithms have been proposed since, including the gradient
projection algorithm [41] and the method of successive averages (MSA) [79,84,85]
to compute the generalized cost. Approaches based on meta-heuristics have also
been proposed.

• Evaluation of Travel Times: The time it takes to travel a road segment can vary from
when a vehicle starts its journey to when it is moving on that segment. Drivers base
their route decisions on the time spent actively driving on the segment. Thus, it is
crucial to predict this travel time accurately. In advanced methods, travel times are
assessed by adding up the times for each segment, forming a travel time chain. The
estimated travel time for each segment is based on when the vehicle is expected to
reach that specific segment [78].

• Stopping Criterion: Recall that, in STA, there is a unique equilibrium solution in
terms of traffic flow for each segment. This solution is reached when Algorithm 1
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converges. Unlike STA, the convergence of vehicle routes in DTA does not imply that
the network has reached a dynamic equilibrium. The convergence problem becomes
more complex when the granularity of the traffic model is high. It is widely reported
that microscopic models are intractable.

Similar to STA, classical approaches for solving the dynamic traffic assignment prob-
lem are based on iterative algorithms that involve route permutation in the direction of
gradient descent. The outcome of these approaches and their convergence depends not only
on the initial solution (initialization phase) but also on intermediate solutions [86] and the
network saturation state [87–89] (e.g., deadlock and shock waves). Additionally, classical
DTA approaches are susceptible to the risk of converging to a local minimum. Furthermore,
the solution space exploration is limited [87]. Consequently, several authors propose the
use of heuristics and meta-heuristics for dynamic assignment problem resolution, such
as simulated annealing [86,90,91], population-based search (e.g., genetic algorithm and
teaching–learning-based optimization) [86,92–96], and ant colonies [97,98]. A noticeable
work presented in [99] introduces a new modeling paradigm for DTA and uses multi-agent
reinforcement learning to solve DTA.

Algorithm 2 presents an overview of population-based search, where multiple solu-
tions are generated, evaluated, and enhanced, enabling a comprehensive exploration of the
solution space.

Algorithm 2 Population-Based Search
1. Initialization: Generate a collection of candidate solutions for a given problem.
2. Repeat the following operations multiple times:

• Evaluation: Assess the “score” of each candidate solution.
• Selection: Reduce the number of “poor” solutions (there are various methods to

achieve this).
• Construction of new solutions: Build new solutions and add them to the collection of

candidate solutions.

4. Extended Traffic Assignment

Traffic assignment has been widely implemented in the context of road infrastructure
design. It has been extensively used to assess various road investment scenarios and
lane directions. Thus, the previous section specifically focused on travel times, vehicle
traffic, and trip balance. In this section, we will discuss the expansion of the application of
traffic assignment, particularly to enhance environmental conditions, likely a reduction in
pollution or an increase in environmental sustainability. This section explores contributions
related to alternative modes of transportation and road toll policies. In addition, it shows
how agent-based modeling allowed a paradigm shift.

4.1. Traffic Assignment for Alternative Modes

Alternative modes of transportation are of particular interest to transportation au-
thorities, aiming not only to provide transport options suitable for all socioeconomic
backgrounds of inhabitants but also to enhance environmental conditions and the quality
of services for tourists and impaired people. Traffic assignment for alternative modes is
vital for facilitating economic evaluations that assess the sustainability of projects related
to innovative transportation systems [100–103]. Following the formulation of the traffic
assignment problem, there has been a specific focus on the transit assignment. However,
assigning public transport users requires some adjustments to the initial traffic assignment
formulations. The first pertains to the criterion motivating users. Travel time cannot be con-
sidered the predominant criterion. Users’ perceived quality of service is not limited to the
travel time. It depends on vehicle and transport line capacity as well as frequency [104–109].
These factors determine access queue lengths and transfer times [110,111]. Additionally,
the number of connections may discourage certain route choices, even if the travel time
is shorter.
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From the supply modeling standpoint, there are two approaches to modeling transit.
The first one is based on line frequencies [112–114], where specific waiting time models
have been proposed, either with or without consideration of the vehicle capacities. The
second one considers the transit timetables (schedule) [115–120]. From the demand model-
ing standpoint, the notion of equilibrium [104,106,107,121–123], including the stochastic
one [120,124–127], is widely deployed in the context of transit assignment.

However, the assumption of a strongly monotonic generalized cost function increasing
as a flow function is not necessarily verified. First, travel time is no longer the most
important criterion. Second, even if it were, the function does not benefit from the same
characteristics as the functions used in road traffic. More precisely, the traveling time is not
necessarily monotone, and “an increase in flow does not deteriorate the performance of the
system” [123].

For the reasons presented previously, the static assignment of transit users has also
benefited from its theoretical developments, not only for formulating the problem but
also for calculating the solution. As far as the formulation of the problem is concerned, a
hyperpath model is used and assumptions have also been relaxed in [128] to ensure the
uniqueness of the solution. For the calculation of the solution, the contribution of [128]
reformulates the problem in the form of a nonlinear complementary problem, and [129]
proposes an approach for its resolution. In the latter paper, the authors highlight the
convergence issue of classical gradient-based approaches. It uses a heuristic to minimize
the gap (similar to the relative gap given in Equation (13) but adapted to the transit
travel time and there is no denominator) function, coupled with MSA to estimate the
travel time. Advancements in computing capabilities, coupled with the utilization of
heuristics and iterative approaches, have created the opportunity to address two challenges
simultaneously—namely, planning the public transport network while considering its
impact on users. This is exemplified by the approach presented in [130].

Similar to the dynamic assignment of road traffic, transit assignment has benefited
from microscopic traffic simulators. These simulators incorporate departure times, account
for delays caused by congestion, and consider the time users spend boarding and alighting
at stops. Given the complexity of the problem, agent-based approaches seem inevitable.
In this approach, agents learn based on their criteria through numerous iterations of
decision-making. Such approaches have been successfully employed in refs. [15,131].
An agent-based approach has also proven beneficial in addressing the complexity of the
carpooling assignment problem [132]. Carpooling introduces the challenge of matching
routes and determining the balance between itinerary extension and the reward, influencing
the decision on the number of individuals sharing the same itineraries.

4.2. Environmental Concerns and Traffic Control

The results of both STA [133] and DTA [10,11] were used for the evaluation of the
resulting pollution. This was applied not only to road traffic but also to transit [131].
Apart from the use of STA and DTA for environmental assessment, the problem of traffic
assignment can be extended to control the traffic. Recall that the travel time is the central
user’s criteria in traffic assignment models. The equilibrium assignment results from a
selfish choice that is not in the community’s best interest (see the illustrative example
presented in Section 2.4). Therefore, tolling is the lever for controlling the distribution
of flows.

The control was addressed in several papers to mitigate the cost of anarchy. However,
the studied problems remain limited [4]. In contrast to the problem of having a known cost
function for roads and distributing the flow accordingly, the control problem is based on a
centralized optimization function for which the travel costs of roads are adjusted. More
precisely, in [10] the authors suggest an approach where the dynamic system optimum
with free flow is solved first. Then, the dynamic pricing is optimized after several iterations.
More recently, Ref. [134] shows the impact of the design of incentive policy to minimize
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the price of anarchy in a congested network. This work was extended in [12] to compare
between subsidies and tolls.

Another control lever is the traffic light. A traffic-light plan can be used to either
increase or decrease the travel time for a given road. However, such an approach poses the
problem of modeling the travel time according to traffic-light plans. Moreover, it is widely
admitted that this makes the problem more complicated to solve, requiring simplifications
and artificial-intelligence (AI) techniques. One approach is to carry out several iterations in
which the two problems, i.e., traffic assignment and traffic-light optimization, are dealt with
in sequence. In the work presented in [135], the authors use several heuristic strategies [136]
to optimize traffic lights while using MatSim [93] for traffic assignment. The authors
of [137] suggest a navigation rule based on gene expression programming. The navigation
rule allows vehicles to select the neighboring road. The traffic-light plan is optimized to
maximize the throughput. In both papers, the traffic-light optimization aims to improve
traffic flow according to the assignment result.

4.3. Paradigm Shift through Multiagent-Based Approaches

The traffic assignment problem, as defined in Section 2.1, requires the o–d matrix as
input. However, experience has shown that travel time can modify the entries in the o–d
matrix. A user may be discouraged from going to a given supermarket if there is congestion.
Therefore, the o–d matrix is calculated iteratively. In the transportation investment project
context, the traffic assignment problem is included in a four-step model [138] that follows
several iterations until the convergence. In this model, the first three steps, which are
trip generation, trip distribution, and mode choice, calculate the o–d matrix based on the
socioeconomic data of the zones and the distance matrix between the zones. The last step
is the traffic, which provides the new distance matrix. This matrix is used again for the first
three stages, and so on. Agent-based models of users allow an activity-based approach [139].
Rather than assign the traffic according to the o–d matrix, each transportation user is an
agent that aims to increase its utility according to a collection of activities. Time spent on
transport is a decreasing function that reduces the agent’s utility. The agent-based model
enables agents either to learn [140] or to co-evolve in parallel [93], not only to optimize their
routes and approach a kind of equilibrium but also to adapt their departure times according
to traffic conditions. A noticeable description in [93] details the utility function and the
co-evolution principle used in MatSim software version 0.8. Moreover, other optimizations
can be launched, such as the location of stop stations and traffic-light plans [136]. However,
to reach the convergence, the multi-agent learning algorithms are limited to a specific
equilibrium, such as Nash, correlated, or coarse equilibrium [141,142].

5. Discussion

The traffic assignment problem has been extensively addressed in the literature. It has
benefited from traffic supply models and demand models. Several resolution methods have
been proposed for this problem. They generally share a common algorithmic structure,
starting from an initial traffic situation and iterating until a stopping criterion is satisfied.
At each iteration, a portion of the traffic is reassigned to less costly routes. In general,
resolution methods are designed for transportation planning scenarios where relatively
long computation times are acceptable.

While traffic assignment approaches and associated models have been extensively
tested through studies and real-world applications, the advancements in intelligent trans-
portation systems reveal their limitations and call for new contributions. To illustrate the
claim, this section is organized into two parts. The first one reviews the major progression
in intelligent transportation systems and how emergent technologies question the theories
behind traffic assignment. The second part provides promising research directions.
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5.1. Intelligent Transportation Systems

To illustrate the claim of limitations of the classical approaches, let us begin by ex-
amining current intelligent transportation systems. Many road users rely on navigation
applications [143–145] to choose their routes in major cities. These applications provide
optimal routes based solely on real-time traffic information without necessarily seeking
equilibrium for obvious computational time reasons [146,147].

Another widely adopted intelligent transportation system is adaptive traffic signals [148].
Signal regulation is based on measured flows, favoring the most significant flows by
extending the duration of the green light and providing sequences of green waves. This
could challenge the assumption of increasing travel time based on demand. Additionally,
these optimizations raise questions about the multitude of itineraries, as it may be more
beneficial to define efficient corridors and reduce conflicts that lead to congestion [149].
Furthermore, other adaptive control systems exist to streamline traffic outside conflict zones,
such as speed limit control systems in smart segments, aiming to prevent the formation of
traffic congestion.

Whether it is the increasing use of navigation systems in major cities or adaptive traffic
control systems, current intelligent transportation systems challenge the models used in
static assignment. Specifically, it is crucial to leverage microscopic simulation to incorporate
the new traffic supply and demand behaviors.

We can expect the future widespread integration of connected and autonomous ve-
hicles (CAV), with technological shifts and new transportation behaviors across various
aspects. CAV is anticipated to streamline the utilization of road infrastructure, leading
to a reduction in the need for parking spaces and lanes. Consequently, the challenge of
traffic assignment becomes pivotal in realizing urban space efficiencies and designing
autonomous shuttle services. Hence, traffic assignment approaches must effectively tackle
this upcoming traffic.

These vehicles would require new modes of driving and regulation. For instance,
leveraging their communication capabilities and trajectory control, they can self-organize in
conflict zones without the need for traffic lights or priority signs [150,151]. They determine
the sequence of passage (who goes first, second, etc.) and adjust their speed accordingly.
A highly active scientific community is working on this mode of regulation, commonly
referred to as an ’autonomous intersection management system’. This technology is also set
to be applied to ordinary vehicles equipped with connectivity, thanks in particular to green-
light optimal speed advice (GLOSA) [152–155]. In addition to autonomous intersections,
other driving systems are conceivable, such as cooperative platooning [156], connected
merging systems [157–160], dynamic lane reversal [82,161–163], etc.

Intelligent transport systems are not limited to vehicle and infrastructure equipment.
The domain of smart cities opens up new perspectives. Cities have access to the cloud,
where real travel data can be analyzed. These data come from the GPS tracks of mobile
applications, increasingly precise roadside sensors (cameras with number-plate detection),
WiFi hot spots on public transportation tracking cellphones’ MAC addresses, and GPS-
equipped vehicles (privacy preservation needs to be considered carefully in this context.).
The data can feed traffic assignment approaches not only to calculate o–d matrices but also
to calibrate both supply and demand models. With these technologies, one can expect
that the city’s traffic models, including traffic assignment models, would be improved
to become increasingly accurate. Thanks to the progress in AI techniques and data sci-
ence, the data may also be sufficient alone to carry out traffic assessments and traffic
projections [164–168].

5.2. Promising Directions

In light of the aforementioned developments in intelligent transport systems, we will
now outline two key directions that show promise for traffic assignment:

• Mixed traffic digital twin: The cohabitation of a multitude of systems would require
either new macroscopic and mesoscopic traffic models or the use of microscopic mod-
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els coupled with an agent-based approach [76,169]. The latter option appears better
suited to accommodate the diverse objectives of road users, especially in the context
of mixed traffic: human drivers with navigation systems, human drivers familiar
with the road, autonomous shuttles, optimized freight transport, etc. Furthermore,
employing microscopic models could enable us to address the challenge of finding
an equilibrium between diverse equitable routes and the costs induced by conflicts.
However, it is worth noting that the use of microscopic traffic models for computing
the travel times is resource-intensive in terms of computation resources and time.
Another option is to investigate the implementation of digital twins [170,171] with
different levels of granularity of the traffic entities. This digital twin should be capable
of assimilating data from the cloud, ranging from macroscopic quantities such as
road flow and occupancy rates to more detailed user profiles at the vehicle level,
including departure times and itineraries. Harnessing AI techniques is crucial [172]
for generating a comprehensible map of road usage for decision-makers (e.g., identify-
ing saturated intersections, assessing environmental impact, improving safety, and
offering the forecasts needed by cities). More importantly, AI can also be used to
propose solutions (e.g., the necessity for new transit services and a new toll policy).
As emphasized throughout this article, the problem is undeniably intricate. Never-
theless, the substantial advancements in machine learning technologies, data analysis
techniques, and cloud computing hold the promise of highly innovative approaches.
The data has previously been employed for a range of tasks related to traffic assign-
ment, including estimating the origin–destination (o–d) matrix [173–175], evaluating
travel times [176], and calibrating models and traffic assignment results [174,177–180].
This utilization encompasses the data of cell phones, information systems, and mag-
netic loops. The development of the mixed traffic digital twin aims to transcend these
contributions, representing a significant stride towards exploring advanced artificial-
intelligence (AI) techniques for traffic management. An illustrative foundation for
data-driven traffic assignment is established in the study presented in [181]. Instead of
assuming user behavior, the authors showcased the feasibility of precisely estimating
road demand by directly learning flow patterns from the available data. This innova-
tive approach lays the groundwork for incorporating AI into traffic forecasting. The
extension introduces additional parameters, such as traffic control strategies and new
transportation scenarios. Moreover, the mixed traffic digital twin can be designed to
be proactive, not only highlighting problems, such as those proposed in ref. [182], but
also proposing solutions to the decision-makers. To this end, the mixed traffic digital
twin may be trained by using “classical traffic” assignment approaches.

• New generation of navigation systems: The evolving uses of CAV and associated
regulatory systems will likely challenge current traffic assignment approaches. These
vehicles will need to plan their routes in real time based on received demands and com-
municate their estimated arrival times as accurately as possible. Although Wardrop’s
equilibrium assumption does not allow for the perfect rationalization of vehicle usage,
it remains desirable for fairness reasons. Indeed, it seems evident that no user would
want to take a shuttle service that significantly takes longer than other shuttles without
financial compensation. However, current traffic assignment techniques do not allow
for real-time route planning. Computation times increase when considering vehicle
behavior and traffic regulation details with high resolution. Currently, traditional traf-
fic assignment approaches fall short in delivering real-time itineraries. Simultaneously,
there exists a lack of consensus in the literature regarding the impact of contemporary
navigation systems. Several authors have underscored adverse effects, as indicated in
refs. [183–186].
This issue pertains to the challenge of efficiently assigning CAV on a constantly
evolving road network, taking into consideration real-time traffic conditions. One
crucial aspect of the problem is determining optimal routes for vehicles based on
real-time traffic information. The commonly used shortest path search method, which
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calculates the fastest routes between two points on a road network, does not effectively
solve the real-time traffic assignment problem. The main drawback of this method is its
lack of responsiveness to constantly changing traffic conditions. Figures 4 and 5 depict
the adverse effects of such an approach on route selection. The first figure illustrates
how vehicles can become trapped when new vehicles are rerouted to an alternative
path with smoother traffic, highlighting the necessity for a thorough evaluation of
intersection times. Meanwhile, the second figure demonstrates how a vehicle may
be misdirected due to the absence of traffic that is not yet present, emphasizing the
critical importance of accurately estimating upcoming traffic conditions.
New strategies with simple rules must be defined to guide vehicles in real time. These
rules should be capable of providing both efficient and fair routes while fostering
smooth traffic flow. Some studies already address these issues by proposing itinerary
reservations [187,188]. Among these studies, some focus on road booking in order to
not exceed their capacity [189–192]. Others are inclined towards intersection reserva-
tions [149,193–195] to alleviate costs associated with conflicts arising from diversified
routes. However, these approaches are relatively recent and deserve to garner broader
attention within the community to receive more feedback on microscopic models of
large cities incorporating innovative strategies for sharing road infrastructures with
more transparency.

Figure 4. Risk of congestion due to inefficient permutation.

Figure 5. Example of a wrong choice due to unexpected traffic.

6. Conclusions

This article offers a comprehensive review of traffic assignments. It begins by illustrat-
ing the issue through an example that underscores the differences between centralized and
decentralized assignment methods. It then delves into static and dynamic approaches to
traffic assignment, detailing the UE principles linked with each approach. Additionally,
this paper sheds light on how integrating agent-based models could significantly impact
optimizing public transport. It then looks at emerging techniques and the challenges facing
traffic assignment in the years ahead.

With the increase in city sizes and the urgent need for energy conservation and
environmental quality improvement, transportation forecasting based on proven scientific
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techniques is becoming increasingly necessary in order to successfully carry out urban
development projects. Traffic assignment is one of the central means to assess different
scenarios. However, technological advancements lead to the emergence of new needs. On
the one hand, the abundance of data sources and advancements in calculation methods
and means open the prospect of developing new approaches to support decision-makers.
On the other hand, the evolution of vehicles and equipment used by transportation users
allows the introduction of new infrastructure-sharing principles that need to assign traffic
efficiently and equitably in real time.
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